May 2022

This question paper contains 16 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 780

B

Unique Paper Code : 12271201

Name of the Paper : Introductory Macroeconomics

Name of the Course : B.A. (H) Economics

Semester : II

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

 Write your Roll No. on the top immediately on receipt of this question paper.

 Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों को लिए निर्देश

- इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।
- इस प्रश्न-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए ।

1. (a) Briefly explain the "uses of private savings" in the economy.

(b) A bond promises to pay 600 in one year

- (i) What is the interest rate on the bond if its price today is 400?
- (ii) If interest rate is 10%, what would be the price of bond today?
- (c) Using IS-LM model, show the impact of investment subsidy to the economy. How will it affect interest rate, income & investment in the economy? How is it different from expansionary fiscal policy?
- (अ) अर्थव्यवस्था में "निजी बचत के उपयोग" को संक्षेप में
- (ब) एक बांड एक वर्ष में 600 का भुगतान करने का वादा करता

1780

(i) बांड पर ब्याज दर क्या है यदि इसकी कीमत आज 400

- (ii) यदि ब्याज दर 40% है, तो आज बांड की कीमत क्या होगी?
- (स) IS-LM मॉडल का प्रयोग करते हुए, अर्थव्यवस्था पर निवेश सब्सिडी के प्रभाव को दिखाएं। यह अर्थव्यवस्था में ब्याज दर, आय और निवेश को कैसे प्रभावित करेगा? यह विस्तारवादी राजकोषीय नीति से किस प्रकार भिन्न है?

2. (a) Given the following information :		(5)
Investment (1)	-	50
Government Purchases (G)	=	40
GNP	=	500
CA Balance		-20
Tax (T)	-	100
Transfer Payment (TR)	ie	30
Interest Payment on government debt		20
Net Factor payments from abroad	=	e -5

Comp	

- (i) GDP
- (ii) Net Export
- (iii) Consumption
- (iv) Private Savings
- (v) Government Savings
- (b) "Seigniorage is first an increasing function then a decreasing function of nominal money growth". Do you agree? Explain.
- (c) What is full employment budget surplus? How is it different from actual employment budget surplus? How does a decrease in MPC affect the budget surplus?
- (d) "An increase in Government spending by \$10 leads to fall in the budget surplus exactly by \$10", is this statement is true or false. Explain.

(अ) निम्नलिखित जानकारी को देखते हुए:

निवेश (1)	-	50
सरकारी खरीब (G)	-	40
जीएनपी (GNP)	-	500
चालू त्वाता शेष	-	-20
कर (T)		100
स्थानांतरण भुगतान (TR)	=	30
सरकारी ऋण पर ब्याज भुगतान	= 1	21
विदेश से शुद्ध कारक भुगतान	(4))	-

गणना कीजिये :

- (i) सकल घरेलू उत्पाद
- (ii) शुद्ध निर्यात
- (ііі) उपभोग
- (iv) निजी बचत
- (v) सरकारी बचत
- (ब) "Seigniorage पहले एक बदता हुआ कार्य है फिर नाममात्र धन वृद्धि का घटता कार्य"। क्या आप सहमत हैं? समझाइये।

- (स) पूर्ण रोजगार बजट अधिशेष क्या है? यह वास्तविक रोजगार बजट अधिशेष से किस प्रकार भिन्न है? एमपीसी में कमी बजट अधिशेष को कैसे प्रभावित करती है?
- (द) "सरकारी खर्च में \$10 की वृद्धि से बजट अधिशेष में \$10 की कमी आती है", यह कथन सही है या शलत है। समझाइये।
- (a) India issues 10,000 cr. debt forgiveness to one of its neighbouring country. How is this transaction accounted for in the balance of payments of India.

(3)

- (b) How does hyperinflation affect economic activity of a country? (5)
- (c) What do you understand by Policy mix? In an economy, illustrate the effects of a policy mix on equilibrium output and interest rate. How the monetary accommodation of fiscal expansion leaves the interest rate unchanged as the level of output rises? Explain.

 (7)

- (अ) भारत 10,000 करोड़ जारी करता है। अपने पड़ीसी देश में से एक को कर्ज माफी। भारत के भुगतान संतुलन में इस लेन-देन का लेखा-जोखा कैसे किया जाता है।
- (ब) अति मुद्रास्फीति किसी देश की आर्थिक गतिविधि को कैसे प्रभावित करती है?
- (स) नीति मिश्रण से आप क्या समझते हैं? एक अर्थव्यवस्था में, संतुलन उत्पादन और ब्याज दर पर नीति मिश्रण के प्रभावों का वर्णन करें। जैसे-जैसे उत्पादन का स्तर बढ़ता है, राजकोषीय विस्तार का मोद्रिक समायोजन ब्याज दर को अपरिवर्तित कैसे छोड़ता है? समझाइये।
- 4. (a) What is GDP deflator? How is it different from CPI deflator? How does CPI inflation overstate the cost of living? (4)
 - (b) What is the demand for Central bank money?

 Using appropriate diagram explain the equilibrium in the market for central bank money. How does a decrease in the supply of central bank money affect its equilibrium? (5)

9

(c) Given: C = 0.8(1-t) Y

t = 0.25

1 = 900 - 20i

G = 800

L = 0.25Y - 50i

M/P = 500

Find

- (i) Find equilibrium level of income & Consumption.
- (ii) Calculate budget surplus at equilibrium.
- (iii) If govt, spending increases by 200 how much would be the new level of private spending. (6)
- (अ) GDP डिफ्लेटर क्या है? यह CPI डिफ्लेटर से किस प्रकार भिन्न है? सीपीआई मुद्रास्फीति जीवन पापन की लागत को कैसे बढ़ा बेती है?

- (ब) केंद्रीय बैंक के पैसे की मांग क्या है? उपमुक्त आरेख़ का प्रयोग करते हुए केंद्रीय बैंक मुद्रा के लिए बाजार में संतुलत की व्याख्या कीजिए। केंद्रीय बैंक के पैसे की आपूर्ति में कमी उसके संतुलन को कैसे प्रभावित करती है?
- (स) दिया गया है:

$$C = 0.8(1-t) Y$$

t = 0.25

I = 900 - 20i

G = 800

L = 0.25Y - 50i

M/P = 500

गणना कीजिये :

- (i) आप और उपभोग का संतुलन स्तर जात कीजिए।
- (ii) संतुलन पर बजट अधिशेष की गणना करें।
- (iii) अगर सरकार। खर्च 200 से बढ़ना है, निजी खर्च का नया स्तर कितना होगा।

- (a) Consider an economy whose real GDP is 5000 in time period 1 and 6000 in time period 2. The GDP deflator for the same economy is 105 in time period 1 and 120 in time period 2.
 - (i) What is the nominal GDP in time period 1 and 2?
 - (ii) What is the rate of inflation in time period 2?
 - (iii) If the real rate of interest in time period 2 is 4%, what is the nominal rate of interest in time period 2? (3)
 - (b) Why is central Bank money is also called High Powered Money? Explain using the concept of multiplier. Assuming that money multiplier is 7 and overall supply of money is 35000, what will be the central bank money? (5)
 - (c) Explain the relationship between effectiveness of monetary policy & interest elasticity of money demand using diagram. (4)

- (d) Assume a model of the expenditure sector with no govt sector. If the savings function is defined as S = -400 + 0.2y, and the autonomous investment increases by 200, by how much will consumption increases? (3)
- (अ) एक ऐसी अर्थव्यवस्था पर विचार करें जिसकी वास्तविक जीहीपी समय अविध । में 5000 और समय अविध २ में 6000 है। उसी अर्थव्यवस्था के लिए जीहीपी डिफ्लेटर समय अविध । में 105 और समय अविध २ में 120 है।
 - (i) समय अवधि । और 2 में नामगात्र सकल घरेलू उत्पाद कथा है?
 - (ii) समय अवधि 2 में मुद्रास्फीति की दर क्या है?
 - (iii) यदि समय अवधि 2 में वास्तविक ब्याज दर 4% है, तो समय अवधि 2 में ब्याज की नाममात्र दर क्या है?

- (ब) केंद्रीय बैंक के पैसे को हाई पावर्ड मनी क्यों कहा जाता है? गुणक की अवधारणा का प्रयोग करते हुए समझाइए। यह मानते हुए कि मुद्रा गुणक 7 है और मुद्रा की कुल आपूर्ति 35000 है, केंद्रीय बैंक की मुद्रा क्या होगी?
- (स) मीद्रिक नीति की प्रभावशीलता और मुद्रा की मांग की ब्याज लोच के बीच संबंध को आरेख का उपयोग करके स्पष्ट करें।
- (द) निना सरकारी क्षेत्र वाले व्यय क्षेत्र का एक मॉडल मान लें। यदि बचत फलन को S=-400+0.2y के रूप में परिभाषित किया जाता है, और स्वायत्त निवेश में 200 की वृद्धि होती है, तो स्वयत्त में कितनी वृद्धि होती?
- 6. (a) Differentiate between intermediate and final goods. Under which category are Capital Goods and inventory investment included and why?

(3)

(b) Suppose that money demand is given by M^d = Y (0.25-i) where income is 100 cr. And supply of money is 20 cr. Assume equilibrium in money market

- (i) What is the interest rate?
- (ii) If central bank increases interest rate by 5%, what should be the level of money supply for the money market to be in equilibrium. (5)
- (c) Examine the impact of a contractionary fiscal policy on output & interest rate under two assumptions:
 - (i) Interest rates are kept constant
 - (ii) Money stock is kept constant (7)
- (अ) मध्यवर्ती और अतिम माल के बीच अंतर। कैपिटल गुइस और इन्वेंट्री निवेश को किस श्रेणी में शामिल किया गया है और क्यों?
- (ब) मान लीजिए कि पैसे की मांग एमडी = वाई (0.25-i) द्वारा दी गई है जहां आय 100 करोड़ है। और पैसे की आपूर्ति 20 करोड़ है। मुद्रा बाजार में संतुलन मानिए

- (i) ब्याज दर क्या है?
- (ii) यदि केंद्रीय बैंक ब्याज दर में 5% की वृद्धि करता है, तो मुद्रा बाजार के संतुलन में रहने के लिए मुद्रा आपूर्ति का स्तर क्या होना चाहिए।
- (स) दो मान्यताओं के तहत उत्पादन और ब्याज दर पर एक संकुधन राजकोषीय नीति के प्रभाव की जांच करें:
 - (i) ब्याज दरों को स्थिर रखा जाता है
 - (ii) मनी स्टॉक स्थिर रखा जाता है
- (a) A factory owner purchased 5 new machines at Rs. 30,000 each. He sold his old ones for Rs. 60,000. What is the net impact of these transaction on GDP?
 - (b) What determine output and employment in the classical system? What role does the aggregate demand have in determining output, employment and price level? (7)

- (c) Explain how each of the following events affect monetary base, money multiplier and money supply.
 - (i) Central bank follows expansionary open market operations.
 - (ii) If there is an increase in the amount of money that people hold as currency rather than deposits. (6)
 - (अ) एक कारखाने के मालिक ने 30,000 रुपये प्रत्येक पर 5 नई मजीने खरीवीं। उसने अपने पुराने लोगों को 60,000 रुपये में बेच दिया। सकल घरेलू उत्पाद पर इन लेनदेन का शुद्ध प्रभाव क्या है?
 - (व) ज्ञास्त्रीय प्रणाली में उत्पादन और रोजगार क्या निर्धारित करते हैं? उत्पादन, रोजगार और मूल्य स्तर निर्धारित करते में कुल मांग की क्या भूमिका है?
 - (स) बताएं कि निम्नलिखित में से प्रत्येक घटना मौदिक आधार, धन गुणक और मुद्रा आपूर्ति को कैसे प्रभावित करती है।

- (i) सेंट्रल बेंक विस्तारवादी खुले बाजार के संचालन का अनुसरण करता है।
- (ii) यदि लोगों के पास जमा राशि के बजाय मुद्रा के रूप में रखी गई राशि में वृद्धि होती है।

(5000)

*This question paper contains 16 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 591

B

Unique Paper Code

: 12275201

Name of the Paper

: Introductory Macroeconomics

Name of the Course

: Hons GE

Semester

2 11

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt
 of this question paper.
- There are eight questions in the question paper.
 Answer any five questions.
- 3. All questions carry equal (15) marks.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्वेश

- इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।
- प्रश्न पत्र में आठ प्रश्न हैं। किन्हीं पाँच प्रश्नों के उत्तर वीजिए।
- सभी प्रज्ञनों के अंक समान (15) हैं।
- इस प्रश्न-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।
- (i) Assume that money demand takes the following form:

$$\frac{M}{P} = Y[1 - (r + e)]$$

where Y = 1000 and r = 0.1

(a) Assume that, in the short run, e is constant and equal to 25%. Calculate the amount of seigniorage if the rate of money growth,

(i) 25%

(ii) 50%

(iii) 75%

- (b) In the medium run, $e=\frac{\Delta M}{M}$. Compute the
 - amount of seigniorage associated with the three rates of money growth in part (a). Explain why the answers different from those in (a).
- (ii) Discuss expenditure approach to measure GDP. Why are exports included and imports deducted in this approach.
- (i) मान लें कि पैसे की मांग निम्नलिखित रूप लेती हैं:

 $\frac{M}{P} = Y \Big[1 - \Big(r + c \Big) \Big]$

जहाँ Y = 1000 और r = 0.1

- (अ) मान लें कि, अल्याविध में, e स्थिर है और 25% के बराबर है। यदि धन वृद्धि की दर, $\frac{\Delta M}{M}$, बराबर होती है, तो सेरिअोरेज की राशि की गणना करें:
 - (i) 25%
 - (ii) 50%
 - (iii) 75%
- (ब) मध्यम अवधि में, $c=\frac{\Delta M}{M}$ भाग (ए) में धन वृद्धि की तीन दरों से जुड़े सेनिओरेज की मात्रा की गणना करें। बताएं कि उत्तर (ए) से अलग क्यों हैं।
- (ii) सकल घरेलू उत्पाद को मापने के लिए व्यय दृष्टिकोण पर चर्चा करें। इस दृष्टिकोण में निर्यात को क्यों आमिल किया जाता है और आयात को क्यों घटाया जाता है।

(i) Suppose we have an economy described by the following functions:

$$C = 50 + 0.8 \text{ YD}$$

(= 70- C=

ā = 200°

TR - 100.

t = 0.20*

- (a) Calculate the equilibrium level of income.
- (b) Calculate the multiplier in this model,
- (c) Calculate budget surplus.
- (d) Suppose that t increases to 0.25. What is the new equilibrium income? The new multiplier?
- (e) Calculate the change in the budget surplus.

 Would you expect the change in the surplus to be more or less if c=0.9 rather than 0.8?

- (f) Can you explain why the multiplier is when t=1?
- (ii) Discuss the concept of liquidity trap. Doe monetary policy works in this case? Explain usin diagrams.
- (i) मान लीजिए कि हमारे पास निम्नलिखित कार्यों द्वारा वर्णि अर्थव्यवस्था है :

$$C = 50 + 0.8 \text{ YD}$$

1 = 70

 $\bar{G} = 200$

 $\overline{TR} = 100$

t = 0.20

- (क) आय के संतुलन स्तर की गणना करें।
- (ख) इस मॉडल में गुणक की गणना करें।
- (ग) बजट अधिशेष की गणना करें।

591

- (u) मान लीजिए कि t बदकर 0.25 हो जाता है। नई संतुलन आय क्या है? नया गुणक ।
- (ङ) बजट अधिशेष में परिवर्तन की गणना करें। क्या आप उम्मीद करते हैं कि अधिशेष में परिवर्तन 0.8 के बजाय c=0.9 होने पर कम या ज्यादा होगा ?
- (घ) क्या आप बता सकते हैं कि 1=1 होने पर गुणक 1 क्यों होता है ?
- (ii) चलनिधि जाल की अवधारणा की विवेधना कीजिए। क्या इस मामले में मौद्रिक नीति काम करती है ? आरेखों की सहायता से समझाइए ।
- (i) The following equations describe an economy.

$$C = 40 + 0.75 \text{ YD}$$

1 = 140 - 10i

 $\bar{G} = 100$

t = 0.20

$$L = 0.2Y - 5i$$

$$\frac{\overline{M}}{\overline{P}} = 85$$

- (a) What is the equation that describes the IS curve?
- (b) What is the equation that describes the LM curve?
- (c) What are the equilibrium levels of income and the interest rate?
- (d) What happens to the equilibrium income and interest rate when the government increases its expenditure by 65?
- (ii) What is crowding out? Discuss with a suitable diagram.
- (i) निम्नलिखित समीकरण एक अर्थव्यवस्था का वर्णन करतेहैं।

9

C = 40 + 0.75 YD

$$1 = 140 - 10i$$

$$\bar{G} = 100$$

$$t = 0.20$$

$$L = 0.2Y - 5i$$

$$\frac{\overline{M}}{\overline{p}} = 85$$

- (क) IS वक्र का वर्णन करने वाला समीकरण क्या है ?
- (ख) LM वक्र का वर्णन करने वाला समीकरण क्या है ?
- (ग) आय के संतुलन स्तर और ब्याज दर क्या है ?
- (घ) संतुलन आय और ब्याज दर क्या होता है जब सरकार अपने व्यय को 65 से बढ़ा देती है ?
- (ii) Crowding out क्या है ? उपयुक्त आरेख के साथ चर्चा कीजिए।

- 4. (i) How does the official settlement balance ensure that the "Fundamental Balance of Paymen Identity" holds?
 - (ii) You are given the following information abo an economy:

Gross private domestic investment=40 Government purchases of goods and services=

Gross national product (GNP)=200

Current account balance=-20

Taxes=60

Government transfer payments to the domes private sector=25

Interest payments from the government to domestic private sector=15

Factor income received from rest of world-Factor payments made to rest of world=9

Find the following, assuming that government investment is zero:

- (a) Consumption
- (b) Net Exports
- (c) GDP
- (d) Net factor payments from abroad
- (e) Private Saving
- (f) Government Saving
- (g) National Saving
- आधिकारिक नियटान संतुलन कैसे सुनिव्धित करता है कि "मूल भुगतान संतुलन की पहचान" है ?
- (ii) आपको एक अर्थव्यवस्था के बारे में निम्नलिखित जानकारी ही गई है:

सकल निजी घरेलू निवेश=40
वस्तुओं और सेवाओं की सरकारी खरीद=30
सकल राष्ट्रीय उत्पाद (जीएनपी)=200

चालू खाता शेष=20

कर=60

घरेलू निजी क्षेत्र को सरकारी हस्तांतरण भुगतान=25 सरकार से घरेलू निजी क्षेत्र को व्याज भुगतान=15 शेष विश्व से प्राप्त कारक आय=7 शेय विश्व को किए गए कारक भुगतान=9 यह मानते हुए कि सरकारी निवेश शून्य है, निम्नलिखित स्वोजें :

- (क) खपत
- (स्व) शुद्ध निर्यात
- (ग) सकल घरेलू उत्पाद (GDP)
- (घ) विदेशों से गुद्ध कारक भुगतान
- (ङ) निजी बचत
- (च) सरकारी बचत
- (छ) राष्ट्रीय बचत

591

13

- 5. (i) Differentiate between real GDP and nominal
 - (ii) Discuss the functions of money. Who controls the money supply and how?
 - (iii) The following financial data is given for an

Currency=2000

Reserves=400

Deposits=4000

Calculate the

- (a) Reserve ratio
- (b) Size of the money multiplier
- (c) Monetary base
- (1) वास्तविक जीडीपी और नॉमिनल जीडीपी में अंतर स्पष्ट कीजिए।
- (ii) मुद्रा के कार्यों की विवेचना कीज़िए। मुद्रा आपूर्ति को कौन नियंत्रित करता है और कैसे ?

F 91)

(iii) एक अर्थव्यवस्था के लिए निम्नलिखित वित्तीय आंकड़े दिए गए हैं:

मुद्रा = 2000

रिजर्व = 400

जमा - 4000

गणना कीजिये

- (क) आरक्षित अनुपात
- (ख) धन गुणक का आकार
- (ग) मौद्रिक आधार
- (i) Explain the concept and causes of hyperinflation.
 Suppose policies that the government can use to control hyperinflation.
 - (ii) What is high powered money? To what extent does high powered money affect the money supply in an economy?

 अतिमुद्रास्फीति की अवधारणा और कारणों की व्यालया करें। मान लीजिए कि सरकार हाइपरइन्फ्लेशन को नियंत्रित करने के लिए नीतियों का उपयोग कर सकती है।

15

- (ii) उच्च अक्ति वाली मुद्रा क्या है ? एक अर्थव्यवस्था में उच्च अक्ति वाली मुद्रा आपूर्ति को किस हद तक प्रभावित करती है ?
- (i) If capital stock of a nation rises, what will be its effect on output, employment and real wage? Explain in the context of classical model using suitable diagrams.
- (ii) Distinguish between budget surplus and full employment budget surplus. Which one is a better measure of direction/stance of fiscal policy (i.e. expansionary or contractionary)? Discuss.
- (i) यदि किसी देश का पूंजी भंडार बढ़ता है, तो उत्पादन, रोजगार और वास्तविक मजदूरी पर इसका क्या प्रभाव पड़ेगा ? उपयुक्त आरेखों की तहायता से शास्त्रीय मॉडल के संदर्भ में व्याख्या कीजिए।

- (ii) बजट अधिशेष और पूर्ण रोजगार बजट अधिशेष के बीच अंतर करें । राजकोषीय नीति की दिशा / रुख का बेहतर माप कौन सा है (अर्थात विस्तारक या संकुचन) ? विचार-विनर्श करना ।
- 8. Write short notes on any two:
 - (i) Money Multiplier
 - (ii) Quantity Theory of Money
 - (iii) Seigniorage

किन्हीं दो पर संक्षिप्त टिप्पणी लिखिए:

- (i) धन गुणक
- (ii) पैसे की मात्रा सिद्धांत
- (iii) वरिष्ठ

(30,000)

May 2022 whis question paper contains 10 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 4321

Unique Paper Code

: 12275201

Name of the Paper

: Introductory Macroeconomics

Name of the Course

: CBCS (Economics) G.E. - 2

GE OP

Semester

: II/I

Duration: 3½ Hours Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any four questions.
- 3. Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्वेश

- इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।
- कोई चार प्रश्न हस करें।
- इस प्रक्रन पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का बाध्यम एक ही होना चाहिए।

6321

- (a) How can National Savings, Private Savings and Government Savings be calculated? What will happen if government deficit increases?
 - (b) What precautions should be kept in mind while calculating national income?
 - (c) What is GDP deflator? How is it different from consumer price index? How does CPI inflation overstate the increases in cost of living?
 - (d) With the help of data given below, calculate the rate of inflation for each year from 2014 to 2017, considering 2013 as base:

Year	2013	2014	2015	2016	2017
CPI	600	615	650	645	660

(5.75, 4, 5, 4)

- (अ) राष्ट्रीय बचत, निजी बचत और सरकारी बचत की गणना कैसे की जा सकती है? सरकारी घाटा बढ़ने पर क्या होगा?
- (व) राष्ट्रीय आय की गणना करते समय किन सावधानियों को ध्यान में रखना चाहिए?
- (स) जीडीपी डिफ्लेटर क्या है? यह उपभोक्ता मृत्य सूचकांक से किस प्रकार भिन्न है? सीपीआई मुद्रास्फीत जीवनयापन की लागत में वृद्धि को कैसे बडा देती है?

(व) नीचे विए गए आंकड़ों की सहायता से, 2014 से 2017 तक प्रत्येक वर्ष के लिए गुडास्फीति की दर की गणना करें, 2013 को आधार गानते हुए:

Year	2013	2014	2015	2016	2017
CPI	600	615	650	645	660

- 2. (a) How is the rate of interest determined by the demand and supply of money (assuming no banks in economy)? What happens to the interest rate if:
 - (i) Nominal income falls
 - (ii) Central bank chooses for expansionary open market operation.
 - (b) "What are determined in bond markets are not interest rates, but bond prices. In this context distinguish between expansionary and contractionary open market operations. How do they affect the balance sheet of central bank and bond prices and interest rates?
 - (c) The following financial market data is given for an economy (in rupees): Currency = 5000; Reserves = 1000; Deposits = 10000.

- (i) Calculate size of money multiplier
- (ii) Monetary Base
- (iii) Money Supply

(7,6.5.75)

- (अ) मुद्रा की मांग और आपूर्ति (अर्थव्यवस्था में कोई बैंक नहीं मानते हुए) ब्रारा ब्याज की दर केसे निधारित की जाती है? ब्याज दर का वैधा होगा यदि:
 - (i) नामगात्र की आय गिरती है
 - (ii) केंद्रीय बैंक विस्तारवादी खुले बाजार संचालन के लिए चुनता है।
- (ब) "ऑन्ड बाजारों में जो निधारित किया जाता है वह ब्याज दरें नहीं होती हैं, बिल्क बांड की कीमतें होती हैं। इस संदर्भ में विस्तारक और संकुचनकारी खुले बाजार के संचालन के बीच अंतर करें। वे केंद्रीय बैंक की वैलेंस शीट और बांड की कीमतों और व्याज दरों को कैसे प्रभावित करते हैं?
- (स) निम्नलिखित विसीय बाजार डेटा एक अर्थव्यवस्था (रुपये में) के लिए दिया गया है: मुद्रा = 5000; रिजर्थ = 1000; जमा = 10000 ।
 - (i) धन गुणक के आकार की गणना करें
 - (ii) मौद्रिक आधार
 - (iii) मुद्रा आपूर्ति

- (a) Explain the concept and causes of Hyperinflation?
 Suggest policies that the government can use to control Hyperinflation.
 - (b) Comment on the following statements. Justify your answer.
 - (i) The Inflation Tax is always equal to seigniorage.
 - (ii) An increase in the rate of interest leads to an increase in the price of bonds.
 - (c) Calculate the money growth rate required to finance the budget deficit of Rs. 10000 in an economy. Given the following information:

Income (Y) = Rs. 1,00,000

Nominal Money Supply (M) = Rs. 80000

Price Level (P) = Rs. 20 (7,6,5.75)

- (अ) हाइपरइन्फ्लेशन की अवधारणा और कारणों की व्याख्या करें? उन नीतियों का सुझाव वें जिनका उपयोग सरकार हाइपरइन्फ्लेशन को नियचित करने के लिए कर सकती है।
- (व) निम्निलिखित कथनों पर टिप्पणी करें। आपने जवाव को न्यायसंगत
 भी सिंख करें।

- (i) मुझास्फीति कर हमेशा seigniorage के बराबर होता है।
- (ii) व्याज दर में वृद्धि से बांड की कीमत में वृद्धि होती है।
- (स) एक अर्थव्यवस्था में 10000 रुपये के बजट घाटे के वित्तपोषण के लिए आवश्यक धन वृद्धि दर की गणना करें। निम्नलिखित जानकारी को देखते हुए:

आय $(Y) = \pi$ 1,00,000 नाममात्र धन आपूर्ति $(M) = \pi$ 80000

मूल्य स्तर (P) = इ. 20

- (a) In the Classical Model, an autonomous decline in investment leads to a fall in the overall demand in the economy. Explain, with the help of a diagram, whether you agree or disagree.
 - (b) How is the labour demand curve derived under classical model? (10,8.5)
 - (अ) पारम्परिक मॉडल में, निवेश में एक स्वायत्त गिरावट से अर्थव्यवस्था में समग्र गांग में गिरावट आती है। आरेख की सहायता से स्पष्ट कीजिए कि आप सहमत हैं या असहमत।
 - (ब) पारम्परिक गाँडल के तहत श्रम गाँग वक्र कैसे प्राप्त किया जाता है?

5. (a) Examine the impact of a contractionary fiscal policy on output & interest rate under two assumptions:

7

- (i) Interest rates are kept constant
- (ii) Money stock is kept constant
- (b) What is liquidity trap? Is monetary policy ineffective in this case?
- (c) Explain why the income tax system or social security system are considered automatic stabilizers?
- (d) Consider the following Keynesian model:

Suppose full employment output (Y*) = 1000, Actual Output (Y) = 1100, Government purchase of goods and services (G) = 200, Transfers (Tr) = 20 and Taxes = 0.20Y. Compute (i) Actual Budget Surplus and (ii) full employment budget surplus. (7,3,4,4.5)

(अ) वो मान्यताओं के तहत उत्पादन और व्याज दर पर एक संकुचन राजकोषीय नीति के प्रभाव की जांच करें:

- (i) ब्याज दरों को स्थिर, सवा जाता है
 - (ii) मनी स्टॉक स्थिर रखा जाता है
- (ब) सरलता जाल क्या है? क्या इस मामले में मौद्रिक नीति अप्रभावी है?
- (स) स्पष्ट करें कि आयकर प्रणाली या सामाजिक सुरक्षा प्रणाली को स्वचालित स्टेबलाइजर्स क्यों माना जाता है?
- (द) निम्नलिखित केनेसियन मॉडल पर विचार करें:

मान लीजिए कि पूर्ण रोजगार उत्पादन $(Y^*) = 1000$, वास्तविक उत्पादन (Y) = 1100, वस्तुओं और सेवाओं की सरकारी खरीद (G) = 200, स्थानान्तरण (Tr) = 20 और कर = 0.20Y। गणना कीजिये (i) थास्तविक वजट अधिशेष और (ii) पूर्ण रोजगार वजट अधिशेष।

- (a) How does an increase in autonomous spending affect the equilibrium level of income? Explain using 1S-LM analysis.
 - (b) Under what circumstances can the LM curve be vertical? Use suitable diagram to explain.
 - (c) What are the factors determining the slope of an IS curve?

(d) Given the following information ;

Consumption C = 100 + 0.75Yd

Investment I = 200 - 8i

Government Spending G = 150

Tax T = 0.2Y

Money Supply M = 400

Real Demand for Money L = 0.4Y - 2i

- (i) Compute the IS and LM functions and equilibrium level of income and rate of interest.
- (ii) If the government spending increases by 50, explain the changes in the IS curve with the help of the multiplier formula.

(6,4,4,4.5)

- (अ) स्वायत्त स्वर्ध में विद्ध आय के संतुलन स्तर को कैसे प्रभावित करती है? IS-LM विक्लेषण का प्रयोग करते हुए समझाइए।
- (व) LM वक्र किन परिस्थितियों में लंबवत हो सकता है? समझाने के लिए उपयुक्त आरेख का प्रयोग कीजिए।
- (स) IS वक्र के ढलान को निधारित करने वाले कारक क्या हैं?

(द) निम्नलिखित जानकारी को देखते हुए : खपत $C = 100 \pm 0.75 \text{Yd}$ निवेश I = 200 - 8i संस्कारी स्वर्च G = 150 कर T = 0.2 Y मुद्रा आपूर्ति M = 400 पेसे की वास्तविक गांग L = 0.4 Y - 2i

- (i) IS और LM कार्यों और आय के संतुलन स्तर और ब्याज दर की गणना करें।
- (ii) यदि सरकारी व्यय में 50 की वृद्धि होती है, तो गुणक सूत्र की सहायता से IS वक्र में होने वाले परिवतनों की व्याख्या कीजिए।

[This question paper contains 20 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 806

В

Unique Paper Code

: 12271202

Name of the Paper

: Mathematical Methods for

Economics II

Name of the Course

: BA (Hons.) Economics

Semester

: II

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- There are 4 questions in all. All questions are compulsory.
- 3. All parts of a question must be answered together.
- Use of a simple calculator is allowed.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्वेश

इस प्रश्न-पत्र के निलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।

- कुल चार प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
- प्रत्येक प्रश्न को सभी भागों को एक ही स्थान पर हल कीजिये।
- साधारण कैलकुलेटर का उपयोग किया जा सकता है।
- इस प्रश्न पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

Attempt any four of the following: (6×4=24)

- (a) (i) Let $Y = 10KL \sqrt{K} \sqrt{L}$ and K = 0.2t + 5 and $L = 5e^{0.1t}$. Express the rate of change of Y as a weighted sum of the relative rates of change of K and L. Can you attach any economic significance to the weights?
 - (ii) Let r = r(x,y), x = x(s,t) and y = y(s,t). Given that

$$x(1,0) = 2$$
, $x'_1(1,0) = -1$, $x'_2(1,0) = 7$,
 $y(0) = 3$, $y(1) = 0$, $y'(0) = 4$

806

3

$$r(2,3) = -1$$
, $r'_1(2,3) = 3$, $r'_2(2,3) = 5$
 $r'_1(1,0) = 6$, $r'_2(1,0) = -2$

Calculate
$$\frac{\partial r}{\partial t}$$
 at $s = 1$, $t = 0$.

- (b) Given $f(x,y) = \ln \sqrt{x^2 + y^2}$.
 - (i) At (1,0), in what direction does f increase most rapidly? What is the rate of change in f in that direction?
 - (ii) Find an approximate value for f(1.01,0.02). How large is the error caused by this approximation?
- (c) (i) Given f(x₁, x₂,..., x_n) = x₁, x₂, x₃,..., x_n. Is f homogenous? Is it homothetic? Are the first order partial derivatives of the function homogenous and if yes of what degree? Show

that
$$\nabla f = f(x_1, x_2, ..., x_n) \left(\frac{1}{x_1}, \frac{1}{x_2} ..., \frac{1}{x_n} \right)$$
.

(ii) Suppose that f(x, y) is homogenous of degree 2 with $f'_1(2,3) = 4$ and $f'_2(4,6) = 12$. Find f(6,9).

(d) The following system of equations defines u = u(x,y) and v = v(x,y) as differentiable functions of x and y around the point P = (x, y, u, v) = (1,1,1,0):

$$(u + 2v)^5 + xy^2 = 2u - yv$$

 $(1 + u^2)^3 - z^2v = 8x + y^5w^2$

Differentiate the system and find the values of $u_{x'}'$, $v_{x'}'$ and $v_{y'}'$.

(e) (i) For the function, $f(x,y,z) = \frac{zx}{(x+y^2)}$,

determine whether the function f increases or decreases at a specified point $P_0 = (1,1,1)$ when one variable increases, while the others are fixed.

(ii) Assume that the equation e^{xy2} - 2x - 4y = c implicitly defines y as a differentiable function of x. Find a value of the constant c such that f(0) = 1 and find the slope and the equation of the tangent at the point (x, y) = (0,1).

निम्नलिखित में से किन्हीं चार के उत्तर वीजिये:

(क) (i) मान लीजिये $Y = 10KL - \sqrt{K} - \sqrt{L}$ तथा K = 0.2t + 5 और $L = 5e^{0.1t}$. Y में परिवर्तन की दर को K और L की परिवर्तन की सापेक्ष दरों के भारित योग के रूप में व्यक्त करें। क्या आप इसके लिए कोई आर्थिक महत्त्व दिखा सकते हैं?

5

(ii) माना कि $r=r(x,y), \ x=x(s,t)$ तथा y=y(t) । दिया हुआ है :

$$x(1,0) = 2$$
, $x'_1(1,0) = -1$, $x'_2(1,0) = 7$,
 $y(0) = 3$, $y(1) = 0$, $y'(0) = 4$
 $r(2,3) = -1$, $r'_1(2,3) = 3$, $r'_2(2,3) = 5$
 $r'_1(1,0) = 6$, $r'_2(1,0) = -2$

 $\frac{\partial r}{\partial t}$ at s=1, t=0 की गणना कीजिये।

- (ख) आपको दिया गया फलन : $f(x,y) = \ln \sqrt{x^2 + y^2}$ ।
 - (i) फलन िं सबसे तेजी से (1,0) पर किस दिशा में बदला है? उस दिशा में िमें परिवर्तन की दर क्या है?

- (ii) f(1.01,0.02) के लिए अनुमानित मान जात कीजिये।इस समीकरण के कारण हुई बुटि कितनी बड़ी है?
- (ग) (i) दिया गया $f(x_1, x_2, ..., x_n) = x_1, x_2, x_3, ..., x_n$ क्या f समरूप (होमोजीनियस) है? क्या ये समरूप (होमोथेटिक) है? क्या f के प्रथम कोटि आशिक अवकलज (पार्शियल डेरिवेटिका) सजातीय फलन (होमोजीनियस फंक्शन) हैं और यदि हाँ तो किस अंश (डिसी) के हैं?

$$\nabla f = f(x_1,\,x_2,\,...,\,x_n) \bigg(\frac{1}{x_1},\frac{1}{x_2}\cdots,\frac{1}{x_n}\bigg) \quad \text{fixed} \ \tilde{v} \ i$$

- (ii) मान लीजिये कि f(x, y) डिग्री 2 का समस्य है तथा $f_1(2,3) = 4$ और $f_2'(4,6) = 12$ तो f(6,9) जात करें।
- (घ) निम्नलिखित समीकरणों की प्रणाली u = u(x,y) और v = v(x,y) जो कि बिंदु P = (x, y, u, v) = (1,1,1,0) के आसपास x और y के अवकलनीय (डिफ्रेंशियेशल) फलन के रूप में परिभाषित करती है।

$$(u + 2v)^5 + xy^2 = 2u - yv$$

 $(1 + u^2)^3 - z^2v = 8x + y^5w^2$

प्रणाली को डिफ्रेंशियेट करें तथा $u_x',\ u_y',\ v_y'$ तथा v_y' का मान ज्ञात करें।

(ङ) (i) विए गए फलन $f\left(x,y,z\right)=\frac{zx}{\left(x+y^2\right)}$, के लिए निर्धारित करें कि फलन एक निर्देश्ट बिंदु $P_0=(1,1,1)$ पर बढ़ता है या घटता है, जब एक घर बढ़ता है, जबकि अन्य स्थिर

होते हैं।

- (ii) माना कि समीकरण $e^{x^2} 2x 4y = c$ परोक्ष (इम्प्लिसिटली) रूप से y को x के एक अवकलनीय (डिफ्रेंशियेबल) फलन के रूप में परिभाषित करता है। जब f(0) = 1 दिया हुआ है तो स्थिरांक c का मान ज्ञात कीजिये तथा बिंदु (x, y) = (0, 1) पर स्पर्शरेखा (टेनजेंट) का ढलान (स्लोप) और समीकरण ज्ञात कीजिये।
- 2. Attempt any four of the following: (7×4=28)
 - (a) Consider the function f(x,y) = x² y² xy x³.
 Find and classify its critical points. Find the domain
 S where f is concave and find the largest value of f in S.

P.T.O.

ċ.

(b) State the necessary conditions for the solution of the utility maximization problem, $U(x,y) = (\sqrt{x} + \sqrt{y})^2$ for general values of p_x , p_y and M. Find the optimal values of x, y and the corresponding value of λ (the langrange multiplier). What are the consumer's demand functions for x and y? Find the indirect utility function $U^*(p_x, p_y, M)$ and verify that

$$\lambda = \frac{\partial U^*}{\partial M} \ .$$

- (c) Find the extreme points and extreme values for $f(x, y) = xe^y x^2 e^y$ on the domain defined by $0 \le x \le 2$ and $0 \le y \le 1$.
- (d) The function f(x, y) is such that Firstly, $f'_x > 0$, $f'_y > 0$; Secondly, $f''_{xx} < 0$, $f''_{yy} < 0$; and

Thirdly the level curve y = g(x) is defined implicitly by f(x, y) = c where c is a constant. The function f is such that all level curves are strictly convex. Let F be a differentiable and strictly increasing function of one variable. Which of the above mentioned three properties are preserved for the function W(x,y) = F(f(x,y))?

- (e) Let $f(x,y) = (x^2 \alpha xy)e^y$ be a function of two variables with α as a constant and $\alpha \neq 0$.
 - (i) Find the critical points of f and decide for each of them if it is a local maximum point, local minimum point or a saddle point.
 - (ii) Let (x^*,y^*) be the critical point where $x^* \neq 0$ and let $f^*(\alpha) = f(x^*,y^*)$. Find

$$\frac{df^*(\alpha)}{d\alpha}$$
 and show that if we define

$$\hat{f}\left(x,y,\alpha\right)\!=\!\left(x^2-\alpha xy\right)\!e^y \ then \ \frac{\partial\,\hat{f}\left(x^*,y^*,\alpha\right)}{\partial\alpha}\!=\!$$

$$\frac{df^*(\alpha)}{d\alpha}$$

निम्नलिखित में से किन्हीं चार के उत्तर वीजिये:

- (क) दिए गए फलन (फंक्शन) f(x,y) = x² y² xy x³ के महत्वपूर्ण बिन्दुओं को खोजें और वर्गीकृत करें। डोमेन S जात कीजिये जहाँ f अवतल है। S डोमेन में f का सबसे बड़ा मान जात कीजिये।
- (ख) उपयोगिता अधिकतमकरण समस्या (भैक्सीमाइज प्रॉब्लम) $U(x,y) = \left(\sqrt{x} + \sqrt{y}\right)^2 \ \hat{\alpha} \ \text{समाधान को लिए आयश्यक शर्ते कताएं, } p_x, \ p_y \ \hat{\alpha} \ \hat{\alpha} \ \text{सामान्य मृत्यों को लिए } 1 \ x, y \ \hat{\alpha} \ \text{अधिकतम मान और } \lambda \ (लैंगरेंज मल्टीप्लायर) के संगत मान का पता लगाएं। <math>x$ और y के लिए उपभोक्ता की मांग का फलन क्या है? अप्रत्यक्ष उपयोगिता फलन $U^*(p_x, p_y, M)$ जात कीजिये

तथा सस्यापित कीजिये कि $\lambda = \frac{\partial \dot{U}^*}{\partial M}$ ।

(ग) दिए गए फलन $f(x, y) = xe^y - x^2 - e^y$ के लिए चरम बिंदु और चरम मान खोजें जब पारस (डोमेन) $0 \le x \le 2$ और $0 \le y \le 1$ दिया गया है।

(घ) दिया गया-फलन f(x, y) इस प्रकार है:

11

प्रथमत: $f'_x > 0$, $f'_y > 0$;

उसके बाद, $f''_{xx} < 0$, $f''_{yy} < 0$; तथा

अंततः y = g(x) को f(x,y) = c द्वारा परोक्ष रूप से परिभाषित किया गया है जहाँ c एक स्थिरांक हैं। दिए गए फलन f के सभी बक्र स्तर पूर्णरूप से उत्तर हैं।

मान लीजिए F एक अवकलनीय और एक चर का पूर्णस्य से बढ़ता हुआ फलन है। उपरोक्त तीनों गुणों में से कौन – सा गुण दिए गए फलन W(x,y)=F(f(x,y)) के लिए संरक्षित हैं ?

- (ङ) मान लीजिए दो घर का एक फलन $f(x,y) = (x^2 \alpha xy)e^y$ दिया गया है जिसमें α स्थिर है तथा $\alpha \neq 0$:
 - (i) दिए गए फलन f के क्रिटिकल बिंदु जात कीजिए और उसमें से प्रत्येक के लिए निर्णय कीजिए कि क्या यह बिंदु ' स्थानीय अधिकतम बिंदु, स्थानीय न्यूनतम बिंदु या सैडल बिंदु है।
 - (ii) मान लीजिये (x^*,y^*) क्रिटिकल बिंदु हैं जहाँ $x^* ≠ 0$

और माना कि $f^*(\alpha) = f(x^*, y^*)$ है। $\frac{df^*(\alpha)}{d\alpha}$

$$\hat{f}(x,y,\alpha) = (x^2 - \alpha xy)e^y$$
 को परिभाषित करते हैं

लो
$$\frac{\partial \hat{f}(x^*, y^*, \alpha)}{\partial \alpha} = \frac{df^*(\alpha)}{d\alpha}$$
 दिखायें ।

3. Attempt any one of the following: (7×1=7)

(a) To feed his stock a farmer can purchase two kinds of feed. The farmer has determined that the herd requires 60, 84, and 72 units of the nutritional elements A, B, and C, respectively, per day. The contents and cost of a kilogram of each of the two feeds are given in the following table:

		Nutritional Elements (units per kg)		
	Α	В	С	Cost (Rs. per kg)
Feed 1	3	7	3	100
Feed 2	2	2	6.	40

(i) The farmer wants to determine the least expensive way of providing an adequate diet by combining the two feeds. Set this up as a linear programming problem and find the minimal-cost diet.

13

(ii) Does the optimal solution change if the price of Feed 1 increases from 100 Rs per kg to 140 Rs per kg, with all other data unchanged?

(b) (i) Solve the following problem :

$$\max \ 3x + 4y \ \text{subject to} \ \begin{cases} 3x + 2y \le 6 \\ x + 4y \le 4 \end{cases}$$

 $x \ge 0, y \ge 0$

(ii) Compute the increase in the criterion function if the first constraint changes to $3x + 2y \le 7$.

(iii) Compute the increase in the criterion function if the second constraint changes to $x + 4y \le 5$.

(iv) Prove using (ii) and (iii) that if (x, y) is feasible in the original problem then the criterion function can never be larger than the optimal value of the criterion function obtained in (i).

निम्नलिखित में से किन्हीं एक का उत्तर वीजिए:

(क) एक किसान अपने स्टॉक को भरने के लिए वो प्रकार का चारा (फीड) खरीव सकता है। किसान ने निर्धारित किया है कि पशु समृह को प्रतिदिन क्रमञ्च: पोषक तत्वों A की 60 यूनिट, B की 84 यूनिट और C की 72 यूनिट की आवश्यकता होती है। वो प्रकार के चारे की प्रति किलोग्राम लागत और सामग्री निम्नलिखित तालिका में वी गई है:

	(यू	पोषक तत्व (यूनिट प्रति किलो)		
	А	В	С	लागत (रूपये प्रति किलो)
चारा 1	3	7	3	100
चारा 2	2	2	6	40

- (i) किसान दो चारे को गिलाकर पर्याप्त आहार प्रयान करने का सबसे कम खर्चीला तरीका निर्धारित करना चाहता है। इसे एक रैस्विक प्रोग्रामिंग (लीनियर प्रोग्रामिंग) सगस्या के रूप में दिखाएँ और न्यूनतम लागत वाला आहार (डाइट) जात करें।
- (ii) यदि चारा 1 की कीमत 100 रुपये प्रति किलोग्राम से बढ़कर 140 रुपये प्रति किलोग्राम हो जाती है और अन्य सभी हेटा अपरिवर्तित रहते हैं, तो क्या इष्टतम समाधान (ऑप्टीमल सोल्यूग्रान) बदलता है?
- (ख) (i) निम्नलिखित समस्या (प्रॉब्लम) का समाधान करें:

अधिकतम (मैक्स)
$$3x+4y$$
 यदि
$$\begin{cases} 3x+2y\leq 6\\ x+4y\leq 4 \end{cases}$$
 $x\geq 0,\ y\geq 0$

- (ii) यदि पहली बाधा (कस्ट्रेंट्स) $3x + 2y \le 7$ में बदल जाती 2 है तो मानदंड (काइटेरियन) फलन में वृद्धि की गणना करें।
- (iii) यदि दूसरी बाध्य (कंस्ट्रेंट्स) x + 4y ≤ 5 में बदल जाती
 है तो मानदंड (क्राइटेरियन) फलन में दृद्धि की गणना करें।

(iv) यदि (x,y) मूल समस्या में संभव है तो मानदंड फलन (क्राइटेरियन फक्कान) कभी भी (i) में प्राप्त मानदंड फलन (क्राइटेरियन फक्कान) के इष्टतम मान से बड़ा नहीं हो सकता है, इसे (ii) और (iii) का उपयोग करके सिद्ध करें।

4. Attempt any two of the following: (8×2=16)

- (a) (i) Find the area of the region between the curves: $y_1 = 3x^2 6x + 8$ and $y_2 = -2x^2 + 4x + 1$ from x = 0 to x = 2,
 - (ii) Show that $y(t) = 2e^{6t} + 1$ is the solution to the differential equation $\frac{dy}{dt} = 6y - 6$ where y(0) = 3. Does y(t) converge to a steady state?
- (b) (i) Let the rate of investment be given by the function, I(t) = 12t^{1/3}. If K(0) = 25, find the time path of capital stock. Find the amount of capital accumulation during the time interval [1,3].

(ii) The demand and supply functions in the market for a commodity are given by:

$$Q_{dt} = 4 - P_{t}$$

 $Q_{st} = 1 + 0.5P_{t-1}$

8.06

 Q_{dt} and Q_{st} are the quantity demanded and quantity supplied of the commodity at time t, and P_s represents the price in time period t. Find the expression for P_r in terms of P_{t-1} in the equilibrium. Solve the corresponding difference equation. Is the time path of price oscillatory/non-oscillatory and convergent/divergent? Illustrate using a graph. Consider $P_0 = 1$. (4,4)

(c) (i) Find the general solution of the differential equation $\dot{P} = \delta[D(P) - S(P)]$ where $\delta > 0$ and D(P) = a - bP gives the demand of a commodity and $S(P) = \alpha + \beta P$ gives the supply. a, b, α and β are positive constants. Determine the equilibrium state and examine whether it is stable.

(ii) Given that :

$$C_t = 90 + 0.8y_{t-1}$$

$$I_t = 50$$

$$Y_0 = 1200$$

Y₁, C₁ and I₁ are the national income, consumption and investment at time t. Find the time path of national income, Y₁, Comment on the stability of the time path. (4,4)

निम्नलिखित में से किन्हीं दो के उत्तर दीजिये :

- (क) (i) वकों : $y_1 = 3x^2 6x + 8$ और $y_2 = -2x^2 + 4x + 1$ के बीच, x = 0 से x = 2, तक के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
 - (ii) सिद्ध करें कि $y(t) = 2e^{6t} + 1$ अंतर समीकरण (डिफरेशियल इकवेशन) $\frac{dy}{dt} = 6y - 6$ जहाँ y(0) = 3 का समाधान है । क्या y(t) स्थिर (स्टडी) अवस्था में परिवर्तित (कन्यर्ज) होता है?

(ख) (i) मान लीजिये निवेश की दर फलन (फंक्शन) I(t)=12t^{1/3} हारा वी मई है। यदि K(0) = 25 है तो पूंजी स्टॉक का समय पथ (टाइम पाथ) ज्ञात कीजिए। टाइम इंटरवल [1,3] के दौरान पूंजी संचय की मात्रा ज्ञात कीजिए।

19

(ii) किसी वस्तु के लिए बाजार में मांग (डिमांड) और आपूर्ति (सप्लाई) फलन दिए गए हैं:

$$Q_{di} = 4 - P_i$$

$$Q_{st} = 1 + 0.5P_{t-1}$$

 $Q_{\rm di}$ और $Q_{\rm si}$ समय t पर वस्तु की मांग और आपूर्ति की मांग है, तथा $P_{\rm si}$, वस्तु की कीमत समयाविध t में है। संतुलन में $P_{\rm t}$ के लिए व्यंजक $P_{\rm l-1}$ के पदीं (टर्म्स) में मात कीजिए। सम्बन्धित (कोरस्पोहिंग) अंतर समीकरण (डिफरेंस इकवेशन) को तल कीजिए। क्या कीमत का समय पथ (टाइम पाथ) मूल्य वोलन (ओस्लेट्री) मेर वोलन (नॉन ओस्लेट्री) और अभिसरण (कन्वेजेंट) अपसारी (डाईवर्जेंट) है? एक ग्राफ का उपयोग करके चित्रण करें। $P_{\rm o}=1$ पर विचार करें।

- - (ii) दिया गया है :

$$C_{\tau} = 90 + 0.8y_{t-1}$$

$$I_{\tau} = 50$$

$$Y_{0} = 1200$$

Y, C, और I, समय t पर राष्ट्रीय आय, स्वपत और निवेश हैं। राष्ट्रीय आय Y, का समय पथ ज्ञात कीजिये। समय पथ (टाइम पथ) की स्थिरता पर टिप्पणी कीजिए। [This question paper contains 8 printed pages.]

Your Roll No

Sr. No. of Question Paper: 513

B

Unique Paper Code

: 62271201

Name of the Paper

: Principles of Microeconomics

11

Name of the Course

: B.A. (Prog.) - Core

Semester

: 11

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- Answer any FIVE questions.
- 3. All questions carry equal marks.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

 इस प्रश्न-पत्र के निलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।

- किनीं पाँच प्रानी का उत्तर वीजिए।
- सभी प्रश्नों के अंक समान हैं।
- इस प्रथन पत्र का उत्तर अंग्रेजी या डिंदी किसी एक भाषा में क्षेजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना आहिए। A.
 - (a) What is meant by price discrimination by a monopolist?
 - (b) Using suitable diagram explain the condition of natural monopoly.
 - (अ) एकाधिकारी ज्ञारा कीमत विभेद से क्या सालार्घ है?
 - (य) समुचित चित्र का प्रयोग करते गुए प्राकृतिक एकाधिकार का वर्णन करें।
 - 2. (a) Using proper diagrams, explain all short ru equilibrium conditions of a firm under monopolist competition.
 - (b) Is the use of product differentiation and advertisi by firms justified to achieve market power Discuss.

- (अ) समुचित चित्र का प्रयोग करते हुए एकाधिकारात्मक प्रतियोगिता में एक फर्म की सभी अल्पकालीन संतुलन स्थितियों की विश्लेषण कीजिए।
 - (व) क्या फर्मों के द्वारा बाजार शक्ति को बढ़ाने के लिए वस्तु विभेदीकरण व विज्ञापन का प्रयोग न्यायसंगत है ? विवेचना कीजिए ।
- (a) Explain the equilibrium price, output level and profits of a firm under monopoly in the long run. Use suitable diagrams.
 - (b) Average Revenue (AR), Marginal Revenue (MR), Average Cost (AC) and Marginal Cost (MC) of a firm under monopoly are given below:

AR = 140 - 2 Q

MR = 140 - 4 Q

AC = 5 Q + 4 / Q

MC = 10 Q

At equilibrium level of output, calculate

(i) output

(ii) price (price = AR) and

(iii) the amount of total profits

(9.6)

P.T.O.

13

C

ng

117

,5)

- (अ) एकाधिकार को अतर्गत एक फर्म का वीर्घकाल में सतुलन कीम्ल, उत्पादन एवं लाभ का वर्णन कीजिए। समुचित चित्र का प्रयोग कीजिए।
 - (च) एकाधिकार के अंतर्गत एक फर्म का ओसत आय, सीमांत आय,
 औसत लागत और सीमांत लागत निम्नतिकित है:

AR = 140 - 2 Q

MR = 140 - 4 Q

AC = 5 Q + 4 / Q

MC = 10 Q

संतुलन उत्पादन की स्थिति में

- (i) उत्पादन की मात्रा
- (ii) कीमत एवं
- (iii) कुल लाभ की मात्रा की गणना कीलिए।
- 4. (a) What are the main features of public goods?
 - (b) How can the government arrive at an optimal level of provision for public goods? (8,7)
 - (अ) सार्वजनिक चरतुओं के प्रमुख लक्षण क्या है?

- (व) सरकार सार्वजनिक वस्तुओं का इष्ट्रतम स्तर का प्रबंध किस प्रकार कर सकती है?
- (a) Explain various circumstances under which the market fails to allocate resources efficiently.
 - (b) Discuss the concepts of Imperfect information, Adverse Selection and Moral Hazard (7,8)
 - (अ) उन परिस्थितियों का वर्णन कीजिए जिसमें एक बाजार साधनों के आबंदन में असफल हो जाता है।
 - अपूर्ण जानकारी, प्रतिकृत चयन एवं नैतिक खतरा की अधाधरणाओं का वर्णन कीजिए।
- * 6. (a) How is the equilibrium wage rate determined in a competitive firm which uses labour as only variable factor of production?
 - (b) The following schedule shows the different production quantities of apples when different workers are employed:

513	6	513		7	4
	Units of labour Total Product (T-P _L , in kg.)	17	धुम की संख्या	बुल उत्पादन (कु.ज.)	
		The State of	0	0	1
			1	5	1
	1 State of the sta	1	2	9	
	2 9		3	12	
	3 12		4	14	*
	4 (4		5	15	
	5 15		6	13	
	6 11	1	0.2-0.0-0		
i i	apples are sold at Rs. 100 per kg. and workers re hired in a competitive labor market for Rs. 200 or worker; how many workers should be hired?			0 रुपये प्रति किलो एवं प्रतियोगी श्रम 0 रुपये हैं लो फर्म किलने श्रम की मींग :	
	(8,7) एक प्रतियोगी फर्म में, जो परिवर्तनशील साधन के रूप में सिर्फ	7. (a) Critically examine theory of internation	he comparative cost advantage nal trade.	
(4)	श्रम का उपयोग करता है, संतुलन गजदूरी दर का निर्धारण किस प्रकार होता है ?		b) Protection from fre demerits. Elaborate	e trade has merits as well as (8,7)	
(41)	एक फर्म में विभिन्न श्रम डाय सेव उत्सवन के आफड़े निम्नलिखित टेबल में विए गये हैं :	(अ) अतर्राष्ट्रीय व्यापार के व आलोचनात्मक विश्लेषण	नुलनात्मक लागत लाभ के सिद्धांत का कीजिए।	-
			A Comment of the second	के गुण के साथ साथ अवगुण भी हैं।	
	and the short of	100	विवेचना गीजिये ।		
				P.T.O. 6	
-	Sample of Barbert Carry Co.			TOWN.	

- 8. Write notes on any two of the following:
 - (a) Efficiency of perfect competition.
 - (b) Prisoners Dilemma and behaviour of oligopoly
 - (c) Concept of supply curve under monopoly.

निम्मलिखित में से किन्ती को पर टिप्पणी लिखिए:

(अ) पूर्ण प्रतियोगिता की दक्षता

receipt

: 75

(ब) केंद्रियों की दुविधा और अल्पाधिकार में फर्मों का व्यवहार

(स) एकाधिकार के तहत आपूर्ति वक्र की अवधारणा

ir Hindi; ghout the

वान पर अपना

P.T.O.

(3000)

[This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 4156

A

Unique Paper Code

: 62271201

Name of the Paper

: Principles of Microeconomics

11

Name of the Course

· : B.A. (Prog.) Economics

CBCS

Semester

: 11

Duration: 3 Hours

Maximum Marks: 100

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any five questions,
- 3. All questions carry equal marks.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्वेश

 इस प्रज्ञन-पत्र को मिलते ही ऊपर विए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।

सभी प्रश्नों के अंक समान हैं।

 इस प्रश्न-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

 Suppose the government opens up a market for international trade and finds that the world price is lower than the domestic equilibrium price. Discuss the gains and losses in the welfare of economic participants. (15)

मान लीजिए कि सरकार अंतरराष्ट्रीय व्यापार के लिए एक बाजार खोलती है और यह पाती है कि वैदिक कीमत परेलू संतुलन कीमत से कम है। आर्थिक प्रतिभागियों के कल्याण में लाभ एवं हानि की चर्चा करें।

- (a) What is meant by a good being 'excludable' and
 rival in consumption'? Enumerate the four
 different categories of goods based on these
 characteristics. (10)
 - (b) What is the supply curve in monopoly? (5)
 - (क) किसी वस्तु के 'बिहिष्कृत' तथा 'उपभोग में प्रतिद्वंदी' होने का क्या अर्थ है? इन विशेषताओं के आधार पर वस्तुओं की चार विभिन्न श्रेणियों की गणना कीजिए।

(ख) एकाधिकार में पूर्ति वक्र क्या होता है?

 Give an example of a negative and a positive externality. Explain why market outcomes are inefficient in the presence of these externalities.

3

(7.8)

किसी एक नकारात्मक एवं सकारात्मक बाह्यता का उदाहरण दीजिए। स्पष्ट करें कि इन बाह्यताओं की उपस्थिति में बाजार के परिणाम अकुशल क्यों हैं।

 Why do firms in an oligopolistic market structure not collude to maximise their profits? Discuss the behaviour of oligopolist firms using the game of prisoners' dilemma. (15)

एक अल्पाधिकारी बाजार संरचना में फर्म अपने लाभ को अधिकतम करने के लिए कूटसंधी क्यों नहीं करती हैं? कैडियों की दुविधा के खेस का उपयोग करते हुए अल्पधिकारी फर्मों के व्यवहार पर क्यों करें।

 A glue factory and a steel mill emit smoke containing chemical that is harmful if inhaled in large amounts.
 Describe three ways the government might respond to this externality? (15)

एक ग्लू फैक्ट्री तथा एक स्टील मिल से रसायन युक्त धुंआ निकलता है जो वडी मात्रा में साँस लेने पर हानिकारक होता है। सरकार द्वारा इस बाह्यता पर प्रतिक्रिया करने को तीन तरीकों का वर्णन करें?

- 6. (a) What are the social costs of monopoly as the market structure in comparison to perfectly competitive industry?
 - (b) To which type of good does the problem of 'tragedy of commons' relate to? Explain this problem by giving an example.
 - (क) पूर्ण प्रतिस्पर्धी उद्योग की तुलना में एकाधिकार बाजार संस्थना के रूप में सामाजिक लागत कथा है?
 - (स्व) 'ट्रेजडी ऑफ कॉमन्स' की समस्या किस प्रकार की वस्तुओं से संवंधित है? इस समस्या को एक उदाहरण देकर समझाइए।

This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 4208

A

Unique Paper Code

: 62271201

Name of the Paper

: Principles of Microeconomics

H

Name of the Course

: B.A. (Prog.) Economics

CBCS

Duration; 3 Hours

Maximum Marks : 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Answer any five questions.
- All questions carry equal marks.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों को लिए निर्देश

इस प्रश्न-पत्र को मिलते ही कपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए ।

- कुल मिलाकर किन्हीं चौँछ प्रश्नों के उत्तर दें।
- सभी प्रानों के अंक समान हैं।
- इस प्रश्न पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में टीजिए, लेकिन सभी उत्तरों का भाष्यम एक ही होना चाहिए।
- Write short notes on any three of the following: (5.5.5)
 - (a) Arrow's Impossibility Theorem
 - (b) Natural Monopoly
 - (c) Free rider problem
 - (d) Nash equilibrium

निम्नलिखित में से किन्हीं तीन पर संक्षिप्त टिप्पणी लिखिए:

- (क) ऐसे असंभवता प्रमेप
- (ख) प्राकृतिक एकाधिकार
- (ग) फ्री राइडर की समस्या
- (प) नैता संतुलन
- Adverse selection and moral hazard are both examples of information asymmetry, explain how these are different?

प्रतिकृतं चयन एवं नैतिक जोखिन होतों सूचना विध्यता के उदाहरण हैं, व्याख्या करें कि वे किस प्रकार जिन्म हैं ? 4208

3

- (a) Explain how the wage can adjust to balance the supply and demand for labour while simultaneously equalling the value of the marginal product of labour.
 - (b) What are the two characteristics of a pure public good? How is it different from private good? Give an example of each. (8)
 - (अ) व्याख्या करें कि धन के सीमांत उत्पाद को मूला की बराबरी करते हुए श्रम की अपूर्ति एवं गांग को सतुत्तित करने के लिए मजदूरी कैसे समायोजित हो सकती है।
 - (च) शुद्ध सार्वजनिक वस्तु की दो विशेषताएँ क्या है ? यह निजी कस्तु से किस प्रकार भिन्न है ? प्रस्थेक का एक उदाहरण है ।
- 4. (a) What is pure monopoly? What are the different barriers to entry that helps a firm to maintain is monopoly position?
 - (b) Does an imposition of tariff on imports reduce the gain in total welfare from free trade? Explain your answer.
 - (अ) गुज्ज एकाधिकार क्या है ? प्रवेश के लिए विभिन्न बाधाएं क्या हैं जो एक फर्म को अपनी एकाधिकार स्थित बनाए रखने में सहायता करती हैं ?

- (व) थया आयात पर शुस्क लगाने से मुक्त व्यापार से होने वाले कुल कल्याण में लाभ कम हो जाता है? अपने उत्तर की व्याख्या यहें।
- (a) What is excess capacity? Compare the long run equilibrium under monopolistic competition to long run equilibrium under perfect competition. (7)
 - (b) Discuss the concept of absolute advantage and comparative advantage with an example. (8)
 - (अ) अतिरिक्त अमता क्या है ? एकाधिकार प्रतियोगिता के अंतर्गत दीर्घकालीन संतुलन की पूर्ण प्रतियोगिता के अंतर्गत दीर्घकालीन ' संतुलन से तुलना कीजिए।
 - (व) एक उदाहरण को साथ निरपेक्ष साथ एव तुलनात्मक लाभ की अवधारणा पर चर्चा करें।
 - The product differentiation inherent in monopolistic competition leads to the use of advertising. Discuss the impact of advertising on the economic well-being? (15)

एकाधिकार प्रतियोगिता में निहित वस्तु विभेद विज्ञापन के उपयोग की ओर ले जाता है। विज्ञापन के आर्थिक कल्याण पर होने वाले प्रभाव की कर्या करें। [This question paper contains 40 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 3495

Unique Paper Code

: 12271403

Name of the Paper

: Introductory Econometrics

Name of the Course : CBCS Core

Semester

: IV

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- Answer any Five questions out of Seven.
- All questions carry equal marks.
- 4. Use of simple non-programmable calculator is allowed. Statistical tables are attached for your reference. Numbers may be rounded off to two decimal places for all calculations.
- 5. Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

- इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।
- सात में से किनीं पाँच प्रश्नों के उत्तर दीजिए।
- सभी प्रश्नों के अंक समान है।
- साधारण गैर-प्रोग्राम योग्य कैलकुलेटर के उपयोग की अनुमति है । आपके संदर्भ के लिए सांख्यिकीय सारणियां संलग्न हैं । सभी गणनाओं के लिए दो दशमलव स्थानों पर संख्याओं को गोल किया जा सकता है।
- इस प्रश्न पत्र का उत्तर अग्रेजी या हिंदी किसी एक भाषा में वीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।
- 1. State whether the following statements are True or False. Justify your answer.
 - (i) In linear regression models, r2 value is invariant to changes in the unit of measurement, as it is dimensionless.
 - (ii) An addition of a variable in a regression model with 30 observations and 4 variables, would siways lead to a rise in the R² and adjusted R², given that the additional variable is statistically significantly different from zero is 0=20%, (iii) in the regression involving standardized variables, the intercept term is
 - always zero.
 - (iv) The correlation coefficient between U=3X+2 and V=.4Y+5 is the same as between X and Y.
 - (v) In a multiple regression model $Y_t = \beta_1 + \beta_2 X_{21} + \beta_3 X_{31} + \nu_3$, testing a joint restriction $H_0;\beta_2=\beta_3=0$ is same as testing for $H_0,\beta_2=0$ and $H_0,\beta_3=0$ (\$83=15)

- बताएं कि निम्नतिखित कथन सही हैं या गततः अपने जवाब का औषित्य साबित
 - (i) रैशिक प्रतिगमन मॉडल में, R2 मान माप इकाई में परिवर्तन के लिए अमरिवर्तनीय है, क्योंकि यह आयाम रहित है।
 - (ii) 30 अवसीकर्ती और 4 वर्रों के साथ प्रतिसमन मॉडल में एक घर के अतिरिक्त, हमेशा R² और समायोजित R² में बृद्धि की ओर से जाएगा, यह देखते हुए कि अतिरिक्त चर α = 20% पर शून्य से सांख्यिकीय रूप से महत्वपूर्ण रूप से जिल्ल है।
 - (iii)मानकीकृत घर वाले प्रतिगमन में, अवरोधन शब्द हमेशा शून्य होता है।
 - (iv)U = 3X+2 और V= 4Y+S के बीच सहसंबंध गुणांक वहीं है जो \times और Y के बीच है।
 - (v) एकाधिक प्रतिगमन मॉडल $Y_i=\beta_1+\beta_2X_{3i}+\beta_3X_{3i}+u_1$ मैं, एक संयुक्त प्रतिबंध $H_0: \beta_2=\beta_3=0$ का परीक्षण $H_0: \beta_2=0$ और $H_0: \beta_3=0$ के परीक्षण के समान है। (5×3=15)
- 2. (a) Consider the model $Y_i=\beta_1+\beta_2X_{2i}+\beta_2X_{3i}+u_i$

 Y_i is the long term consumption measured in Rs thousands X_{iii} is the income measured in Rs thousands X_{iii} is the age measured in years

3495

- (i) How will the estimated intercept and slope coefficients change if the unit of measurement of income is changed to Rs lakhs.
- (ii) Suppose the researcher thinks that usually consumption increases with income but at a decreasing rate and consumption increases with age. How would be modify the model to see whether the data supports his hypothesis?
- (iii) Suppose the researcher wants to assess the relative importance of age and income on long term consumption, what model should be estimate? Explain.

(b) Let X₂ be the hours spent on Mathematics coaching during a week, X₃ be the time spent on studying other subjects and Y be the scores obtained in the mathematics final exam. The following summations for 23 students were obtained as below:

$$\begin{split} \tilde{X}_2 &= 10, \tilde{X}_3 = 5, \tilde{Y} = 12 \quad n=23 \\ \sum x_2^2 &= 12, \sum x_2 x_3 = 8, \sum x_3^2 = 12, \sum x_2 y = 10, \sum x_3 y = 8, \sum y^2 = 10 \\ x_3, x_3 \text{ and } y \text{ are variables measured in deviation form.} \\ (i) &= \text{Estimate the Solomestry of } Y_i = \beta_1 + \beta_2 X_{21} + \beta_3 X_{31} + u_i \\ (ii) &= \text{Estimate the standard errors of the slope coefficients.} \end{split}$$

Interpret the slope coefficients and comment on their statistical significance.

(2+3+1+2)

2. (क) मॉडल पर विचार कीजिये.

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_2 X_{3i} + u_i$$

जहाँ पर,

Yi हजारों रूपये में मापी गई लंबी अवधि की खपत है

Xa हजारी रुपये में मापी गई आय है

Xa वर्षों में मापी गई आयू है

- (i) यदि आय की गाप की इकाई को लाग्र स्पर्य में बदल दिया जाए तो अनुमानित अवरोधन और दलान गुणांक केसे बदलेंग।
- (ii) मान लीजिए कि शीधकर्ता सोचता है कि आम तीर पर आय के साथ खपत बढ़ती है लेकिन घटती दर पर और खपत उस के साथ बढ़ती है। वह यह देखने के लिए मॉडल को कैसे संशोधित करेगा कि डेटा उसकी परिकल्पना का समर्थन करता है या नहीं?
- (iii) मान वीजिए कि शोधकर्ता लंबी अवधि के उपभोग पर उस और आस के सापेश महत्व का आकलन करना चाहता है, तो उसे किस मॉडल का अनुमान लगाना चाहिए? व्याख्या कीजिये। (3+2+2)
- (छ) मान लोजिये X₂ एक सप्ताह के दौरान गणिल की कोचिंग पर बिलाए गए घंटे हैं, X3 अन्य विषयों के अध्ययन में दिलाया गया समय है और Y गणित की अंतिम

परीक्षा में प्राप्त अंक हैं। 23 छात्रों के लिए जिम्मलिखित सारांश जिम्मानुसार प्राप्त

- (i) निम्नलिखित प्रतिगमन का अनुमान लगाएं $Y_i=\beta_1+\beta_2X_{21}+\beta_3X_{31}+u_i$
- (॥) ढलान गुणांक की मानक बुटियाँ का अनुमान लगाएं।
- (iii) प्रतिशमन के H² प्राप्त कीजिये।
- (iv) दासान मुणांक की व्याख्या कीजिये और उनके साविसकीय महत्व पर टिप्पणी कीजिये।
- 3. a) An individual is hired to determine the best location for the next branch of a famous family restaurant chain "Foodies". The individual decides to build a regression model to explain the gross sales volume at each of the restaurants in the chain as a function of various descriptors of the location of that branch. He considers the following regression (original):

$$\begin{aligned} & \hat{Y}_i = 102, 192 - 9075 \, N_i + 0.3547 P_i + 1.288 \, I_i \\ & \text{se} = & (2053) \quad (0.0727) \quad (0.543) \\ & \text{n} = 22 \quad \mathbb{R}^2 = 0.579 \quad \text{RSS} = 384.27 \end{aligned}$$

where Y = gross sales volume, N = the number of competitive restaurants nearby, P = the population nearby, and I = the average household income nearby.

(i) Interpret the slope coefficients of the regression and \mathbb{R}^7 .

(ii) Suppose we add another variable A to the regression above where A - address of the restaurant. Consider the modified regression given below-

$$\begin{array}{l} P_{i} = 98,125 - 8975 \; N_{i} + 0.360 \; P_{i} + 1.301 \; I_{i} + \text{SB.07} \; A_{i} \\ \text{se} = & (2082) \quad (0.074) \\ \text{n} = 22 \quad R^{2} = 0.695 \end{array}$$

Do you think adding a new variable A has improved the fit of the equation? Why/Why

(iii) Do you suspect a problem in part (ii) above? What is the problem and what could be the consequences of the problem? How will you correct for the problem?

(iv) How do you conduct Ramsey RESET test to check for the likelihood of specification error in the model?

Suppose the average household income (I) is not measured correctly. What are the consequences of this on the properties of the OLS estimators? (2×2×3+3+2)

b) The following regression is run on 240 observations.

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + u_i$$

The residuals obtained have respective skewness and kurtasis values - 0.097 and 2.56.

On the basis of the given information, how would you test the Normality assumption of residuals. State the Null and Alternative hypotheses. Do you think that the user is valid if the regression is run on 10 observations

3. क) एक प्रसिद्ध पारिवारिक रेस्तरां शृंखला फूडीज़ की अगली शाखा के लिए सर्वातम स्थान निर्धारित करने के लिए एक व्यक्ति को काम पर रखा जाता है। व्यक्ति उस शाखा के स्थान के विभिन्न विवरणकों के कार्य के रूप में शृखना के प्रत्येक रेस्तरा में तकत बिकी की लाश की स्वास्त्रमा करने के लिए एक प्रतिगमन मॉडल बनाने का निर्णय नेता है। वह निम्मलिखित प्रतिगमन (मूल) पर विचार करता है:

$$\hat{Y}_i = 102,192 - 9075 N_i + 0.3547 P_i + 1.288 I_i$$

 $se = (2053) (0.0727) (0.543)$
 $n = 22 R^2 - 0.579 RSS = 384.27$

जहाँ Y = सकत बिकी की मात्रा, N = आस-पास के प्रतिरूपधी रेस्तरां की संख्या,

P = आस-पास की जनसंख्या, और I = आस-पास की औसत घरेलू आया

- (i) प्रतिगमन और H² के दलान गुणांक की व्याख्या कीजिये।
- (II) मान नीजिए कि हम उपर के प्रतिगमन में एक और घर A जोड़ते हैं जहां A = रेस्तरां का पता। नीचे दिए गए संशोधित प्रतिशमन पर विचार कीजिये:

$$\hat{Y}_t = 96.125 - 8975 N_t + 0.360 P_t + 1.381 I_t + 58.07 A_t$$

 $ac = (2082) (0.074) (0.550) (95.21)$
 $ac = 22 R^2 + 0.695$

क्या आएको लगता है कि एक लया धर A जोड़ने से समीकरण के फिट मैं सुधार हुआ है? क्यों, क्यों लाहि?

- (iii) क्या आपको उपरोक्त भाग (ii) मैं किसी समस्या का संदेह है? समस्या क्या है और तमस्या के परिणाम बचा हो सकते हैं? आप समस्या को कैसे ठीक करेंगे?
- (iv) भीतन में विनिर्देश पुढ़ि की संभावना की जाय के लिए आप रेमसे रैसिट परीक्षण (Ramsey RESET Test) Aid Middle with \$7
- (v) मान सीजिए कि औसत धरेलू आय (i) को सही दंग से नहीं मापा जाता है। इसका OLS अनुमालको के मुन्ती पर काम प्रकास पहला है? (2+2+3+3+2)

ख) निम्नलिखित समाश्रयण २४० प्रेक्षणी पर चलाया जाता है।

$$Y_{i} = \beta_{1} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \beta_{4}X_{4i} + u_{1}$$

प्राप्त अवशेषी में संबंधित तिराप्रापम (skewness) और कटौसिस (kurtosis) मान -0.097 और 2.56 है। दी गई जानकारी के आधार पर, आप अवसिष्टी की सामान्यतः घारणा का परीक्षण कैसे करेंगे। शून्य और देकल्पिक परिकल्पनाओं का उस्लेख कीजिए। क्या आपको लगता है कि परीक्षण मान्य है यदि प्रतिगमन 10 अवलोकनों पर चलाया जाता है?

- a) A regression equation includes a quantitative dependent variable (Y= wages), a
 quantitative independent variable (X=years of experience) and two qualitative
 variables; Gender and Education Level with two categories each; Male & Female; and Graduate & not a Graduate. Assume that the qualitar
 - each other

 (i) Using intercept durinity variables, write the wage regression model if the impact
 of years of experience, gender and education level is to be analyzed on wages (tree
 Female Graduate as the reference rategory). Write the estimated equation for
 Male Graduate category.

 (ii) How would answer in part (i) be changed if the Educational Level has three
 categories instead, namely Graduate, Post-Graduate & Ph. D.

 (iii) Hassed on part (ii), write the wage equation for the two specific categories, (a)
 Female with Ph. D. (b) Male Post-Graduates,
 (iv) How would the model in part (ii) be inodified if the objective is to examine
 whether the marginal effect of experience is gender-specific?

 (v) How would the regression in part (ii) he modified if qualitative variables interact
 with each other?

 (2+2+2-2-2)

b) A random sample of 200 vehicles investing in rough coads with a pound speed limit of 35 mph on such mads resulted in a sample rocan speed of 37.5 mph and a sample standard deviation of 8.6 mph, whereas another random sample of 200 vehicles with a posted speed limit of 55 mph resulted in a sample mean and sample standard ideviation of 35.8 mph and 9.2 mph, respectively, carry our a sea at 10% significance level to decide whether the two population distribution variances are identical. (5)

- क) प्रतिगमन समीकरण में एक मासत्मक आत्रित घर (Y= मजद्री), एक मासत्मक स्वतंत्र घर (X=वर्ष का अनुभव) और दो गुणाएमक घर तिंग और शिका स्तर शामित है. प्रत्येक की दो क्षेणियों हैं: पुरुष अथवा महिना और ग्रेजुपट अथवा ग्रेजुपट नहीं। मान लीजिये कि दोनों नुष्पात्सक घर एक दुसरे को प्रशावित नहीं करते।
- (i) अवशेषाम मुक चर (intercept dummy variables) कर उपयोग करते हुए, मजद्री का रिवेशन मॉडन लिखिए, यदि वेतन पर वर्षों के अनुभव, लिंग और शिक्षा रुतर के प्रश्लीव का

विश्तेषण किया जाना है (संदर्भ श्रेणों के रूप में महिला स्कातक का उपयोग कीजिये)। पुरुष स्नातक श्रेणी के लिए अनुमानित समीकरण सिक्षिए।

- (ii) गाँद शैक्षिक स्तर में बजाय तीन श्रेणियां हैं, अर्थात्, बेजुएट, पीस्ट शेकुएट अथवा पीएचडी तब भाग (i) में उत्तर कैसे बदलेगा?
- (iii) माग (ii) के आधार पर, दो विकिन्ट श्रेणियों के लिए बेतन समीकरण निविद्य, (iii) पीएच.डी. के साथ महिला (ख) पुरुष स्नातकोत्तर।
- (iv) मदि उद्देश्य यह जांचना है कि क्या अनुभव का सीमांत प्रभाव लिंग-विशिष्ट है, तो भाग (व) में मंडिल को कैसे संशोधित किया जाएगा?
- (v) यदि मूणात्मक चर एक दूसरे के साथ परस्पर किया करते हैं. तो भाग (i) में प्रतिगमन को कैसे संशोधित किया जाएगा?
- क) 200 वाहनों के एक याइच्छिक नम्ना जिसका 35 मील प्रति घंटे की गति शीमा के लाय उबड-खाबड सहको पर यात्रा करने पर परिणासस्वरूप समृता औसल गति 37.5 मील प्रति घटे और तमुना मातक विचलन 8.6 मील प्रति घंटे पाया जाता है, जबकि 200 वाहनी का एक और बाहच्छिक नसूना है जिसका 55 मील प्रति पंदे की गति सीमा के परिणामस्वरूप क्रमश नमूना माध्य 35.8 मील प्रति घंटे और नमूना मानक विचलन 0.2 मील प्रति घंटे पाया जाता है। 10% महत्व स्तर पर एक परीक्षण कीजिये कि दो जनसंख्या वितरण जिल्लाताएँ
- Quarterly data on country XYZ was collected for the period 2005-2019 to estimate the relation between foreign direct investment (FDD), trade openness (TO), gross domestic product (GDP) and exchange rate (E). TO is defined as ratio of export plus imports to GDP

$$F\overline{DI}_{c} = -0.58 + 0.012 R_{c} - 0.025 TO_{c} + 0.006 SDP_{c} + 0.34 \varepsilon$$

 $\approx -(0.097) (0.013) (0.004) (0.015) (0.09)$
 $R^{2} = 0.904 \quad del.45$

- (i) Interpret the estimated slope coefficients. Do you suspect some problem with the above regression?

 (ii) What is the nature of the problem? How do you know? Explain its consequences?
- $\frac{g m_1}{g g \phi_1} = \beta_0 + \beta_1 \frac{g_0}{g g \phi_1} + \beta_2 \frac{m_1}{g g \phi_1} + \beta_2 \frac{e}{g g \phi_1} + u_1$ Will this transformation solve the oblem mentioned in (ii) above? How? Can you compare R2 of this model with the model above?

3495

(iii)Suppose now the regression is estimated as given below.

$$F\overline{D}I_2 = -0.74 - 0.042 \, TO_1 + 0.41\epsilon$$

 $sc = (0.057) \, (0.019) \, (0.364)$
 $R^2 - 0.896 \, d=1.34$

Test whether the regression specified above suffers from first order susycomelation? Which test will you use and why? (Use $\alpha=59_h$)

(iv) If the errors obtained from regression specified in (iii) above follows higher order amoregressive process then how would you test for serial correlation? Give the steps of the test in detail.

(v) With reference to the regression specified in part (iii). What will be the remedy for the problem of autocorrelation (f it is detected? Explain.

5. देश XYZ पर 2005-2019 की अवस्थि के लिए डेम्पसिक डेटा प्रत्यक्ष विदेशी जितेश (FDI). व्यापार खुलापन (TO), सकल घरेम् उत्पाद (GDP) और विनिमय दर (E) के बीच संबंध का अनुमान तमाने के लिए एकद कियां गया था। TO को नियांत और आयात के अनुपात के रूप में परिभाषित किया गया है और । = प्रवृति। निम्नतिक्षित प्रतिगमन का अनुमान लगावा गया थाः

$$\vec{FDI}_t = -0.58 + 0.012 \, \vec{e}_t - 0.025 \, TO_t + 0.006 \, GDF_t + 0.34 \, t$$

 $m = (0.097) \, (0.013) \, (0.004) \, (0.015) \, (0.09)$
 $R^2 = 0.904 \, d=1.45$

- (1) अनुमानित दलान गुण्डंक की व्याख्या कीजिये। क्या आपको उपरोक्त प्रतिशमन के साथ कुछ समस्या का संदेह है?
- (ii) समस्या की प्रकृति क्या है? आपको केने मानूम? इसके दुष्परिणाम बताप?

 $\frac{FB_1}{GDP_1} = \beta_0 + \beta_3 \frac{g_1}{GDP_1} + \beta_2 \frac{FB_2}{GDP_1} + \beta_3 \frac{F}{GDP_2} + \mu_d$, क्या यह परिवर्तन उपरोक्त (ii) में उनिमिश्चित सम्बन्ध का समाधान करेगा? कैसे? क्या आप इस मॉडल के R² की तुलना उपरोक्त मॉडल से का सकते हैं?

(iii) मान लैजिए कि अब प्रतिगमन का अनुमान नीचे दिया गया है:

$$\begin{split} F\widetilde{D}\widetilde{I}_7 &= -0.74 - 0.042 \; \text{FO}_1 + 0.41z \\ \text{se} &= \quad (0.057) \; \; (0.019) \; \; (0.364) \\ \text{R}^2 &= 0.896 \quad d = 1.34 \end{split}$$

ě. P.T.O. परीक्षण कीतिये कि क्या उपर निर्दिष्ट प्रतिगमन पहले क्रम के स्वतः सहसंबंध से यस्त है? आप किस परीक्षण का उपयोग कोंगे और क्यों? (a = 5% का प्रयोग कींडिये)

- (iv) वंदि उपरोक्त (iii) में निर्दिष्ट प्रतिममन से प्राप्त बुटिया उपर कम औदिरेवेस्टिव (AR) प्रक्रिया का पासन करती हैं तो आप सीरियान सहसंबंध के लिए कैसे परीक्षण करेंगे? परीक्षण के परणों का विस्तार से वर्णन कीजिए।
- (v) आग (iii) में जिदिष्ट प्रतिगमन के संदर्भ में, स्वतहसंबंध की समस्या कर पता यसने पर उसका क्या उपाय होगा? समझ्यहर्य।
- a) The Home Ministry of a country wants to test if petry crimes (minor thefts) are higher in states where poverty rates are high. They obtain data on several variables and ran the following cross section regression for 35 states in the country. fallowing cross section regression for 35 states in the country. $C_c = 6.275 + 0.1147 \, PR_c - 0.0712 \, LR_c + 0.0862 \, SDP_c$

Se = (3.125) (0.02713) (0.0361) (0.03834)

n = 35 R = 0.6876

where C = Crimes per lakb of population

PR = poverty rates

LR = Literacy rate

SDP = State Domestic Product

- (i) A priori what signs are expected for the explanatory variables? Explain your
- Test for overall goodness of fit of the regression (Use u = 5%)

Another model was also used and following results were obtained: in $C_c = 2.142 \pm 0.01386$ $lnPR_c = 0.0548$ $lnLR_c \pm 0.0921$ $lnSDP_c$ Se = (1.102) (0.0673) (0.0259) n = 35 R² = 0.7923 (0.03647)

Interpret the coefficient of In SDP.

(iv) How will you conduct MacKimon-White-Davidson (MWD) test to select which model is better? Write all steps clearly. (2+2+2+3) (2+2+2+3)

b) The regression equation gives in part (a) is modified as follows:

C-21.83 -0.0089 LR,

This equation was estimated using 50 cross-sectional observations on states, by ordinary least squares (GLS). To check for heteroscodasticity related to LR, separate regressions were non for the 17 states with the lowest LR and the 17 states with the highest LR. The sum of

squared residuals for the low LR states was 270. The sum of squared residuals for the high-LR states was 90.

- (i) Compute unbiased estimates of the variance of the error term in the two
- subsamples.

 (ii) Condan the Goldfeld-Quanut test at 5% level of significance.

 (iii) Regardless of your coordination for part (ii), suppose you believe that betenseedanticity is indeed present and that the variance of the arror term is betterseedanticity is indeed present and that the variance of the arror term is inversely proportional to state LR: $Var(s_1) = \frac{r}{LR_i}$, where r = an unknown constant. Explain how you would transform the data to satisfy the classical assumptions. (2*3-6)

6. क) किसी देश का गृह मंत्रालय यह जांचना चहता है कि क्या छोटे अपराध (मामूली चोरी) उन राज्यों में अधिक हैं जहां करीबों दर अधिक हैं। वे कई घरों पर हैंद्रा प्राप्त करते हैं और देश के 35 राज्यों के लिए निम्मलिकित करेंस संक्शन प्रतिगमन का अनुसान लगते हैं:

> $C_i = 6.275 + 0.1147 \, PR_i - 0.0712 \, LR_i + 0.0862 \, SDP_i$ Se=(3.125) (0.02713) (0.0361) (0.03834) n = 35 R = 0.6876

जहाँ C = प्रति लाख जनसंख्या पर अपराध

PR = गरीबी दर

LR = साकारता दर

SDP = राज्य घरेल् उत्पाद

- एक प्राथमिकता व्याख्यात्मक घर के लिए क्या संकेत अपेक्षित हैं? अपने उत्तरों की
- (II) प्रतिगमन के फिट की समग्र अध्यक्ष के लिए परीक्षण कीजिये। ($\alpha=5\%$ का प्रयोग कीजिये।
- (III) एक अन्य मॉडल का की उपयोग किया गया और लिम्नलिखित परिणाम प्राप्त हुए

 $\ln C_i = 2.142 + 0.01186 \ln PR_i - 0.0548 \ln LR_i + 0.0921 \ln SDP_i \qquad \bigcirc$

(111)

5e = (1.102) (0.0673) (0.0259) n = 35 $R^2 = 0.7923$ (0.03647)

in एसडीपी के गुणांक की व्याख्या कीजिये।

·(iv) कौन सा मॉडल बेहतर है यह चुनने के लिए आप मैकिनॉन-व्हाइट-डेविडसन (MWD) परीक्षण केंग्रे करेंगे? सभी धरणों को स्पष्ट रूप से लिखिए।

ख) माग (क) में दिए गए प्रतिगतन समीकरण को निम्नानुसार संशोधित किया गया है:

C-23.83-0.0089 LR

सामान्य न्यूनतम वर्गी (OLS) द्वारा राज्यों पर 50 क्रॉस-संक्शनन अवलोकनो का उपयोग करके इस समीकरण का अनुमान समाया गया था। LR से संबंधित विषमतिनिकता (heteroscedasticity) की जाँच करने के लिए, सबसे कम LR वासे 17 राज्यों और उच्यतम LR वाले 17 राज्यों के लिए अलग-अलग प्रतिगमन अनुमान समाए गए थे। निम्न LR राज्यों के लिए वर्ग अवस्थितों का योग 270 था। उरच-LR राज्यों के लिए वर्ग अवशिष्टों का योग 90 था।

- (1) दो उप-तमूनों में पुटि पद के विचरण के निष्पक्ष अनुमानों की गणना कीजिये।
- (ii) मोल्डफेल्ड-क्वांवृट परीक्षण को 5% महत्व के रसर पर आयोजित कीजिये।
- (iii) भाग (ii) के जिए आपके निष्कर्ष के बावजूद, मान लेजिए कि विषमार्गियकता वास्तव में भीजूद हैं और बृटि का विचरण राज्य LR के व्युत्कमानुपाती हैं: Var(u) = $^{\gamma}/_{LR_{\parallel}}$ जहां y = एक अजात जगातार। स्पष्ट कीजिये कि आप शास्त्रीय मान्यताओं को संतुष्ट करने के लिए डेटा को कैसे स्पांतरित करेंगे।
- a) The estimated equation for sales of TV is as given below: $Sales = 118.91 7.908 \ Price + 1.863 \ Advert \\ (se) = (6.35) \ (1.096) \ (0.683) \ R^2 = 0.448, \ n=10 \\ \ where Price is price of TV measured in Rs. Sales is sale revenue and Advert as advertsing expenditure. Both Sales and Advert are measured in terms of thousands of rupees.$
 - (i) Is the slope coefficient of price statistically different from 17 Test at a=2%.
 (ii) Calculate the elasticity of sales revenue with respect to price if average sales revenue is 300 and average price is 100?

(iii) How would you test that an increase in advertising expenditure will being an increase in sales revenue that is sufficient to cover the increased advertising expenditure? Clearly state the sall and alternative hypotheses. Test at a =5% (iv) Estimate the sales revenue for a price of Rs 6 and an advertising expenditure of the 1 and 1 and

- b) Consider the following regression $Y_t = \beta_1 X_t + \mu_t$ where $\vec{\beta}_1$ is the OLS estimator of β_1
- (1) Find the value of β_1 .
- (iii) Find V(A) Verify that β_2 is unbiased.
- (5)

7. क) टीवी की बिक्री के लिए अनुमानित समीकरण नीचे दिया गया है:

Salus = 118,91 - 7,908 Price +1.863 Advert sc = (6.35) (1.096) (0.683) R2 = 0.448, n=30 जहां price दीवी की कीमत कपये में मापा जाता है।

Sales बिकी राजस्य है और Advert विजापन व्यय है। बिकी और विजापन टोनी को हजारों उपये में भाषा जाता है।

- (i) क्या मूल्य का उलान गुणांक सांडियकीय रूप से 1 से फिल्न है? a=2% पर टेस्ट क्रीजिये।
- (ii) कीमत के संबंध में विक्री राजस्व की सांच की गणना कीजिये चंदि औसत विक्री राजस्व ३०० है और औसत मूल्य १०० है?
- (ii) आप कैसे परीक्षण करेंगे कि विज्ञापन व्यय में क्दपि से बिक्री राजस्य में क्दपि होंगी जो बढ़ें हुए विज्ञापन व्यस को कठर करने के लिए पर्याप्त हैं? दिक्त और वैकल्पिक परिकल्पनाओं को स्पष्ट रूप से बताएं। a=5% पर टेस्ट कीजिये।
- (iv) 6 रूपये की बीमत और 1,200 रूपसे के विज्ञापन त्यव के लिए बिक्री राजस्व का अनुमान सगाएं।
- ख) निम्नासिखित प्रतिगामन पर विधार कीजिये $Y_i=\beta_1X_i+\mu_i$ जहां β_1 β_1 का OLS अनुमानन 割
- (i) है, का मान जात कीजिये।
- (II) V(p1) 可同社
- (iii) सत्यापित कीजिये कि 🖟 निष्पक्ष है।

(5)

ć. P.T.O.

TABLE D.1 Example Areas Under the Standardized Normal Pr $(\mathcal{O} \times \mathcal{Z} \le 1.96) = 0.4750$ Distribution Pr $(\mathcal{Z} \ge 1.96) = 0.5 - 0.4750 = 0.025$

	Street, or other Designation of the last o	-	-							341	
-500	2	.00	.01	/02	ni	.04	-01	i ni	723	311	
		2000		0000: D	0 1012	0 .016		-	-	.011	.09
0		1998								9 .031	0159
0		791	:083	2 3067						5 .021	0253
- 0		179	127						5, 366	4 .110	
10.		554	1.90						544	1 1488	
0.	5111	91%	195	7985					TACK!		
10.4	200	257		100		205	1208	212	215		
4			220)			2389	247				No. of Lot
0.1		Sino	2611			2704					
0.3		181	2910			.2995					
		59	ATRE	3213	3231	3264					
1.0	11/2	m.	3438	3461	3485						5389
14	134	45	3665	.3486		- 1000	-	3554	3577	3599	3621
13			3869		-170B		.3749		3790	3810	
13			4040	3888	7 75907	3925	3944	1962	3980	3997	.5810
1114	41		4200	4066	4082	-AD99	4315	47.13	41-47		4015
1.4			4345	#222	4296	4257	4265	4279	4292		24177
			WANT.	4337	4320	4382	4194	#104	4418	+10=	(4319
Las	144		4467	.8474	4486	4405	1100			4429	3441
1.7	da		4564	4571	4582	4501	4505		4525	4535	4545
3.8	165	0	4549	4636	4864		4500	4408	467E	4625	4633
Till	423		4779	1724	4737	4,671	4671	4586	4493	4659	4706
20	147.	201	4778	4783	4795	-4238	4744	4250	4756	4761	4767
2.1	482				77000	4795	-429B	4000.7	4ROE	4812	4817
23			4826	WB30	AUTA	4836	4842	HIAN			10015
531	486		4564	4860	4873	4875	4878	A881	4850	.4654	4852
2.4	149		1896	4898	490t	4904	490a	4904	4884	#SHZ	4870
	1495		4920	4922	4975	4923	4970		16911	4933	4816
14	493	11.9	4940	4941	4945	4945	4946	HESS.	4932	4736	4936
103	495	E	1955	4956			0.00	4948	4949	4952	4952
	498		105		4957	4359	4960	4961	4962	4963	
	497				4968	496)	H970	4971	4972		4964
	4981		982		4972				4979		4974
	4583					4984					4991
	-	635	THE	4087	4508						4986 4980

TABLE D.2 Percentage Palars the r Distribution

$$\begin{split} &\text{Example} \\ &\text{Pr}(1>2.086) = 0.025 \\ &\text{Pr}(1>1.725) = 0.05 \\ &\text{Pr}(10>1.725) = 0.10 \end{split} \qquad \text{for } dT=20 \end{split}$$

100	-				9	1,721	-
	Pr 0.2	TO 1 - 1500			5 0.01	Siza	
200	4.5	Control of the last	0.10	0.05			0.001
	2 0 0			12.706		-	0.002
			4 2.930	4.303			ME31
	0.74			3.187			22.327
	THE RESERVE TO SERVE	NO. OF LANS.	10000	2.776	3.747		70.214
1535	0.72			2.571	3.365	ALC: USE TO SERVICE AND ADDRESS OF THE PARTY	7.179
1335	Company of the Compan			2.447	2343		5.893
. 1010	0.7t	E 14 12 12 25		2365	2,998	1.707 1.499	5.708
11133				2,006	2.896	3.355	4,785
10	1300	1	ALC: UNKNOWN	2,762	7.871	1 250	4.301
11	1000		1.832	2 228	2,264	The State of the last	SOURCE SECTION
12 12				2.201	2.718	3.769 3.769	4.744
33				2.179	2.681	3.055	4.025
54	0.692		1.771	2.160	2.650	3.012	1,910
15	1000000	3 0 10 25	7:761	-2.145	2.624	2.977	3.787
216	0.695		1.731	2.131	2.602	2.547	100000000000000000000000000000000000000
12	0.689		15240	2,120	2.583	2021	3,733
-18	0.688		10 175 TOWN	5.110	2.567	2.8911	3,686 1,646
-79	0.688	1.128	1,729	2.101	7.352	2.878	3.67.0
mireas	0.687	A CONTRACTOR	2000	2.003	2339	2.861	3,579
Children of the Control	0.685	1,325	1.725	2,006	2.524	2345	3,552
225	0.680	132	1.721	7.080	2.516	2.831	3.5527
21	Dises	1.110	1,214	2.074	2,508	2.819	3.505
24	0.688	1.114	1,771	2.069 2.064	2,500	2.807	3.485
257	15.684	1.316			7.492	2.292	3.467
24	0.684	1.576	5,798 5,706	2060	2.485	2.787	3.450
27	0.880	1,374	1.705	2.056	2.479	2.779	1.435
. 26	0.681	1.313	7.701	2 042	2.473	2.771	3,421
29	0.683	3.312	1.690	2.045	2.462	2.763	5,408
- 30	0.683	7 870	1:697	100000000000000000000000000000000000000	2.462	2,736	3.398
-40	0.681	1.393	1.054	2.042	2,457	2.750	3.381
60	0.679	7,296	1,621	2.001	2,425	2.75X	3.30)
1,50	0.627	1.280	1.658	1350	2,390	2.660	1.212
1 N	0.674	1.282	1,645	1.360	2.726	2817	3.760

TABLE D.3. Upper Permissing Polets of the F-Dis Example $h(\ell) = 1.59 = 0.25$ $h(\ell) = 1.59 = 0.25$ for df $h_1 = 10$ $h(\ell) = 1.44 = 0.05$ and $h_2 = 9$ $h(\ell) = 5.26 = 0.01$

di for denom- inator		719				w	for name	crister In	WH.	39		1 8	
Mp	Po	-6	2	3	4	3.	6	7			- 18	11	12
W	25	ARE	330	8.20	8.18	6,82	8.90	W.10.	9.19	9.26	9.12	0.36	131
	05	261	300	216	25.W	310	59.1 234	237	584	DRM	10.2	40.3	160.7
	.22	2.37	3.00	8.18	121				248	241	342	248	244
2	10	6.53	9.00	9.14	9.24	5.28	2.37	3/34	3.35	3.32	338	1.99	331
	25	18.3	30.0	19.2	19.3	10.1	5.33	9.35	9.12	9.14	3.39	9.40	9.41
	0.0	95.5	35.1	112	99.3	99.3	193	19/4	19.4	19.4	19.40	19.4	1904
	23	ZOI	1.28	238			79.3	100.4	99.4	99.4	99.K	59.4	199.4
1.	10	5.34	3.44	439	3.39	241	2.42	249	2,44	2.44	2.46	2.45	241
-Till a	103	10.1	9.55	1628	3.34	5.31	9.26	2.27	9.25	3.34	525	5.22	5.21
	30	34.5	30.6	251	A.12 25.7	9,01	E.84	(SEE	0.85	MAT	6.79	3.76	-30%
	25	1.83				282	27/8	27.7.	22.3	27.1	25.3	27.1	27,1
20.19	500	434	2.00	3,05	2,06	207	234	2.05	2.00	2.00	2.08	2.08	2.08
8311	ds.	371	612	18.00	MIT	A.00	4(0)	3,54	3.95	2.04	1.02	3.91	3.90
	m	21.2	58.6	8.59	4.39	6.26	6.58	8.00	6.04	6.00	5.5%	3.54	5.91
100				34.2	IWB.	155	TAZ	535 N	34.8	843	34.3	14.4	1164
200	节	1.69	XAS	1.80	1.89	CAR.	1.890	1.88	1.34	1.85	1.89	1.89	1.00
*: 1	10	4.86	1.78	3.62	3.52	JAL-	3.46	1.17	5.14	3.32		3.28	131
0000	41	6,45	3.79	3.41	一品味	3.05	4.1%	3.4.88	4.82	4.77	3.74	4.75	4.65
		163	13.1	福息 。	11/4	11.0	10.7	10.5	10.3	10.2	161	9.96	0.65
	25	1.42	1.76	3.76	1.29	1.70	1.28	1.76	1.79	1.72	1.77	1.77	
631	316	1.28	SAB	3.29	2.18	3.31	3.05	3.01	2.98	2.96	2.04	2.92	1.77
	.05	5.59	18.14	4.7W	4.6%	4.19	428	4.21	4.72	416	4.Dn	400	4.00
	.01	TICE:	10/8	9.78	231	8.7E	8.47	8.75	A.10	7.68	7.87	7.78	7.22
	25	1.137	1.70	122	122	1.71	3.01	179	1.70	1.69	7.49		
	10	2839	3.26	3:07	2.94	288	2.81	278	2.75	2.72	2.76	1.68	1.68
	45	5.59	0.74	435	432	3.07	1.07	3,78	3.73	2.00	3.64	2.88	2.67
	.02 -	12.2	71.53	HAS:	2.83	2.46	7:19	6.00	0.84	6.72	6.62	3,60 6.54	3.57
	25	1.54	1.61	1,62	1.00	1.66	1.63	1.64	1.64				5.47
	39	2:46	131	2,92	2.85%	2.73	2.67	2.42	232	1.43	1.63	1.63	1.62
	85 -	2.13	4.46	4.02	334	1.49	3.18	3.50	3.44	2.58	250	232	3.52
	M1	DOM:	8.65	7.29	7.01	6.63	6.37	614	6.03	5.91	3.31	331	3.28
	28	1.41	1.62	1.67	1.68	1.82	141				181	5,75	144
	TO	2.76	A.Er	2.81	2.89	- 241	2.35	1.60	1.60	130	1.25	1.38	1.38
200	03	202	4.24	3.80	3.43	5.48	3.37	2.61	2.47	2.44	2.82	7,40	238
3	m:	100.8	1.02	0.20	6.43	2.00	A 80	3.57	3.23	1.18	3.74	B-30	3.07
100						200	3.60	-Del	5.47	5.33	3,26	3.78	8.11

			100	133	-fft for r	unnerst	ar Ny		1				sit for dancer
15	20	24	10	40	50	600	700	129	210	900	- 50	Th-	MOF.
5.45	3.58	10.7.65	8.67	9.71	2.78	9.79	4.7E	2.80	0.82	2.84	9.85	25.	E LITTLE
41.2	817	62.0	64.3	123	67.7	62.8	63.0	23.7"	652	63.3.	63.3		No.
266	290	249	210:	2515.1	233	252	2531	253	254	254	754	01	100
3,41	3.43	2.43	EAN	3.45	543	246	2.47	147	141				100
9.42	9,46	F.45	5,45	9507	9.47	0.47	2.42	9.48	2.40	0.49	546	25	Madu
184	289(A)	19,65	19.50	19.3	196	193	195	19.5	12.6		37.432	19.	WC-11
89.4	33 /4	99.57	H.S.	50.3	22.5		95.2	100	20.1	1903	19,5	106	B(5)
2146	72.44	244	245	247	245	2365				99.5	30.5	CHE	
5.20	5.38	5.18	3.17	2.16	3.13	533	2.95	2.47	397	2,47	3/87.		
8.76	11.66	3.64	8.12	8.38	8.58	1.19	5.14	选择	3.14	8.14	533	10	Mary .
25.9	367	26.6	36.5	25.4	264	263	8.35	6.35	18.54	8.53	8.51	100	1000
2.00	2.08	2.00	200				36.2	28.7	26.2	26.1	26.1	-00	
3.67	13.64	333		2.04	4.00	-346	2.00	2.08	2.08	2.00	2:00	25	
5.16	5.80	5.77	BAD	3.00	0.80	1.79	1.73	178	5,77	3.76	5,296	-300	
14.2	14.0	15.8	575	8.72	5.70	5.63	3.5.88	3.06	1.45	5.84	SHE	198	100
			TAN D	557	13.7	173.25	03.80	EHKK!	TXA	13.5	13.5	and.	
1.00	(3.86)	1.68	3.86	3.88	1.88	1.87	1.907	7.87	187		1 88	25	
3.24	3.85	A.085	332	106	DESTR.	-1318	3.13	3.12	1.12	ETT	330		
6.62	4,56	435	4.50	AAT	14.44	4.43	(4.41	4.45	4 10	4.37	£36	30	14
9.72	F-35	9.42	938	9.28	9.24	1420	24.01	W11	N.SE	8.04	5.02		
1.76	1.24	7.75	1.75	173	1.75	7.24	1000	1.24				(FILE)	
227	2.84	-2.82	3.8m	2.72	2.77	3.76	2.78	274	1954	3,74	11.84	(49)	
5.714	3.87	2.24	3.81	1.72	3.75	3.24	/3.75	3.70	327	3.71	2.72	19	100
134	2540	7.33	2.23	7.74	7.09	7.16	6.00	E.07	3.59	5,08	1.67	ATA	-0.00
1.68	5.42	1.62	1.66	144	1.66				6.0%	6.90	6.88	.01	
163	2.59	2.58	2.58	234	2.52	1,65	1.45	1.65	3.65	1.65	1.65	29	
TAL	3.64	341	530	257	3.33	-231	3.50	2.49	230	DIE	2.47	110 7	30
6.31	0.18	6.07	5.50	337	338	5.82	3.27	227	121	3.24	3.23	5863	67
1.62	TAIL	1.60	Dist.				5.7%	7574	5.76	5.61	5.63	181	
2.48	242	£40	2.10	1.39	1.44	1339	1.58	5.581	1.59	1.00	1.58	235	
1.22	3.71	332		2.56	2.85	2.34	2/32	2.32	2.31	2.30	2.29	10	
1.32	534	5.28	1.01	3,04	2,92	3.01	2.57	4.97	-2.5%	2.96	2.93	ne	-8.
			5.00	33	1,02	A.03	A2961	488	4:51	-4/A6-	4.88	DI T	
XXX	7136	EM	Man -	3,55	3554	3354	1:33	138.	1,53	1533	1.51	38	
434	2.20	2.28	220	2.23	2.22	(221)	2.19	£18:	2,17	217	214	30	
101	2.94	3.50	2.86	3.83	1001	2.70	2:76	2.71	2.73	272	271	AS	2.
4.94	5410	4.73	4865	457	4.52	6,45	4.42	4.45	434	4,35	4.51	m	

882 Appendix D. Detected frame

Upper Percentage Polets of the F Distribution (Company)

	differ denom			- 4			200	-	(Crawl)	MINF)	-					
- 27	No.	Per	1					thirm	emerate	ur No						
- 3		.15	1.49	1.60	3	4	- 5		6	7			-	31	357	
	16:	10 01	1.25	2.82	7,80	2.61	1.59			132	Lin	1,56	10	-71	- 12	ì
		JI.	100	4.10 7.56	E25	3.46	333			1,14	2.36	7.35	1.55	1.55 2.90	1,34	
	201	23	1.47	1.38	1.33: 1.38	3.50	3/64	31				K02	2.94	254	2.39 -2.00	
	TT	.19	3.23	2.66	TAR:	2.54	2,45	14	SO T			234	4.83	107	4.71	
		.01	4.8F	1.95	1.00	3.36	3.20	27		an in	2.30	32	1.32	1/82	15.51	
		35	1.46		6.82	5%7	3.12	5 3.0		101 80	2.95 2 6.74 8	90	7/0	187	229	
18	2	10	3.18		1.56	2.48	Ida.	113.8	4 5 4			41	#.SE	4.46	4.40	
		05	9.33	1.81	149	174	3.11 3.11	3.8	2	AK 2		57- 21	2.10	1.50	T.48	
		25	Lay		LINE .	5.47	106	4.63	4	22.	85 2	80:	2.79	2.12	2.15	
100				2.70	35	1.65	1.32	0138	11				4.30	422	416	
	1	OS.	KKE	E41 3	41 5	2.41 2.18	3(3) 3(3)	2.38	2.0	3 - 2	20 2		Lia .	BAR	2,47	
	1					9.21	4.96	3.52	23		27 25	77 -3	Lan I	2.12 2.63	2.10	
1994	PH 28	0		279		182	141	1.50	1	11	10 4	B 3	10	4.02	3.96	,
	0.0	F 155	(60]	1.74		279	231 256	2.2W	2.31				46	1.45	1.45	
	2			AR A			C #/0	2.85	42	2.7	10 36		10	2.08 2.47	2.05	
1739	30		43	53 IL		26-	file:	Total.	140			3 2			183	
200	45	1	34 1	70 D		De 1	127	2.21	4.74	2.1	2 10			tak :	3:44	
	38			W L	4		36	2.7¥ 4.32	220	24	4 231			5304	202	
16	30		42 1 BS 2	51 13 AZ 24		36 9	Att	TIME	1.14		0.000	187			Z 48 3.67	
1000	.05	-A	49 3	47 2.4 68 5.3		23/1/1/2	24	214	313	1.43			M. Y		1:43	
	0)	- 4	13 6.	23 23				274	2.56	2.59	2.54	21		101	1.99	
17	25	31			N Y	10 3		1.20	4.00	1.89	1.75	3.6		44 1	1.65	
4	A5.	4.4		3 3 4		1 2	22	113	2.00	1,44		14	9 4		WI	
	-01	114	9: 63			0 2		1.90	2.61	2.35	2.49	2.0		無日的	36	
120	-23	1/4			174			(NB	230	3.72	3.58	9.51		41 2	46	
100	1005	4.4			12	3,3	9 3	41	Total Zda	1.45	3.42	1/4				
	01	8.25	6.28	139	4.9	42	7 2	06-	238	2.04	2.00	1.99	(6)	6 1	73	
	30	7.99			1,47			OI.	381	3.21	140	3.51	10		34	
18	-06	*36		2,40	2.27	2.5	F - 2	44	7.83 2.06	£42	o lat	131	- 17			
	ar	-Min	1.93	1.01	E 60 6.50		2	61	2.54	2.02 Z.48	242	1.5%	1.9	4 11		
	75	7.40		149	140				3.77	3.11	11.12	2.18 3.49	0.23			
260	01	2.97 4.35	2.59	2.10	2.23	2,45	10		45	1.0	1.41	1.40	1.8			
183	12:	8:10	3.45 5.65	4.04	287	2.21	24	0	10.5	2.60	1.96	1000	1.93	1.0		
-	-	1	118	1999	1011	4.18	5.8	9	LZIII	1.26	3.46	2.M	3.33	2.2		
						AL	_	-	-	115/000	1000	A 198	329	123	25.1	

Appendix D. Designation and

119	5	20	24	-	1000	47.5	THERMA	mer re.						di for
13	53	1.53	-	30	40	-54	92	100	120				1760	Server
2.	24 (5)	1.20	275	1.85	7.51	131	1.30			200	:300	- PW	- br	Inatos No.
3	85 (C)	1.72	274	2.70	12.13	- 211	BT8	2.09	7.45 2.66	3398	EAS	1.48	.25	-
3		AT-	4.33	4.25	3.85	2.64	2.62	2.50	2.58	207	2.06	226	100	1000
Ob4	0 9	Ac	1.49	1146	437	4.12	4/08	400	4.50	2.56	2.58	2.54	105	70.
23	7 -2	12	2.15	2.00	100	1,42	Lan	2.46	1.46	3/84	3.91	2.3000	.01	
-		33	2.01	257	2,04	2:04	10000	8.06	100	1/60	7,43	1:45	25	
44			4.82	3.54	733	241	2.65	2.46	2.43	7,79	1.98	1.1.92	761	
3/8		42	1:46	1.45		2.33	8,78	33t	3,69	3.00	2/43	2.45	DS	10
231		04	234	2.01	1.45	Tas	STAR.	193	2.43		3.62	3.60	:00	
26			2.51	LAN	7.99 2.49	1.57	134	1.04	1.10	1,45	1.42	1.42	-23	
101			1.78	X20	1.42	240	2.34	2.55	234	2.52	5.57	3.90	70	
386		the o	100	Late		3.57	334	3.47	3.43	541	321	230	.05	12
201		MESS	PHIL	Tite	1.42	1.42	1.42	241	PAP	1.40	138	J.50	DJ.	
255 131		6 1	42	238	Z.54	2,82	3.80	1.88	1.10	Life -	1:46	T-40.	-25	
	0.8	Ø: 3	39	5.51	141	231 136	230	7.28	221	2.23	120	Tillla	10.	250
144	133		AS	T.At	1.41		LH	3.27	3.25		2.22	2.25	.05	13
10.3	13.0		54	1.91	5.25	Tiag:	3.40	1.30	1.30	1.19		117	01	
145	2.2		35-10			224	1.86	138	1.85	Na2	1.28	136	28 /	
	130			385		122	2.22	2.79	3.18.		A 14	1.43	38-	330
43	34)		45 0	AR S			KIN	T.PT	2.09			2.15	400	19
40	1.82		20			130	136	1380	3,37			1.00	m	
33	2,13			25		2.28	1.82	1.79	3,79				25	
41	5,37	-000		(2F)		30.5	3.01	2.13	2(8)				10 7	15
91	(60	13	W = 1			.17		236						9
33	103.86	1.8	1 1					DESCRIPTION OF THE PERSON OF T	1.78		200		01	
T)	328	38		2001 2			1.26 2.57		CODE I				25	
1		3.1		With the					57W (C)				10	
	13.04	13	A	15 1			19:00		ERR - 2				4000	200
N.	2,35	7.8		III.S I	78 - 27		25		.34 \$		100		IT.	
1	KIO.	231		10 2	Pel - 2				72 1	Jt 1				
20	1.52	501	-		12			70 2	D1 1	99 10		100 J		
m	1.54	132		16 160	u 1			10000	25 4	71 21		68 0		
-	1.15	231		4 11.	5 11				11 Y	12 11		1		
	Xum	3.00	331	1 20	6 21		60		82 1	61 7/	14			
-	100		2.9		4 23	1 2	77 21			12 33	15 13			100
	1.81	1.36	13.3	1.0	4 13					2 23	ME 25			
	2,16	2.11	5.00		3 1.7		70 17			10				
	3.00	2.52	2.0		F 2:0					16	4. 34			
	1.36		24			111				10 1.6	BOLL NO		19	
	1,79	T.38	134				200				2.4		2 - 01	
	2.72	4.00	3174		5.60								1	
	104	E46	2.04	110	1.07					15 1982	10.0		1.00	
		method	2,78	2.49	2.64	2.5		1.0	FO 188	1.86	3.54		21	

(Samuella

TABLE D.3 Upper Percentage Pa

dry	far i			911	MIN				Canthin	nr)					
No.			í		E		- 01	for no	merator	N.		100	(SE		
100	1.2	-		2	1	4	4	WILLIAM !	-	_	-	200			
22	1				7,47	1.45	J.46	-			3	9	116	m	100
1000	0				2.33	7.22	210	14			AC.	7.39	1,19	-	- 12
	1.6					2.62	246	2.5	21		(82)	TORK.	1:90	1.86	
	2					991	2.97	3.7			/65 /45	2.54	2.38	2.26	1.86 2.23
24	81	17.5	M			1,44	5.40	1.4	14			1.33	. ARI	3.11	3/12
	03		B y			2.74	2.10	264	1:0		31	138	10 Table	1.37	17de
		/- / 20				132	242	5.51	24	2 2		2.30	1.88	T.83	133
	75	15		48 2		144	1.90	E 82	3.5	3 3,		1.26	3.25 3.17	2.21	2.18
24.	05	43		12 . 1	31 2		2.08	是數	3,8	100		1.32		1.09	1.03
	41	22			28 2	70 5	2.50	2.01	1.0	1013	12	1.84	7.86 7.86	3.24	1.33
	23	1.1				04	II H2	1.30	2,28 1,42		9 .	2.27	232	2.10	2.81
28	7.0	3,80	100			43	Tati	1.40				SIN	1.00	3.02	2.11
	120	4.26	31			26	2,003	2.40	1.39	111016		32.	134	1.25	1.34
	102	3,64	34		3 4		56	245	2.36	1.2		87	1/Be	1.81/	1,79
	25	1.39	7.6				175	335	1.38	ii		26	LIFE	2.15	2.12
30	-50	治群	2.4	2.3	2 21		48	litar-	138	18	100		8.09	2.96	7.50
	100	317	- 23	20	2 2,4		53	THE	1.03	TAI		36	135	1.38	134
	25	7.56	3.0	9.21			70	342	2.35	-2.22		21	1.82	7:29 /	1,72
	In	7.84	140					847	130	3.17	31		216 298	2(3)	2.09
40	.05	500	7.04		2.0			5(37 5.42	138	7,12	13		1.33		2.80
	01	7,31	3.78 5.78			101 25		2.34	T/RE	DAN	3.3	ra lin		1.32 1.23	Tabi
	25	1.33	143		10	HE DU		1.15	3.12	2.18		25 10		204	2.00
	.10	2.79	2.36	560	330	13.3		135	6.0	7.8	2.8		Latio S		2.66
NOVEMBER 1	45	4.00	1.15	276 276	2,04		S-CUI	32	1.82	132	13		30		1.29
	m	748	4.98	413	2.63			28	237	1.77 3.10	134		21		146
		1.00	6.40	1:39				132	2.93	2.82	27		95	795	1.92
	10	175	233	2.13	1.17	7/3			1.11	130	1125			58	2.50
		1.02	SHE	2.08	2.45	7.20		82	1.72	122	3.60		28	27	.26
			525	3.95	3.41	3.77		27 94	2.04	2.02	134				90
3		IN IN	7.39	130	130	7.34			2.29	266	2.16		1500		83
150		80	1.04	211	1.87	1.88		12	31	7.000	1:28	7 12			100
0		76	4.51	3,65	2,820	2.26	H		75	1.74	2.66	tá			25
2	5. 11		13K		3,41	3.11	2.8			1300	1.91	1.0	H		57
108	2		230	1.37	100	131	1.1			2.60	210	24	1 2		37
0.5	10 N	Miles	3.00	2.08 2.60	1.94	Uns	1.3			1.07	127	1,2	8 33		
101	n.		4.61	2.7E	247	221	2.5	0-2		94	549	11/10	0 3.6	9 13	15
	-	-	-		STATE OF	3.07	7.8			E .	T.88 2:31	2.2	11.7	9 13	76

15	2	0	**	500	-	off for	FATHERY.	trw Ap						df to
1:34	110		36	30	43	50	60	100	11.00	1	-			desu
1,81	10.7		33	1.12	1.31	1.33	1.10	-	120	700	500	- 10	PV.	Inuts
2.15	2.0		25	1.70	1.67	1.65	1,64	8,30	T.35	1.25	1.2		_	Na
工物	2.8		25	1.5%	1.34	2,61	TAP	Let	1.00	1.59	1.58			100
1.38	13			2.63	2.58	2.53	2.50	7.83	-144	1.82	1.81			22
5.2E	7.2		12	Est.	-430	1.20	11.29		2.40	2.39	2.65	- 231	.01	100
211	2,01		70 98	1.68	164	1.62	1m	136	1.28	7.27	1.27			
2.57	7.24			E#4	1289	1.86	7.84	1.88	1.32	1-56	1.54		521	100-
1.54	132			2.58	295	2.44	2.40	2.29	Y.24	1.77	1.75	133	30	24
3.76	1.79	la be		1.35	1.79	1.28	128		AM	3.27	2.24	2.21	01	22.
2,07	3.89	1.5		1.65	LIMIT	1,39	1.38	7,2m	1.26	136	1.25	1.25		
2.81	2.66	2.5		90	UB	V.62	1.83	1.76	1.14	1.33	3,51	1.50	25	
1,25	131	1.3		7.50	293	236	2.33	2.25	1.75	1.03	1575	1.89	- 25	26
1274	1.65	1.4		29	128	1.27	100		2.23	2.79	256	2.13	.01	
2,04	1.70	3.9		000	1.29	3.17	146	1.26	125	11.25	1524	1,24	220	
LES .	2.60	2.5		47	1.44	129	1.27	173	132	1,36	1749	1.48	25	
32	12:30	12			2.15	230	221	2.19	121	1.49	1.62	1.48	-70	21
32	1.67	Tion		28	220	Tide	1.26	1:25	2.37	211	7.09	2.04	61	
51	1.93	1.80		51	1.65		1.54		1.24	1.24	1.25	1.23		
20	3.33	24)	2.		E-28	529111			1,80	1.48	1.42	Title .	30	
din	1.28	1.06			2.38	E253				王明的.	1.64	0.42	22	30
66	3.61	1.57	6 13		E SHALL		William I			2.07	2,01	200	tri	900
82	1:34	1379	5			46		141	121	120	T.Tje	Etp		
52	2.57	2.25	日本			60				1.41	7.380		20	
12	1.21	124				UM 1				.55	1381	531	0.5	45
10.	1.54	1531	1.0		27					1.87	3.83		JII.	
14	1.29	1.70	19			411 Y		17 1 36 7		da	1.15		28	
5	2.70	2.12	2.0		39 1	59 1			H	33			20	
6 9	1.32	121				88					1:43		ns I	65.
	148	1.93	139		to h	17 1					188 1		01	
10	1.66	7.61	1.55		12 1	M/L	32 1		13 1	12	31- 4		25	
Ŗ.	4.03	1 95:	7,86			PA 3	维工化	17		24 -1	22.		16	
6-3	1.21	1.20	3.10		格. 13		16 5 55	6 1		12 3	26 7	25 6	15 / 32	9
	AB.	142	7.28	1.1			2 11			(E) 1	47 1	38 4		
	62	57	1.53	100		1.13					.T . W.	de a		
		189	3.79	30			9 13	2 12			IF. 1	14 1/2	p3	
1	39 1	14	T.Te	10			6 354	8 14			職員的	15 n	5 20	FC
- 3	30 j	36	E(34	151			2 10		100		11 15	10. 2		
and to	30 1	33	1.46	199		7.5	K 10.15	10			045 EX			
09			1.70	136		11/2	8 1.24				14 12		4	
-	-		Elina .	1,35	133	1.40	1.34				0 10			

886 Appendix D Statistical Shifter

TABLE D.4
Upper Perentage
Points of the χ^2 Distribution

Example $\Pr(\chi^2 > 10.85) = 0.95$ $\Pr(\chi^2 > 23.83) = 0.25$ $\Pr(\chi^2 > 23.41) = 0.05$

for at = 20

Degrees Pr	393	910	.575	.950	.900
1	392304 × 10-11	157468 × 10**	98206P × 50 ⁻⁹	393214 - 10-9	0157900
-med Marie	0100251	2001007	.0506336	102587	210220
	.0717212	314832	215795	355846	.564375
J 4 J	204990	297110	484419	.730721	1,063623
- 3	411240	354300	281211	T.745420	-1.61da1
36	675727	872083	1,237347	1.63539	2.70413
A 18-	969765	3,239043	LANUST	2.10735	2.83811
SU BUS	3.344419	T-645462	2,77973	2.79264	3.4695a
100	1:734920	2.087912	2,70035	B-32511	4.16316
10	2.15585	2.55621	5.24657	1,94000	4.80518
- 37	2.60321	3:05147	5.83575	4.57461	4.57229
13	3/07352	3.32056	4.40379	5-22603	6.30380
- 19	3.56593	4.10691	-5.00874	5.89116	7.04130
34	4.07468	£86043	3.62872	0.57963	7.71955
13	4.60004	5.22935	6.76714	3 26594	8.54635
16	5.14228	5.81221	4.90768	2.064n4	#.31223
17	1.69724	6.40774	F.S0418	8.67176	10.0812
16	-6,29487	7.01AH1	8.29975	8,39040	10.8649
19	E:84300	7.63275	E-80455	10 1170	11.6509
90	T.43376	8.24840	0.59561	10.8358	TE4426
20	8.03356	8.89720	10.28293	ATJORES.	13,2376
22	8.64272	9.54749	10.5623	123300	14.0488
23	9.28042	10.19567	51 6885	13.0905	34,6479
24	9 88423	10.0564	12/4011	TERRET	15.6587
-25	10,9197	1115240	13,7197	14.6114	56.4734
26	11.76Q5	12.1951	13.849	75.3791	17,2919
27	11,8078	12,6786	14,5733	16,1513	163136
211	17,4611	15.5040	13.7079	14.9279	18,9392
29	. 13.1211	34.2565	16.0471	17.2063	19.7677
100	15.7857	14.9555	36,7906 -	18.A928	20,3992
- 46	20.7065	22.1645	24.4555	26.5005	39.8505
30	37.9907	29:2062	32.3574	34.7642	37.6886
.60	33,5341	37A648	40.4017	43.1479	40,4389
30	43.2752	45.4418	49.7570	21.7599	55.3210
190	\$1,1720	35,5400	37.1532	60.3915	66,2776
90	59.1963	95(254)	#5,6466	69.1260	73,2912
100*	67.3326	7000648	74.2219	77.9295	82 3581°

We dispress that (0) the regression $\sqrt{(x^2-\sqrt{(3x-1)})}=2$ holoses the standard and real distribution, where it regression

250	,506	.255	,700	,050	411	.019	306
1015306	A54937	1.32338	2,75554	3.54546	5,02189	6.63490	7.97544
. 575384	1.38629	2.77259	4,40317	5,79147	7,37776	9,21034	10.3366
1.212534	1.56392	4.10833	6,85139	7,91423	7.54840	11.3449	12.8381
1/92255	1.35670	5.58627	7,77944	9,48771	11,1413	13:2767	14.880C
I.67460	K.23146	8.62564	9,23833	11,8705	12,4125	23.0863	16,7496
3.45460	3.34812	7,84089	10,446	52,5916	14.4404	1438119	18.5476
4.25465	0.24585	P-93215	12,6770	14,5671	76.0128	18,4753	20.2779
5.07064	7,34412	10.2188	13,3516	13.5071	17.5346	30.0900	21.9550
E89863	834383	315,3467	14,4832	14,0190	19:0228	21.6660	23.5893
W.73220	934142	12,5489	(5.0471	18,3070	20.401	212193	25.1862
7.59412	10.5410	-13,7007	1X2750	119.6751	21.11200	24-7355	26.7547
H-63542	11.5401	14/6454	183494	25,0261	23.5367	26.2170	28.1995
9.29906	12.3398	13.9839	15011	22:3621	24.7356	27.6883	29.8194
0.1658	13.3387	17,1170	27.0642	23,6548	26 1190	29.1413	11,3193
1.D365	14.3184	18,3451	22.5072	24,9938	27.4854	31.5729	12.6011
1.9172	75,7383	19.3688	255418	26 2942	23.8454	31,0906	34.3673
2,791#	16.3361	20,4887	24,7695	27.5077	10.1010	33.0097	35.7185
3.6753	17,1379	21 8049	253004	28 8671	31.3264	54,8053	37,1564
43620	18.1179	22,7126	27,2036	30.1433	\$2.85Z3	36,1908	19,3672
2.421£	39,5376	23.8277	28.4120	21,4104	24,1694	97.5662	19,7944
6.3444	30.1177	24.0348	25,6101	32,6705	EE 4700	36 9321	41,4010
ITIZ104	31.0070	26/3393	10 8133	15.5244	36,7907	40.2894	42,7938
8,1373	32,3160	27,5413	32,5069	15.1723	38.0757	47.8388	44,1817
8.0172	21.3367	28.2412	33.1943	36.4151	39.3641	42,6798	41,5583
0,9391	24.3366	29.3393	34,3816	17 8525	40.6465	44,3141	46.9229
0.8634	25,3364	30.4345	35.5691	38,5832	41,4213	45.6417	48,2599
1.7494	29,3343	11.1284	16.7412	40,1134	A D DOWN	46.9630	19,5449
2.4572	27.53163	12.6205	37,9130	41,3322	41.4607	46.2792	30.9927
3.5666	24.1362	33.7109	39,0875	42,5569	45.7223	49,5829	52,3356
4.4776	29.3360	14,7908	49.2560	43,7729	46,9792	50.8922	53,4720
1.6801	39,3314	45-1180	51,8000	55,7505	59.5417	63,6907	05.7659
2.9421	47.334P	16.3334	63.1971	87,3048	71,4202	76,1539	79,4900
2.2918	59 3347	66,5614	74.3570	79.0819	83,2976	88,3794	91,9512
II. APRIL	69.3344	27.5766	81.5271	20,3312	93.0231	100.425	104.215
1.1445	79.2342	88.1309	96.5782	101.879	104.629	112.329	314.521
0.6247	88.3347	98,6499	1007,565	313.145	118.130	1243.68	138.299
0.1112	99 334T	109.141	118.416	124.342	129.561	131.007	140.76E

23

Switzer Novinger from E. S. Pousse and E. C. Kantay etc. Name of Solito per Survenience, sol. 1. Sect., 1988; C. Cartanige University From New York, 1980

TABLE D.SA Derhip-Watson of Statistic Significance Points of d₁ and d₂ or 0.05 Level of Significance

		*1		. 10	iz.		-1	. 8		- 1	+1 -	- 8	-+-	84	47	- 3	40	· K		E	19.
*	4.	- 6		4	Ar	4	-6	40		140	140	243		-	4	EX.	A	36.	-	A	- 16
я		63.4			1650	-	DH-	145	1,40	4	1960	250	-30	1961	360	100	-	- 1	96	7	-
池					31,899	1770	346		-	Cont.	1560	7796	43	-	-23		-	-31	800	- 31	
						5.366	CUMI.	ne.	-	-	200				-				-	2	13
*							2121		ESM.	-	-	-	-		-						=
							CEXXX.		BHIA	000040	CARL	200		-	-	-	-	-	-		-
弡	NO.	339	81 M	ATK)	3,644	*480	1000	344	8.00	DESIGN	8800	0,000	3500	12	1		-	-	700	-	15
16	AM	(1.3)	500	NI.	33%	CA PROD	1200	34312	ACTO:	COURTS.	33%	-tcdist	cett	statt.	3,745	144	1.00		-	-	150
9	35	EUS M	918	MI)	1366	APPR	3,864	9239	2004	20446	SAID!	11500	3,000	14.055	2.985	8347	0.866			. =	-
10	1100	30.	93	211	5201	1,781	1229	9414	Atte	AME	-0.2 hr	SCHOOL	JAMIC	(X246)	E.840.	XIIII	OKENO.	#12T	1.190	100	38
18	200	(E)34	55.8	m	5.99	(800)	CON	2005	3900	2507	32M	(0.442)	SAME.	63400	S.TH	6391	\$300	8.175	8306	38.80	3(4)
W.	245	N. Lake	503	200	1,000	5.907	1.03	0.734	7.685	DALIE	8.135	35366	1348	3.586	3.60	3.78k	4,7600	SWE	0.09%	:XX00	1,64
55.	200	200	905	mr.	250	200	Page.	2007	1,500	Query.	£706	D.SSA.	2316	ANG	3.885	35,666	8.797	E-72	2905	2.126	3518
o	2012	20.	100	<u>995</u>	5E8	6201	(FREE	698	HETE	7.75	3300	0.0009	2.88	KMC.	SEMIC	8,400	BMI	30341	JAME.	2200	
a	100	0000	112	100	988	8787	1.000	DAME.	UMB	5750	380	20,000	3314	1346:	3396	3,466	(E) (F)	0.000	2,186	(5.34m)	3,91
2	0.00	200	16	180	1.535	8,000	199	188	250	2.712	(3.8H)	NAME OF	TIME	AIR:	3,000	AIRE	19301	MANY	22204	4304	3,84
33	1665		502	MB	1236	10000	1,847	HARR	(1812)	8,819.	38E	5734	3186	8607	3,780	3347	X100	3.495	3,600	2.188	100
2	0.00		220	m	0.80	10000	1,000	SISTS	100	-550C	37 6 5	SOM.	2300	9402	2,798	8.18%	2,400	8304	2,107	0.125	
55	100	986	528		100	Design of the last	1868	Distance of the last	500	RMS.	1,695	OWN.	E961	(APIE)	2.106	3,400	(8)460	3.500	1.04	AANI.	2,67
S	9046		23	æ	ette.	1325	3,000	MH.	1875	ESD	175	THEF.	2911	2.791	SHIP.	N.ERF	ED4	8384	3344	0.00	(64)
Ħ	56W	308	380	98	0.000	15000	LAM	7,948	1205	200	7,846	SME	Adda.	35784	2,794	9.793	8,780	8.60	2319	XXX	308
В	1000	e de la composição de l	88	20	1204	1000	1412	1982	122	ART.	260	SIME.	1589E	gen.	(8385)	8.742	2,746	RARE	3355	0.381	1883
E	340		53	220	SOM.	7,340	2005	100	100	200	5380	N. PAL	3,666	CERT	2.003	3797	2008	MARK.	2,940	SHIR.	247
n	Wa		933	500	3000	0.181	2,415	225	1649	396	288	380	3.555	389	3,007	(8784)	2186	ATR	3300	3.00	95/45
а	100	880	303	889)	2000	1000	1200	300	2500	300	3,600	SHOW.	(225)	(ARRE)	3,002	350	2384	331	LITE	See	3.77
п	Villa .	300	æ	20	980	11.21.4	1.610	000	100	SEC.	5,001	E.798	[293]	8,004	2.004	8,004	THE	9750	3870	4,77 E	234
3	1			200	1300	0.45	1300	1390	1.755	1,000	CALL	2.000	1490	8,995	7,679	350	2320	5376	2376	0341	2.11
n	V 100	201	200	m.	Time	1,000	Marie	200	STATE	STATE OF	3555	SOM!	200	8877	3,004	20,7904	2380	ALTH.	2204	9.768	533
×	F-100	200	800	80	2025	0.55	0000	1.755	100	S. Carr.	0.00	DOM:	1750	gene.	(1885)	8 407	3.085	380	3380	0.204	235
m	122	(CI etc.)	22	200	con.	ALCOHO:	7.600	COS.	CER	1000	250	3351	CHES.	SAIR.	01220	DOM:	A SHE	OPPH.	3098	SOUTH	9,85
12	1 211	3151	90	88	2000	2,980	LAND	3-995	1126	1,160	PARK	200	COST.	3,004	1460	9,825	Signa-	THE ST	0.554	11,845 11,848	521
a	1311	200	24	123	2,000	1274	Carlo	7000	100	NAME OF	200	5155	Page.	1,600	4950	9.991	2.041	0.436	26167	U.Bid.	371
w.	140	2170	88	88	1,000	7.000	100	200	200	200	2022	ALC: U	1,000	3800	100	1000	2000	380	35314.	ONT	879
Φ.	250	24.00	83	MATE.	200	7.578	1200	Otto:	He	T-STA	100	0.777	Distance of	1000	Date:	0.00	Set.	BOY.	3500	O.P.E.	200
σ,	NES	1997	œ	œ.	O MIC	102	2.007	Diffic	1000	222	(25)	200	4500	626	MARKET I	100	3,000	JUNEAU	486	0.812	388
20	140	274	202	203	2.615	7.00	100	200	1000	1.000	1000	No.	1,004	1.168	1865	1,004	0.000	1.000	SEE 12	1938	æ
ø	100	200	œ	25	200	140	777	170	1381	Color	2000	0.00	1301	1.186	1022	1000	200	1,000	3882	1710	See.
ä.	3.504	900	90%	=	2.645	7 417	1000	DALK	2.354	7.774	7500	1 200	1212	355	122	120	1000	100	200	3,596	500
ы	NICHE	1.85	66	410	120	3222	Sale-	174	IΩ	Call	370	3.100	(F20)	950	2.000	0.00	000	100	0.00	2000	250
	159	0.40	ΝÜ	144	120	Aber.	5.000	TER	1960	Value	2.792	Van	100	17315	450	TOTAL PROPERTY.				温	
ŵ.	1.144	7.04		-	146	1301	1,00	144	7.516	100	C 100	1700	100	1000	100	0.00				1,300	
'n.	1100	1.49	10	120	1.000	1561	1.040	1300	120	1-012	100	Late	1.85	Calle	1.834	1000	100	1344	1.86	1.86	257
ü	1.611	1.44	16	naa.	7.688	1140	LITE.	1 310	£ 240	1.000	7.775	1240	140	LAD	100					100	
ei.	1.634	340	116	100	1.655	care	E-121	Line	1242	1300	Y.124	120	100	1416	200	1000	1000	250	7.84	1380	2.5
n.	1441	1.67	23	aria.	5.78V	1100	6,030	1312	4.200	9.842	3350	100	100	1000	1122					130	
n	144	3.48	66	izn	5.79e	1461	1.TH	CHE	1296	1411	Litre	1340	1 805	TARR	1 450	1100	1814	Total Control	130	140	200
m	1.054	2.45	000	OW.	6,700	YAME.	1.7mm	1300	1710	25411	1.00	Torse.	7 800	P Dire	1911	4000	N. Marie	2.000	2.646	Sec.	22
90	1,729	1.50	1430	rist:	5.760	1881	1.779	1 429	1244	1600	1300	THEFT	1307	1402	1000	100	SAIT.	100	2.643	1,000	1.67
Ø.	1.750	2.5%	O'e	tut.	1.795	5.750	7,739	1.738	1.875	V.019	3.650	1.207	1.816	NAME:	TOTAL .	ARK	1302	1 50%	100	200	-
				100	330	SHIP		-	300	1000		211	1777	200	- 111	100	2000	arii)	377	-	25

	-	- 77	-	-15	1	* 1h	110	-74	100	×1911	- 1	+30	. 10	412	- 2	-18.	. 91	10	W.	- 26
Ľ	4		-	4	4	A.	0.00	4	23	4	4	6	4	4	4	11.64	-	· Av	- 4	4
	40%		100	75.	-	7.E	50	100	72	340	- 2	FSE		100			100		-	mil.
			CHAR.			STALL	344			-				200	100					Œ
н	*122	13,000	SPUI	SAM.	0.018	0.001	100	-		- 22		100			200	353	112	-83	- 53	-
191	F-309	ALTER	Aim	AHI	19/2/00	(3) Admi	500h	3,610	112	-		-				100			0.53	Œ
æ	16390	2565	14205	3.034	9146	Children	\$100	1744	3140	NAME OF	112	933	200		-	120			100	æ
æ.	430	2976	ALZeb	1111	30142	SKHA	36186	DIME	MARK.	23.883	den	1000	1000	7/100	100	-		-	100	æ
	3.740	2000	:3200	XAD	200 M	3201	70184	2566	WIN	O WAY	1000	1000	WHEN	2004		-	16			- 75
ю.	WHEN !	.Y.XQK	CKSH	AAPR	15214	121295	18,000	3500	9000	V Asset	Service	SSGIN.	36504	A and	Chian	15.794	THE	15		15
	DIMEN S	2791	****	XTOR	15000		ALTEN	0.144	100	Charry	WEAT	29000	100000	4400	W. 60m	7.75	2344	Altte	Œ	-
	CILIARUS:	37754		2544	200	2000	THE	194.68	100	COLUMN TOWN	2.124	Time.	W154	19.004	19000	10000	10000			-
•	GARGE.	2000	1.6360	12 (98)	- 8103	2313	ACD 2	- SIGHT	36264	E-174	8204	3/3/5	-0.045	- Care	200	0.000	NAME OF			
•	(4780)	6350	10,742	2400	- DOMEST	51121		TABLE.	TO SEE	IE.716	Vi-400X	2007	TEASE.	2.710	M MARK	The second	10.002.0		200	-
9	200	25S	ALC: Y	100	ACCUSE.	EMM:	8,403	1300	289	KAYS.	TORK	328	9.867	4.539	BASE.	2,100	E-397	1,000	mant.	300
21	THE	200	(8.078)	Sec.	220	5316		1000	388	3500	35375	34(200)	(3,88)	:3791	3,472	ENG	R 1929	4200	0.479	No
з	TOTAL	2500	(000)	aan.	335	600	(0.55)	ARC.	JHEE.	5292	300	3970	93#	18,797	1,400	Lint.	B.UEF	\$400°	COMM.	366
о.	CONT.	CITE:	TERRO I	800	200	550	900	250	MARK	2400	9.630	STREET,	3000%	3338	(\$300)	2004	8.409	Arra.	HARD.	870
ĸ.	1.044	7100	2000	300	680	5505	200	685	5785	TANK.	2.746	3914	SOUTH	2386	2.644	BARK	3.006	32755	9.882	2/80
ŭ.	100	200	CONT.	2000	2225	2715	5,000	2480	599	(M389).	SERVICE SERVIC	2310	0.790	2475	£347	234	9795	2,00%	3.406	246
20	1.464	120	4 4 4 1 1	V 1750	200	8225	5,000	200	200	386	3700	3300	JUANA.	SAME	ARRE	(2454)	170	gane:	20,730	217
×	3.004	7 Dist.	700	200	2100	SHE	155	5500	485	-520		THIN.	5360	THE	LIVE	7:161	2101	Exte.	AUDIO.	346
Ž.	T3990	eam:	7.600	200	220	2025	100	200	N.S.	578	1295	3555	SHIP	3800	Acres.	2.00	3.796	8301	BRS.	3411
ũ	0.004	1300	4.488	2006	1.700	Ser.	0000	2000	0.05	2,148	A Fell	23.86	SATT	2.00	S CON	80325	1.000	X110	BATT.	BM
23	556	120	1.45	TITLE.	C. State	State .	NED	2.080	S.UM	271130	E 193.	2756	3720	2790	13094	SCHOOL	1908	2,275	BARE	330
	1.50	120	1.000	UTD.	F 1017	2005	Cont.	200	155	200	15259	80.00	3396	2798	3036	THE .	3390	THE	用物料	\$20
н	Eller	LAIR	7 340	TILL!	27000	7564	100	122	1000	200	Marie	3.00	388	EIN.	1.10	2110	tion.	8296	83317	3.24
a)	144	1874	V.Ave.	1900	Carlo!	704	160	100	1000	224	100	2,045	Detty.	A179	1410	2018	5,985	85(M)	A149:	2211
Z)	back.	4 949	STATISTICS.	164	1000	VALUE OF	222	Tiare.	1000	1000	100	2000	200	2,600	1,010	4176	1312	0.358	MRS	219
ø	100	Line	7.66	120	155	VIII	120	122	1000	1000	0.000	200	1000	2001	1411	TLOR.	1201 1406	2,3550	TAN:	2114
Si.	Line	Lane.	1440	1000	1300	144	133	6525	2000	023	100	0.000	100	1200	145	3.600	1.00E	1343	1961	2,689
	115 15 1	100	44.77	100	THE R. L.	11110	27463	-	200		3.400					5.867			2 344	- 64

EXAMPLE 1

If m = 40 and k' = 4, $k_i = 1.265$ and $k_i = 1.321$. If a compared it value is reaction 1.285, there is evidence of positive first-order sorial constation; if it is greater than 1.271, there is no windows of positive field-order sorial correlators, but if it is between the lower and the upper limit, there is inconclusive evidence regarding the presence or absence of positive field order actial correlation.

890 Appendix D Barrettoal Tables

TABLE D.58 Durbin-Wetten & Statistic: Significance Points of dc and dc at 0.01 Level of Significance

	-8	et)	S. 83	40	li i	10.	100		1.90	12	100	0	100	9	(S)	2	- 20	2	K-	10
	4	the	100	160	100	- 40	A	16	A	Acc	363	- 66	4	A	*	4	38	44	A	140
4	\$180	11/144	SW.V	1541		040	736	-	190	199	340	100	ne:	36	363	381	-	100	100	2
13	B-150.	1200	ount.	588	1	100	- 1	-	063		8	124	#63	3	100	æ		100	199	8
					0,329			- Trin	100	-		-	1000	-80	100	-	133	90	753	-
					(8.82%)				1	177	-	195	100	-260	100	3.	100	3	-39	
10	Y-MON.	(580)	30.600	3.00	3990	1,711	SHE	3700	NUMB.	±300		1	153	200	860	90	13 1	FB.	130	15
96	MINER.	00,650	DOM:	3.00	0.004	(Albert	200	CEAR	18395	A-res	30,384	4,882	120	700		-30	650	250	-31	
14	NAME	SME	9.50	3,279	3.640	280	0.348	3.45%	3294	3.760	2.195	さ数	850	5880	120	200		20		13
惩	0.754	1,036	3.696	1241	3.00	CARR	0.385	SAME	0.29A	2002	SET !	400	0.045	AAM.	2.00	1000	4.00	F 24/4		
38	SULTA	509K	2 800	STAR!	8,941	25399	0.445	3,00	SERVICE.	389	95H	2.014	N. St.	SAME?	200	1000	OR OTHER	1455	1	NE.
98	Spart.	Alterna	3.70	7.00	6.001	3,866	GOHR)	5.794	8,001	1,040	200	15-217	19.218	2340	025	200	Sec.		2000	3 100
ŒΨ	SORH.	2000	4.716	COM.	8309	-	2949	(19 18)	1995	1,690	7520	1505	CO. SALE	1500	B-300.	(500)	Sec.	0.000	2.100	25
17	35876	1340	N TOTAL	324	3300	12450	(2,574)	3499	1.402	188	2.00	1.000	9373	230	œm.	522	CHICAR.	STARK!	0.180	922
119	8545	150%	5.80%	SER	5,705	31448	2013	1,004	9215	1863	3755	155	1 100	200	0.200	2.44	200	TIM	W148	DATE
JP.	118.00	THE RE	DAME	3,00	NON	1,000	LOOP.	2186	200	15000	300	1,055	N 100	3100	220	9300	10000	200	2.660	974
38,	9.855	CSDM.	0,840		2011	1301		Grant	ESSE	1322	, sum	1,775	1000	200	522		100	000	2335	200
OH.	BATT	3.148	Date		0.63	USAN	1827	10265	200	1000	7,000	Total Control	100	0.00	00123	0557	10000	200	0.00	277
948	F850	03456	9814	oree:	0.865	140	E.748	1049	0,867	1-801	0.250	1.007	4.445	2 212	0.00	200	2000	-	NO.	18.40
(48	9 035	53286	20776	(Sept	1000	1000	1000	1900	Diges	5-800	0.450	1000	1100	0000	wake	S mid	001E	Scott.	0315	HAR
23	1907	2794	200	1000	Chia	20,000	2000	1,048	2725	0.00	11467	200			of 140	200	Control of	200	200	100
398	19 (80.0	- 1315	39,861	399	0.748	Library.	USBN.	12.00	200	3.265	0.000	1000	20.000	200	200	75.400	200	OT S	444	1022
284	38%	1,322	OTHER.	399	0.540	-	((DEE)	12015	1977	3,673	MIZ	100	10.619	1 200	S.org	200	TALL.	200	10.334	12.00
35	15655	CLANG	5500	000	230	1000	0.019	200	277	1000	(Paran	1311	11,010	TRAT	1000	CHIL	2000	1979	1270	3
38	1,705	1976	EMIT	1 120	236	(35E)	0.40	12.000	3,000	4000	200	0000	0.000	1.000	222	1750	(SSM	950	9155	216
128	15235	1.256	1,004	1319	CENT	0051	200	1000	0.000	200	9.788	100	10,720	11300	200	1,004	0.000	200	2000	216
on.	0.310	OUR STATE	00000	200	1/8/25	8000		Service of the last	200	MOE	2000	360	0.000	12000	4.71	51.00	0.646	2190	4 140	0.10
833	4888	5.60%	33.00	(134)	1200		200	2.000	B.B.	C 200	Delta.	11.50	- 100	200	30.00	14:345	in and	1,980	PARK	416
68	20,000	11425	0.5157	200	100	1225	5990	000	Seattle.	1100	2212	1200	2 400	1000	0.764	7.84	0.69	13988	Seed.	211
ШÐ	Mare	0.00	3000	220	1,219	0000	200	Service.	224	1000	234	17.40	2000	11.000	Work	1 800	20.733	1 447	N. MAD	2.45
200	1000	100			20	100	1300	2271	1760	2 544	200	1401	WARY	1111	0.00	0.640	100	11940	-0.468	200
1125	1,000	225	225	W1002	100	1000	2000	O DATE	1200	1.000	200	1000	4.400	1100	0.00		in fee	O1.000	catan	900
82	1000	2 500	332	300	(110)	0.00		200	10004	2000	115.00	1000	200	1,342	10045	CAM	0.787	2301	0.710	300
72	1000	1700		882	C7.88	(Gall	STATE	- Tarr	1,000	100	11.630	250	240	1.736	4394	11.80 e	9300	Stane	0000	1300
82	श्चला	100	333.3	300	LITTE	994	00000	17.913	1704	1922	0.997	BEAM	200	1,529	9309	3640	2 300	C 2 M1	1,4024	1307
1129	1000	1 744	COLUMN	0.00	3000	COCCE	0.000	COOR	5.068	DICTOR	0.485	110,662	17,000	UNIZ04	CRESS	(1878)	13584	COLUMN	1223	1.30
823	11,200		204	1000	630	1155	1 2 104		1000	1000	000	1,541	1,011	10,794	M.A.C.	SIDW	1,000	CHAR	dien	1584
n va	11/1/19	TH AW	10000	10.46	2000 W	Can	N IVAICE	CHW	17714	COLUMN	11.00	1000	COMMO	10 F(892	10014	HERM	CAPE	0.05490	-5351	175.84
266	4.90	III AU	1.346	1000	CHA	1200	C-330	1.54	010269	0.00290	10.172	E-EAM	D-123M	11 481	113JM	CT-20H	1,857	CHURN	-XX004	0.788
mg.	171266	100 334	0.000	0 Y 24	45 - 301	CHEAN	40 HOM	C1A8	111598	110.00	111/234	F / S.M.D.	1.000	17,480	V384	PC00794	0.170	1331/07/	V-JUNEA	LOUIS .
11/22	1.400	1.00	F 127	100	E-BANK	W-134	com	SECTION	11300	0.0004	CON	STAR S	O FEETS	1000	IO DOM	1/5.200	1.17(2)	DOM: UNK	C/1/800	0.02384
100	1000	1000	1000	2 5 300	0.00	2700	CONTRACT	FITTING.	OT MI	CHART	FIRE DAY	1115240	133	77,000	177,433	1 III PN	E/L/W	C35/0H	F-74.184	-,1,179
0.44	1000	17.644	0.411	1.77	6. 2.20	1000	e 1111	6 195/867	1.046	CHARG	rs2mm		C-CIRC	- 0.046			0122	COLUMN	коми	10174
1165	2.22			0.00	60.00	CONTRACT OF	4 2 200	E25600	7.7666	10000	HOLDING.	1 TWS	NO DESTRU	1.15.985	CC10284		E138	1010790		
	1 465	/ Chappe	1 4 4 4 4	101.00	20,77,721	e51100	6-6384	COLUMN T	UT 37,356	10000	10000	1-190	CORRE	r33985	000100		411.ZE		5117404	
-	COM	1 640	11.00	0.00	61/13 arts	EC11748	11/15/08	ernam	17.404		100.00	1.00	1330	C Target	OCCUPATION AND ADDRESS.		E PALET	1000	113740	NO MET
- 44	1.0	10.00	1.20	CULTER	100	erros	C-1044	CONTRACTOR	IDE AM	100	1.40	1.70	E C181	1.80		unn	11112	N. S.AM	1 T M 1	1000
444		- 6 140	110,000	CHES	00000	101100	(C) (M)	60000	100	Cast	roog:	scrom	97580	FF EARD	H33,300	U0 (020)	ACHINE.	0.3329	(/) 3 200	COUNTY.
100	11 1 10 10 10	20.00	V 469	10.00	COLUMN	10000	ACC 8 6 21	10010479	COPAGE	20000	CARAM	1015248	IN TAXE	0.10123			2115.00	121578	MAP LO	DOUGH
	110,000	V C C 2	100	Co W	4 4 20	1 2 20	1.149	601.01	Chart	1. 15 Flo	CTAL	1.1.29	C YXE	1.170	11/182	1 336	1.16	1,176	V-12.575	0.119

	10	45	. 21	- III.		16	E	34)	36	in.		di	180	at		10		19		30
Ċ.	4	342	16	(4)	6	140	8	1	TA.	4	4	6	4	4	4	W.	6		- 4	de
10	T.560.	Lasi	-	1		740	724	-	-	100	341	40	1	-41	-	-	-	5	-	-
坩	2.784	1284	6169	A.DOR.	-	100	-		9-1	-	(6)	-	100	700	-	-	-	-	-	-
	36135					3,000	- 72	11000	-	-		-	-	-94		-	100	-90	-	-
MK.	1046	am	190000	30000	20,843%	3,420	14000	3,000	-	30	-	100			-	-	-	-	-	300
	3339									2500	-0		-0	-	-	100	- 40		(40)	-
	A TOP											3475	100		-	-		-	-	-
	TE246														S. 200	170.0	-	No.	-	-
	9.261															9,785		1.460	-	-
	AUDIN																	2340	360	199
	2.046																			
	0.000																			
	0.415																			
	0.446																			
	300418																			
	30000																			
	DOM:																			
	035#																			
	0.386																			
	COMME																			
	0.814																			
	DAM.																			
	3000																			
	JU. PHE																			
	SOTEY.																			
	3.744																			
Als	75.88A																			
38					1312															
ж	0,674																			
м					-RMK															
	1090																			
28	00000																			
73					2000															
36					3,548															
	SIZM																			
	324																			
					1286															
	1.334																			
	C-540E																			
220	COMI	TARE	LIDAGE	1,000	1.116	1,813	2,818	- Finales	11.018	1.610	1,417	LIGHT	5.401	1.860	Links	1.811	13,434	1.000	5,442	1,814

First is a country of intermediate.

If an exercise of explanatory contribute excitating the assessment to me.

Source Country of Marie 20, 40, November 20, 10 to Secure 10 t

Table A	3 Standa	ed (torresid	Curys Area	ii.			60 =	Piteri		
								- Desir	d arrest from	th carrie
							- 2	2	distance of	00
							- 40		mir seek 2.	
							200	THE REAL PROPERTY.		
						_	2600	SHIELD C	_	
-	100		-		100	221	1955	1 1	-	
	- 31	.81	-91	.43	,04	.05	-786	AT	.85	.89
-24	1003	.0000	. 1993	.8903	0001	3003	2003	-8001	.0005	.000
+13	5,000.0	3000	.0005	8004	10004	3004	0000	2008	7,0004	000
-52	6047	JOHOT .	1909	8800	800W	1004	3606	3005	10000	000
-28	3000	3000	2009	.0000	9906	10000	0008	2000	.0007	,000
-1.0	(0013	10077	2003	2012	6613	000t	.0013	1100	.9018:	
-28	(00019	3818	307	3017	-8814	0004	2001.5	2015	.0034	,001
-21	0036	8825	2624	30023	0023	30022	1021 -	2021	30028	001
HZ.T	18035	2034	20093	0097	.0651	.0039	20029	20025	20027	/000
728	.0047	,0945	.7084	,0543	.0041	0040	,0003	.0038	,0057	,003
-23	20062	.080	.0019	.0087	0055	38054	.0063	10001	:0049	.000
-2A	10003	1000	.3079	20079	.0072	390T3	200EF	()068	28660	/000
933	WICH	30184	3102	30088	.0096	.0094	.0001	2000	ONT.	899
-11	30110	300316	31132	:0129	.0121	8130	20118	0016	8113	. (84)
-23	- BISS	,0014	3176	0.00	.0140	31.56	.0154	20200	8046	615
-2.0	SETTING.	.0023	8217	.0211	nmn	.8202	3197	9145	3038	319
-19	8207	2006	8274	- 42AK	oner.	8256	.4050	/9284	.0239	823
-18	#359	.0352	8944	:8576	.0328	2022	39(6	2007	2010	038
-1.7	3465	4040.	.8427	28418	9390	3990	. 1962	3394	10335	
-18	0348	.052T	2526	3916	.9505	3995	78945	BATE	DIER	- 3045
SHA.	1966	3622	2642	3400	MIL	1000	3094	886	XXXIII	.055
2:14	bess	.0793	6778	12364	4546	0.0731	20723	2006	-0094	.000
uLT.	2066	.8955	.0934	3810	.0001	1885	10800	.0853	30018	,010
-12	31111	3131	11.01	31092	3872	1008	3104	3620	1000	.000
-1.1	1389	3105	3364	3282	3421	(426)	3330	1310	1188	'III
12.0	1987	1162	1036	1111	.1981	1468	3446	1425	1401	-130
-11	.1841	OHA.	LTRE	1760	ACTA:	14741	-11905	1860	1655	161
-11	2119	.2890	2061	.2097	3865	1907	3948	1922	.1894	196
-1.7	2428	.2399	2358	,19,22	3286	2200	2136	2004	进行	.204
-2.5	.2743	2199	2676	:3645	2601	2578	2546	2814	2465	.20
-9.5	3003	3050	3015	2083	2945	2002	3811	2843	2810	.27
-0.4	3410	3484	2372	3356	3388	3386	33228	3192	3156	30
	3821	STEE	3748	.3707	2668	3002	.2094	3983	3320	34
-0.3										
-0.3	4201	:4188	A129 A122	4483	A011	4404	.397A .4364	-005 -025	4255	385

4	200	41.	.60	.41	-04	-81	.86	art.		*
40	1606	5000	2000	JUN-	3100	5100	5039	.6259	2519	3314
0.1	THE.	25456	3476	JULY.	3885	3896	(5834)	2001	:37)4	4707
6.0	1,1900	- 3857	7621	,381.0	7516	SHAT	4804	,6369	6100	5149
0.3	A379	6257	A255	6383	.6351	.6366	.6436	3645	1410	8017
9.4	(9356)	6791	8038	. MAK	2006	80%	ATTE	1000		1876
65	3386	6990	A992	.7019	7934	2000	710)	-Titt.	17000	7224
8.5	3189	2091	7104	3107	.73.69	. 340	3404	.7486	THE	2949
67	3380	2000	2000	-3091	-2994	.7794	7766	2794	778.03	388
88	7661	7915	.7976	.79(7.	2985	8003	J0051	AUTO.	,8196	8135
49	JE139	3186	3212	AUX	3294:	8289	ANIA	3140	8360	.8369
48	3413	.8458	.8460	3465		A101	3334	3575	.8590	MOI
11		3565	2449	3788	#100	2048	X716	3190	1,8600	8100
13		.000	.000	.8907	. M955	2004	2160	-8190	,8947	A03
13	7992	.5888	3000	,9862	8099	.9915	/8031	30.07	9142	4617
14	7050	9000	9121	3036	#253	9068	.9279	RINE	3565	5019
13	-3/032	9315	.0050	.WETE	.8962	.9394	.940E.	SHIE	9419	7946
I.E.	.5452	3463	3476	.7466	,9455	/9906	2019	3808	A535	9545
1.7	1054	9968	.3171	0010	.96%	1049	0404	JHIN	3425	.9629
R.R.	(948)	2449	.8056	3666	3915	(9474	-9666	.9490	7606	9765
19	3113	8119	.9136	9732	2718	2784	.9156	9788	WMI	
20	18772	A1592 ·	3085	3198	.9793	3796	360.6	3808	.0012	3917
2.1	.9821	NO.	ARR	JASSA	.9608	2002	5646	19839	3834	M37
11	9803	3960	Anna	MAL	/8628	2418	.0001	7911	J997	MACE
\$3	.8085	MINE	3000	(800)	9904	8996	.0000	.9952	19004	8154
24	2010	.8000	8933	,9005	M07	- NOF	.8091			
1.6	PIOR	.8940	3941	.5942	3945	9945	7946	3940	1666	AMI
24	,9903	.8951	3651	.9997	3159	.9964	P965	WIT WIT		.50%
27	/H968	,9968	.0007	, 50KW	3000	1978	.0011/		9973	.0941
IA	.2074	.0075	9979	2017	8017	9979	2011	8090	2000	996
14	.2461	1889	JM6T							
3.8	- AME2	JOHN	AME.	2000	8068	,0989	2000	P(81)	PR15	Age of
33	3960	3991	3991	SWILL	.9992	.0903	9992	2775	201	Awa
88	.9993	.9903	19996	1994	2004	.0904	4018	2004	2916	100
M.	1965	7000	. 1995 . 1997	1007	2007	.0007	TOMO	8907	3907	
34	9407	.0007	- ment	State.	2777	-Ashir	19991	(married)	approx.	-1717

Compared to Compared and All And Annual Advantages of the Compared States of the Compared S

		lues for t Blood	MANAGE IN			1	witt name
					_		Zin.
-	-	_		a		+ 15	
1.	-31:	.45	200		CAME	.001	1202
-	1.0%	6314	The state of the s	-	1100	.001	Atte
20	1.384	2.320	13,796	51 831 6 905	41,657	31836	606.EE
8.	1.838	139	110	6.343	9.925	32.336	31,506
4	1.833	110	2.7%	1.745	2.841 4.634	19.713	32,904
*	Lette	2001	2,871			7.170	8,609
	1,440	1.943	3.447	3.000	4.810	5.885	0.595
97	Lain	1395	2365	210	8.707	1316	2.259
1	1.392	1,860	1304	2.990	3.499	4.703	10,0466
	1.383	1.837	3.382	2,686 2,921	3.309	4.500	(8,942
ok.	1372				8.228	4,297	4.581
12.	1.361	1.706	1334	2.764	3.100	8,368	4.3337
1	1.336	1.700	1301	3.71.0	3.186	4/025	A-427
0.	1.316	1.773	1360	2.681	3,055	3,004	4310
14	1.545	1.26	1341	2,658	3.012	3.852	4.201
12	1541	1.769		2.634	2,877	3.797	4.141
16	1337	1.746	100	3,602	2360	3.753	4,073
	1310	1.740	1120	3.565	2.021	2.686	4,005
	1.330	1.04	2138	2.567	THE	2.646	3,965
9	L328	1,729	2.101	2,192	2.676	1.610	8,823
	1,121			2.539	2.981	3.579	1300
1	1322	1,725	2,085	7.526	2.845	3.542	3.850
	1.320	1.717	1.000	2,518	2.800	3.527	3.819
	1319	1,714	1.004	1.509	2,809	3.500	3.792
	1208	1.701	3.009	2.500	3.907	3.485	3.50
111	1301	1,704		3.403	1.797	3.407	870
	1311		2.866	2.489	3,797	3.491	9701
10	1314	1,706	1886	2.479	1.7%	3.435	5.797
20	1313	1,761	1.052	-1819	3,771	3.421	3,640
	130	1,699	E048	1461	2.761	5.685	3.6%
			0.045	DHG	2.211	33%	3.699
6	1,309	1.007	100	2487	2.798	3.80	3.660
	1.50T	1.894	3.097	3,449	2.738	3.305	3.60
	1306	3.693	3.003	3.441	2.728	3.348	1.600
	1.104	1.000	3.008	2.434	2.719	3.309	3.580
			1.034	1.439	1:112	3.318	3.506
	1,303	1.684	2,001	1.425	2.754	3,307	5,900
,	1.299	1.678	1.009	1.403	2.676	5.363	2,484
	1.290	LATE	2.000	2.100	2.890	3.131	5.465
	1310	1.688	1,986	2,988	2317	3,160	3.275
	1.050	1.645	3,966	2.526	2.379	3.090	3.291

			-					1				
-	1		Inn-date	Pro-distral laternate	_				-	he stilled better the		
Confidence Land		É			£			É			É	
Paper Supering	15 BB 76	N Maria	1	A 1974	S 2555	41974	-	166 1	*	SE X	N MON	8
-	11111	31614	80798	148,210	188.400	141.100	20.00	34,388	17,084	100,036	-	100.677
	130	1111	12.8611	16339	12.60	29.00	410	1000	10-005			2
	1349	6518	6208	87.8	C1 2 18	14.677	4 302	1	3.000	1	1000	11
*	4203	3319	Cibe	8.602	7.855	18.366	1.407	4,100	181.5	100	100	
	3.752	4404	170	4300	4.345	1.180	1.00	110	11907	1	H	
*	1360	480	5348	4422	3.684	1100	3.75	1400	14	1	!!	ļ
	3.156	NATE OF	4.887	4367	6 836	1.00	1 1927	1,107	4118	1		
	1967	3,522	401	NAME OF TAXABLE PARTY.	6.190	1,990	1.454	2,000	4 140		1	į
	1,439	5339	107	1340	4.184	4.684	3.944	2.845	1460	100		i
=	1,737	3339	407	1237	909	238	2.298	1	180	1	0000	ŝ
11	1,691	3388	CISE	8130	1830	Selve	2110	*10.4	1 100	1	1410	ŀ
0	2,987	1881	4004	3138	TETE	ABBIT	2.165	HAL	1	1400		
*	1538	1,012	twe	1888	1,600	4.73T	2,196	2.675	1.984	2 880	1	
#	180	187	H	186	Tilly	4.800	2,000	2,580	3.500	3.640	100	16.7
	1700	1360	tunt	143	1411	Cell	2003	1100	3.864	186	100	411
A	2.400	180	1.954	188	1348	4,797	2.003	2487	3.01	1.680	THE	433
-	1366	100	1,40	2753	323	4300	1,014	ties.	1170	2387	13965	ā
	2300	177	100	130	3220	424	1,569	2503	MIN	2354	1104	1361
	3,188	171	1881	1699	1100	cies.	1539	1386	2308	3.1%	100	Ŧ
	-	2400	340	140	130	3386	1,018	1136	3,118	2.129	Den	100
	911	754	1,280	3,183	2386	3733	1272	1	3164	2456	128	2
A	1000	799	B	138	#L1	3.631	1,310	1760	2,939	1,957	1400	3338
	1100	100	B	2747	11877	1000	1,687	1111	2340	180	130	3
	H	188	3182	1390	3401	3,446	-	11960	1,898	180	1111	111
	t	2379	3108	2362	2176	1,181	1,446	2,988	1861	tall .	136	Ξ
		Trus	3/86	130	2.18	3,288	1,000	2002	140	1.344	3,700	7
	Ď,	27	1000	1000	2404	1,120	1.181	1,000	HAN	100	2.038	8
	190	5	#	H	3414	3,429	1389	196	232	1188	1100	н
2	180	118	3119	138	2,382	1,08	136	191	37.78	1,064	1381	Э
	187	1118	2,454	1757	2348	100	1257	1,600	2484	1,600	1086	338
*0	1303	THE	1,879	1,906	4278	1363	145	1239	2301	1.540	1181	201
*	H	100	1119	1801	322	2.401	1.450	tan	2.176	1.486	1,000	100
20	1.780	1121	17.	1,899	2.18	1366	1400	1111	2,642	100	1	1,7
*	1.367	2100	DR.FT	1000	2.100	2.818	140	1,800	2,122	1400	1 800	d

abi	MAJ OI	that Welves	ner Chi-Squ	served District	botters				1	ridere.
								1	Birt	****
								1	V	
							200		- ric	-
-			_	-		-	-			
X	.495	.00	.916	.00	/90	-11	46	898	di	
ď	6.206	1.000	0.001	0.004	1.00	2700	1361	1.000		- 17.5
	6410	1.025	0.051	8.102	3.511	5.003	1.992	2.378	A.537 A.313	7,942 10,747
Н	SUTE.	BIRE	0.216	8.352	3.584	5.201	TAIR	1,546	11.544	12,877
ш	8.207	4:297	0.484	6.20	1386	7.770	SAIR	15:149	33,277	JAME
9	SAIL	9.334	3000	6146	3.600	19206	ALATE:	12.103	15/005	16,749
3	3.636	0.911	1,237	1.832	2.254	10,645	12.890	18.665	16,612	19346
9	0.968	1439	3,000	2.182	2.800	CLINE	14.807	16/012	33.474	30374
1	1344	1.546	2,186	2.735	3.400	0.96	(0.807)	17.534	39.000	23.954
П	2.176	2,088	1347	5.325 5.940	4.168	34.684	16.929	19,622	25.669	23:387
	200				4.965	11.567	18,367	30.465	25,289	25.188
а	3,034	3,051	5.816	4.135	9.876	17.278	19.815	31,629	34.724	36,755
1	3.583	4.397	1.000	5.881	7.841	18340	11.018	25,397	26,317	26.506
а	4,075	4.660	1.01	5,571	1.790	23.864	23,582	34,793	20.680	29.617
	1.000	2200	6.262	7,381	8,541	22,507	34,086	28.110 27.488	29.141	31.519
	3341	H.Ath	6,368	1.661	¥310	23.542	26.290			33.794
	1.697	6.600	7.564	Esti	10.000	24.707	27,897	20.190 30.190	31,000	34.267
	8,285	THE	N.201	1280	15.800	25,986	21,169	31.526	25,498	75.716 27.15a
	5.840	3.653	8,956	18.07	11.60	27,200	20,140	72,655	54.100	38.580
П	1.434	1,260	9.591	10.851	12,648	28.617	11.410	\$4,176	31.566	33,907
н	8.000	8.897	10.003	11.500	11340	25.615	32.676	-15.476	38.610	41,599
	1.440	9.542	30,762	13.330	34,947	36.815	33.824	56.201	46,269	42,798
	9.290	19.195	11,486	13.000	HH	33,007	18.073	18.275	41,337	44.175
	1.866	10.454	32.401	-33.846	15.600	33.166	-36-413	33,564	42.966	40,000
	19.519	11.125	11,120	14811	16.413	94.381	37,853	42,566	44,313	45,025
ч	71,180	(2.1H)	13,894	15.519	37,292	RUME	38.885	41,305	45.642	68.190
а	11,007	12,875	14,910	36 111	18.158	36341	48.135	45.194	46,962	49.682
1	15,120	13.365	12306	18.908	19.534	37,906	41,337	84,600	49,278	90,893
П	13.787	14,554	16.797	25.465	39,768	39/08T	42,917	45,710	49.386	12,03
	14,457	15.655	17,510			40,356	43.713	46,019	99.960	35,673
1	15:154	16,042	18,391	29,380	31,400	41,422	44.985	45,231	52.130	31,806
1	12.814	17,075	13:044	20,885	21.010	43.565	45,194	49,486 80,720	25,466	M-328
ı	16.901	LT.TRE	131,800	21.668	15.561	44 300	48.002	11,000	96,976 39,061	77,660
	12/91	18.796	22.569	27.465	24.736	46.519	48.002	27,201	57,340	10.304
	11.001	19.257	25,366	21.340	25.842	47.213	21,198	34.437	SEALE	41.361
	18.284	19.540	22.185	24,875	26,493	48.307	77.187	55,667	59.891	41,561 52,866
	19.209	10.891	22.676	24.584	27,343	45.513	53,384	55,880	61.142	68,780
	18,994	11.03	20.636	21.604	38.156	25,560	54.373	98.119	60,406	65,413
6	28.206	33.064	26.433	79.509	29.056	FL WOS	11.731	19341	41.400	68,766

| 100 | 10 700 AUG 100 AU ### ASI | 150 | 15

							2	3	-	187	a site						
1/2	11	1	10.1	in	- 10	24	25	34	-	28	. 10	10	31	-		27100	mi nat
6.0 E.E.	31								30	E 19	1 15	0 30	50	30		COLUMN T	200000
6.2	41										48	1. 46					376
8.5	1,59												- 40	No.		401	(D)
5.5	34				1,1348											.380	740
55	311				201	313	-111										day
u	36						-377	-20		C-4H	277		211				309
LE-	311						-340			34	243	-30	34				2N 342
AA:	1.190	110				216	236	103		415	219		-211	314	30	211	200
1.8	185	185	164			188	1140	C SHIP	.186	288 193	198		187	2.007		386	188
43	340			1000	141	161	140	-141	100	146	340	.40 -m	362	-143	360	.180	.15W
4	1100	100	133	121	-49	124	340	.538	-126	320	128	-in	1100	136	.128	.137 .01e	258
4	-088	.004		.184 888	-100 847	100	-188		1162	-100	100	160	.101	101	3088	1908	2017
*	.016	.001	279	874	374	103	,087 1071	261	373	-586	088	196	cet	,085	AND	.893	(4)
6	863	.863	362	002	062	MI	.867	-	200	/812 /80	072	202	No.	471	388	dia	JAT
	.046	853	- 464	.032	ASI	411	an	Ott	.000	,000	ETS.	200 219	.85 500	-40% 048	:937	.055	MM.
201	104	.043 .006	.043 .036	.043 .005	347	.042	ne	.062	.042	.041	46.	. 3041.	040	2040	.047 300	200	.045 .006
	-000	. 200	.000	ATP	303	203	X03 X08	X04 419	534	854	034	404	400	200	A01	410	.00%
4.0	.625	204	854	mi	3001	321	311	303	.028	418	OUT	DOT	221	226	.823	284	803
	.628	1779	008	/A19.	418	309	-016	400	-008	002	ALL MA	#22 #19	517 617	:83	7018	,010	318
	A15.	(018	018	806	SIX	3012	au.	.005	.00%	815	314	214	3014	.017 .003	.018 .002	403	374 (III) +
4	AEI	80	BID	Big	,812 ,810	A10	MIZ BID	812	002	812	7912	301	ACT	301	810	30X	200
60	200	800	.100	-0.0	.000	400	500	200	108	909	.009	084	860	804	800	(607	2000
200	907	807	803	7007	Jan.	200	306	.008 .008	.003	.007 .000	ANK	201	807	-805	008	085	3000
	,000 ,000	006	2005	1885	206	281	2005	100.5	CHO	DIT	ACI	MON.	/800 /06W	JB5 784	064	Obt	800
SI.	.004	104	,064 ,063	301	204	.054	706	.004	.004	390	.004	OUT.	203	2003	800	803	.003
	.000	áco	art.	200	/801	2003	1003	.000	801	And:	1965	.068	862	1001	MI	800	.101
	800	.900	arg:	ALC:	.062	A02	.80E	90	HOT INCO	784	300	302	100	900	80.	001	100
	DEC	/800.	180	,04E	810	/81	AUT.	001	/M1	牌	2002 #01	MIZ.	.000	det	001	.001	Mile.
	200.	DE1	100	ART .	800	-091	001	691	.00.	301	AK.	2001	101	100.	761	300	000
	801	800	801		,00t	2001	001	4001	891.	801	201.	.00.1	199	.000	A00	**	000
	301	200	AOX.	-EV	.061	201 200	801 802	200	800	Alt.	1001	.001	808	500	800	2000	6000
	.061	.001	J001	2000			ORK .	.000 .000	.000	(99)	AGE	A00	000	000	/900	/800	.008
			100	200		,000	000.	000	Hen.								ACK
	-	100	ALC:	-	.000	.000	B00 -	200	NO.		7000		,000	600:			
1	,000 ,000	000 000		Alen	800	.000	000.		,000 ,000	,080 ,080	200 500	.000	000	000	260 260 260 200	200 200 200 200	

		Oral Values				1000				
1-	120	-1			N. T. SHAME					
-		-	-			1		19	0.89	
	, AND	101.45	109.00	25.00	31100	97000	55.36	26.61	29.44	27.0
	411	8415,30	A2023.70	340.00	334:96	300:10	III)199	336.97	225.66	240.0
	.800	401344	36,000	240,779	163-5 m	1793.00	\$855.00	1998 AV	5007.10	6623.90
	300	0.71	100	9.19		575,485	96,007	MONTH	899,044	100,28
_		19.30	7,1830	18.00	19.29	9.29	9.35	9.51	9.91	9.74
	All	94.35	68.06	90.17	66.25	19:30	19,33	79.35	18,37	2631
	All	798.30	999.00	993.17	997.23	990,56	10:33	99.36	.99.37	9939
	5,000	3:54	5.44	539	6.54		MW-13	FHE.30	980,37	88.3
	, 200	3000	935	9.28	9.12	9.61	3.39	821	3.225	5.24
	.000	36.131	36.81	20.46	28.79	28.24	27.61	100	688	881
1	860	147.86	14830	THULE	137.00	114.88	132.85	gran	35.40	- F7.58
	-309	0.54	632	400	-611	4.00		121.28	129.61	129,84
	, 050	7.71	6.54	6.58	5.30	638	421	3.98	3.68	3.84
	.096	17.29	18.80	76.68	35.96	16.82	1535	8.00	90.04	8.60
	301	(3434)	X125	16.58	53.44	31.21	50.57	1436	14.80	14.56
	.346	4.00	3.79.	341	152	3.45	3.40	137		4847
- 33	- 866	661	0.579	541	319	ADE	430	430	334	3,33
	,018 ARI	1626	1829	90.59	0000	200.00	15.67	18.40	430	4.77
*		97/3X	3112	25.25	31.06	29.73	35.45	28.16	1629 2745	1836
	,130 ATE	509	3.46	3.39	30.00	300	5.06	3.00		35.24
1 1	-811	10.00	316	4.76	433	4.39	134	620	411	1,899
1	.001	36.61	10.60	K/K	9.15	4.75	8.47	8.34	8.10	9.38
100			3136	BN	\$1.00	20186	28.05	19-46	79.00	18.60
	.080	5.59 5.59	75.26	3.07	2.94	2.84	344	2.79	3.71	
201	Air	13.08	474	435	8,72	3.85	13.67	129	3.33	100
	Att	29.21	Att.	. AAE	138	7.66	7.34	4.00	5.04	6.13
	100	3.44		118.71	1930	38.21	10.01	16.60	18.63	1435
	250	5.52	4.46	3.00	2.6)	2.79	241	3.82	2.04	4.56
,	200	11.86	1.00	4.07	5.84	TAN	3.39	5.5V	2.44	1.25
	ARE	25-45	33.46	7.59	346	5.61	4.11	9.DK	685	100
	.200	3.36	Atte	15.85	16.39	13.40	13.00	32,44	(240	11.29
1	.004	5.15	434	2.81	349	2.61	:130	1.81	249	244
٠,	.010	10.04	X10	3.60	3.63	546	3.31	1.20	3,39	X 26
	-861	22.86	16.30	13.90	5.42	6,06	3.80	3.81	tutt.	1.31
	390	3.29	2.00	2.50		1131	11.11	19.76	1837	28.11
100	450	4.96	516	291	2.61	2.81	246	3.60	2.36	234
1130	-A16:	1004	7.56	9.55	3.40	5.30	3.32	336	31.07	7.00
	388	TEAM	1430	11.86	11:29	15.64	4.99	1.00	504	434
	.100	3.21	IM	2.60			8.92	9.53	9.20	8.86
30.	.Afe	6.60	2.08	3.50	2.94 T.M.	8.85	238	- E94	2.30	2.21
44.75	311	7.45	7,00	6.21	1.67	5.10	3.69	7.69	2,95	2.96
	ONE	19.69	13.61	10.56	18.95	9.89	117	9.89	474	4.65
	(196	3136	2.81	238	2.48		848	1.36	RIE	8.12
11	256	4.13	3.89	3.48	338	3.30	2.00	138	138	2.21
-	411	9.33	6.00	131	2.61	333	Job .	391	180	2.80
	.800	18.66	12.01	18.80	9.65	X.00	8.82 8.28	5.64	4.50	636

CONTACT	Control of the Contro	OCCUPATION OF	OARBINES		THE STATE OF	- 44			_	_
					- autoriti					
40	11.	19	100	-10	38	40	-58	- 00	110	1000
40,19	MOCTS:	47.22	61.74	62:05	12.36	10.10	40.09	61.79	10.16	0.8
241,88	MIN	34131	548.00."	349.26	250.14	255.14	331.77	251,26	110.25	III.
1005.50	838628	819130	8208.TV	6239789	KNOW.	6386.80	4380.86	6373.00	6339.63	9762.7
601,601	610,668	615,764	429,98K	STABIT	120,000	418,712	450,785	401,007	413,003	116,00
9.38	946	942	3.64	9.45	9.44	8.47	9.45	9,42	9.46	3.4
15.60	28.41	19.45	19-65	19.46	19.80	IRAT:	10.48	20,48 80,48	19:49	98.5
201.60	99.4Z	999.47	99.42	99,44 220,44	99,47 199,47	99.47 899.4T	193.48	755.48	040.40	86.5
									534	3.1
5.23	5.74	9.50 9.79	9.50	8.63	9.60	1.39	A11	8.01	835	3.5
27.77	32.98	21.87	29.69	26.58	26.50	2641	26.75	36.93	36.22	26.0
125.22	138.57	127.35	126.43	125.84	125.45	124.96	136.66	134.67	120.00	123.5
332	1.00	3,87	3.84	5.00	5.82	1.89	1.00	3.29	2.79	33
1.94	597	3.84	5.10	5.77	3.70	5.32	1.70	5.60	566	34
14.21	14.5T	18.23	14.00	1339	1339	13.59	13.69	13.65	15.56	13.4
44.07	47.41	46.78	46.00	45.70	45.63	45.80	44.00	44.75	46.48	14.5
3.50	3.27	534	1.21	5.19	3.17	3.96	kin.	2.54	513	333
4.56	4.60	442	4.35	4.57	4.50	8.48	6.66	4.45	4.66	43
19.85	9.86	5.75	9.35	9.45	3.28	9.39	834	K20	3.01	3.6
29.82	16.42	25.91	25.39	12.66	34.37	36.68	26.66	26.03	14/9	23.8
18	2.80	241	234	2.81	2.80	3.78	3.81	234	2/26	43
4.86	4.00	3.04	3.87	3.33	3.6	-537	(3.75)	3.78	3.76	14
TAT	3.50	7.86	745	1,30	0.25	7.14	T.08	7,86	697	0.8
BAL	12.86	(2.56)	17.32	16.85	16.87	35.44	OGIL	1621	13.00	35.7
2.70	3.67	233	2,89	1,57	7.56	2.84	252	2.01	149	34
314	3.87	3.80	3,44	3.40	128	336	E32	1,01	1.21	3.2
1068	8.47	631	6.18	12.49	12.23	12.23	11.21	1273	534 1181	11.7
1406	13.31	0.36	12.00							
334	339.	386	2.42	1.40	138	2.78 1.04	3.88	3.00	232	25
3.38	3.28	1.51	534	3.11 526	7.39	8.12	5.00	100	438	- 61
11.34	11.19	16.84	10.48	10.26	10.11	ANE	9.86	9.73	6.53	113
		0.34	234	129	222	121	122	321	2.10	21
3.14	201	3.0	2.94	1.89	EN	10	1.00	278	279	- 23
1.20	2.11	9.56	4.61	6.71	1.00	4.27	4.50	4.44	6.40	6.7
9.99	9.51	9.54	8.58	8.08-		9.37	8.26	8.19	880	3.4
232	3.28	134	2.28	2.17	2.10	2.68	2.13	2.11	216	.24
2.98	290	2.87	2.71	2.79	2.79	246	2.54	243	339	8.5
4.82	ATI.	4.36	4.81	421	425	A.19	4.12	K-08	4000	11
4.7V	8.40	36.19	3.00	200	SMT	T30	1.19	232	694	6.7
3.28	221	0.17	2.02	2.00-	2.00	3.86	7.04	2.03	2.08	14
2.43	2.79	2.13	2.61	2.60	2.57	1.53	181	2.69	2,49	2.6
4.54	4.86	+25	438	4.01	3.94	3.86	3.81	3.76	5.68	2.6
2.92	240	232	381	5.81	9.58	9.72	LAC	6.25	416	- 61
2.19	2.15	2.11	136	2.93	2.01	1.00	2.87	5,90	1.00	30
2.78	2.49	3.60	231	3.00	241	3.41	1.40	136	3.34	10
4.30	4.16	4m	330	3.56- 6.23	3.70 1.00	1,62	1.02	3.50 5.36	3.50	10

	-				0,710	maraner di					
			1	3	3		1	*	.7		,
		.100	13.34	2.96	2.26	241	136.	3.06	3.14	3.28	1.1
	12	356	AAZ	3.60	3.40	38.19	9.00	3.81	3.66	8.77	1.7
		410	9.87	6.78	579	1.00	AM	4.65	4/44	439	4.3
		.901	17.82	ILM.	1020	9,67	8.35	7,86	7.89	7/11	1,0
		-168	1.07	3,79	155	2.55	225	1.04	2.19	3.15	3.5
	74	418	1.00	6.0	2.54	2.25 2.34	2.96	1.01	3.78	5.79	3.63
		300	(5.14)	11.79	9:19	9.62	1.60	144	738	638	4.00 6.31
		200	ARY	2.79	248	1.36	6,89	331	2.76	3.13	10
		.014	4.14	1.68	3.38	3.86	2.80	376	3.71	5.04	2.9
	18	2018	3.60	6.36	9.42	4.55	436	4.53	8,34	4.00	1.8
		ANT	16.00	2136	838	1.21	3.27	7,08	0.78	6.67	6.30
		100	3.00	2.47	1.46	1.0	1116	2.16	3.11	3.00	2.80
	10	.499	4.00	1(1)	334	3.81	I Af	2.74	3.86	2.29	2.30
		AGE	8.33:	(4.85	9.26	4.77	X44	4.25	4.33	3.89	3,39
		.061	94.17	HANT	101	7.94	7.27	AM	6.44	6.09	5.8
		.100	3.00	2.94	2.66	2.31	2.33	2.28:	2.10	334	2.00
	17	A50	4.43	3.59	130	286	3.81	2.78	2.81	2.55	2,46
		J010 J001	15.72	15.66	8.19	547	4.39.	4.39	1.83	3.39	3.86
		.100	1.00	2.63	821	7.68	301	0.31	6.22	534	8.75
		.100	4.41	3.55	3.16	190	100	Tes	186	2.84	2.04
Ł	38	216	8.29	6.01	5.09	4.50	4.29	4.81	1.00	3.51	3.60
ŧ.		.001	12.33	31.59	5.49	75.40	4.93	8.35	4.02	5.76	5.59
		200	2.99	3.60	2.40	2.77	2.18	2.01	246	2.02	1.99
	26	.410	4.31	5.53	200	2.00	274	140	3.54	2.48	24
1	100	ale.	6.18	1000	5.01	4.70	:411:	134	3.77	3.83	1.50
		465	15.84	10.16	4.28	7.21	4.62	878	0.80	5.39	8.00
		396	1.97	3.66	2,36	1.25	218	2.09	2.04	3,66	1.00
	199 /	.819	438	3,41	3,18	2.83	2.75	2.80	2.00	2.AX	3.39
		A118	8.10	5.83	4.94	440	4.15	3.87	3.76	3.56	3.44
			14.81	9.99	8.10	7.38	848	4.00	5.89	5.44	534
		.000	4.32	5.47	3.00	2.23	2.14	288	3.00	1.86	1.00
	-30	.010	8,62	531	6.87	4.37	1.00	3.97	3.84	3.51	3.40
		.001	14.89	6.37	7.84	6.53	6.32	2.89	5.58	5.91	5.11
		.100	210	236	2.35	2.22	2.15	136	200	1,97	130
	144	1000	430	3,44	3.65	2.82	2.66	1.11	2.45	240	134
	21	7009	12.88	8.31	4.81	431	3.99	1.76	3.28	3.43	1.10
		ARE	3438	9.61	1580	8.81	9.79	3.76	2.44	5.18	4.00
		.190	394	2.91	5.34	0.21	\$31	1.01	1.09	1.00	130
	-10	200	428	3.42	3.83	2.80	3.64	3.53	2.84	235	2.31
	121	A08	7.86	3.86	4.78	628	3.84	3.71	234	3.41	3.30
		,001	14,38	9,47	XAT	6.30	4.26	2.65	2.30	5.0k	4.89
		380	298	2,34	130	II.00	140	1.04	1.88	1.54	1,391
	.34	,650 ,610	4.18 7.80	3.40	0.01	1.76	ARE:	2.81	5.42	136	2.30
		800	54.00	9.94	1.86	4.25 6.56	5.90	1.67	5.30	4.09	4.80

A, = numerator of										
	11	18	36	26	18		-	44	129	1mm
14	2.10	1.00	2.81	630	136	1,91	000	1.96	3.89	1.85
Ta	3.60	2.85	246	3.01	136	2.34	2/11	130	3.25	2.31
181	2.94	5.82	3,86	3.81	3.51	1.43	1.38	3.34	125	5.18
40.	4.52	623	5.99	3.75	2.65	5.47	5.37	5.30	934	4.99
10	2.08	201	1.04	130	191	1.00	187	196	1.41	1.80
46	153	2.46	2.16	234	236	1.17	124	1.11	139	2.14
64	1.00	3.66	3.81	5.45	1.38	5.27	5.30	3.0	149	3.62
40.	613	1.11	136	118	9.35	5.18	5.00	4.54	4.77	4.61
14	100	LAT	130	1.86	1.87	1.85	130	1.02	1.79	1.36
14	1.48	140	3.33	1.28	119	2.70	2.19	Z.18	3.15	187
100	5.67	3.62	337	3.38	3.21	3.53	100	10.04	196	1.88
100	1.11	5.64	3.15	3.87	4.00	4,80	6.7E	4.64	4.41	4.10
ar	1.00	1.04	1.00	1.86	1.84	THE	1.59	1.76	129	1.72
.49	- 2.43	3.36	2.28	2.25	3.19	3.15	2.12	2.77	\$86	2.02
.60	3.35	3.41	3.26	3.16	3.39	3.00	137	2.69	2.84	270
181	5.55	5.27	4.99	4.62	4.70	4,84	448	4.39	#.EE	4.00
.00	136	5.91	120	130	181	1.79	1.79	1.75	1/12	3.89
AT.	136	3.31	3.31	2.0	2.17	2.10	2.08	2.06	1.00	1.97
.99	1.46	3.31	3.58	3.67	3.00	2.92	2.67	2.50	2.95	2.65
186	1.02	155	4.78	4.60	4.48	433	4.28	418	4.00	5,82
.08	1.80	1.00	134	1.80	1.78	1.75	1.74	1.71	1.00	3.66
141	234	3.37	2.19	334	- 131	2.00	2.26	3.65	187	1.10
157	337	133	3.08	1.86	LAE	184	131	1.05	186	3.89
1.19	511	4.37	4.58	4.42	4.33	4.15	4.06	-4.00	3.84	3.69
M	1000	1.86	140	1.78	10.00	1.79	1.75	1.79	1.87	1,86
139	231	2.23	2.58	2.11	3.07	2.09	2.04	139	139	1.80
1.45	3.50	3.15	1.00	3.80	2.64	1N	471	TAT	2.58	130
1.22	4.87	4.76	4.40	A26-	- 4.14	1.99	:3.00	2.84	5.48	3.83
1.94	130	186	1.99	126	5,94	131	3.00	1.48	1044	1.00
111	1.11	338	3.11	187	2.04	130	1.07	1/0	1.59	1.60
3.35	1:25	3.00	1.94	2.84	3.78	1.0	2.66	2.61	331	242
1.06	4.82	4.56	4.28	4.32	4.90	3.68	3.25	130	3.38	3.46
1.90	1.87	136	1.79	1.76	1.72	1389	148	1.66	181	0.139
133	225	218	218	1.65	201	1,79	1.59	1.80	1,82	3,40
131	3.17	3.01	1.86	1.99	1.13	3,64	238	3.69	1,48	9.01
681	176	4.86	437	4.00	1.88	3.74	3.64	3.58	242	3.28
1.90	136	330	1.34	1.73	1.70		1.45	1.04	LMP	139
2.50	2.33	100	3.07	101	1,98	134	131	1.89	5.86	1.79
138	332	139	3.65	1.23	2.67	138	1.0	3.50	1.40	1.10
4.85	4.18	4.23	4.09	1.81	3.21	3,68	1.34	1.46	3.33	0.47
1,00	134	1.88	LW	131	1.89	144	1.86	1.82	1.89	5.88
2.27	2.20	2.11	2.05	1.00	1.86	3,89	1.88	1,88	1.81	1.36
3.27	3.07	2.98	276	2.69	2.62	2.54	248	1.45	2,35	1,37
4.73	4.48	4.23	1.96	5.79	5.68	3.53	1.44	538	2.22	3.88
1.88	1.85	5.78	1.79	1.70	1.65	1.64	1.68	1361	1.31	1.34
123	218	-3.01	1.83	EOT	1.94	1.80	1.19	1,44	1.09	1,78
3.17	3.01	1.88	2,78	2.64	1.89	3.45	136	2.RE 3.29	331	2.99

					N, ** 800	Th remose					
			1	1					9		. ,
		386	1.40	5.11	1.01	2.18	239	3811	5.65	340	11.6
	1120	.016	434	3.59	188	3.76	3.60	2.49	2,40	334	.12
	29	3816	-, 0.70	0.57	W.68.	4.96	2.85	3.65	3.46	3.88	9.2
		.M1.	13.88	9.25	7.43	6.48	2.89	3.46	XH.	ANT	4.7
		346	(23)	3.32	230	3,17	239	200:	1.86	3340	10.0
	36	Atm	4.33	5-300	3.214	3.74	2.59	247	139	2.91	22 A1
		Aim	Y.30	8.88	4.64	4.14	3.83	4.48	340	3.29 4.85	4
		(695	16.74	9.52	3,84	641	1.80	5.58			
		300	3.99	2.89	3.30	511	2.95	2.00	1.56	385	13
	1981	200	4.25	5.55	2.96	2.23	237	3.40	237	131	100
	. 40.		7.69	5.49	4.66	433	3.78	2.84	338	ATV.	- 43
		791	0.01	9.01	CE	635	3.78	331	3.00		
		166	3.80	3,80	1.19	336	118	100	134	1,00	10
	78	488	4.00	336	EWI	En	3.34	3,43	2.36	3.23	X
	150	.008	3.66	CEAS	457	4.07	3.75 5.66	538	4.33	4.69	34
		300	13.90	8.83	216	6.25					
		.510	2.69	3.53	2.28	215	295	1.99	130	2.08	1
	- 20	356	4.78	3.33	2.85	2.76	2.55	2.40	539	3.21	- 3
	1000	ASS	1/6	5.42	434	434	3.59	2.16	4.87	4.00	- 3
		.001	1539	8.00	1/2	4,19		1.89	1.90	1.88	1
7		1000	2.88	2.40	228	334	1.89	342	2.53	2.27	- 2
	14	1888	4.17	5.30	2.60 A.70	3.89	3.79	2.47	2.30	ELY	1 3
		J018 J000	13.29	5.39 8.37	2.01	632	3.88	5.12	4.82	4.58	4
-			234	144	229	1000	0.00	1.00	LAAR	1.85	- 4
4		1000	430	135	144	3.81	24	0.34	8.88	CER	- 3
100	48	Atte	731	3.18	4.01	140	834	3.29	3.33	3.86	- 2
18		391	15.61	6.25	6.89	8.70	5.15	425	0.44	4.25	1.8
		.100	130	240	2.30	2.96	3.87	636	1.34	1.00	16
		499	4.03	3.18	2.19	2.50	2.49	135	4.30	(24)	13
	- 38	2019	217	200	439	122	78.48	839	141	3.84	12
		AME	12.22	The	16.704	2.86	4.10	6.00	(420)	1.00	1.0
		,100	2.70	2.99	236	3.04	1.66	1.00	1940	3.90	
		.019	430	332	2.76	18	TATE	2.18	2.17	-336	- 4
	- 16	410	7.68	4.08	432	3.65	134	A12	7,336	130	- 3
		200	31.83	7.77	637	531	4.50	897	4.20	188	- 3
		.190	2.76	2.56	3.36	2.90	130	1.85	1,178	1.29	1
		890	3,94	5.08	2.79	2.46	231	2.79	3.36	9.00	
	100	-800	0.00	432	3.14	3.31	1,31	1.00	2.82	E.000	- 1
		200.5	31/30	2.41	5.66	111	4.48	(A)11	5.81	3.61	
		100	1.78	-0.33	3516	3.65	1.00	1.66	1.36	1.70	
	300	.039	1.07	3.04	288	3.42	2.29	2.14	236	1.66	
		.018	8,76	420	3.88	341	3.15	1,98	1.73	2.90	-
		.MC	(3.88	7.11	3.65	:481	4.29	3.92	3.80	3.43	
		499	3.81	3.31	120	1.99	4.81	A.29s.	1,77	148	1 3
	11966	AM.	3.80	3.00	341	IN.	121	211	100	1.56	
		A10	6.66	+60	3.89	334	XAA	2.62	3.60	1.10	
		ANT	10.00	494	2.46	4.85	28.59	1.28			

Table		trat men	in Process	5					Appends Salas	N	
	Table A.3 Critical Values for F Distributions (cont.)										
18	11	16	- 30	28	36	- 41	**	- 10		-	
LIT	1.83	1/92	1.72	1,60	146	1.44		-	120	- 190	
124	2.16	3.69	3.01	1.06	1.82	5.83 1.87	1.81	1.58	138	1,5	
0.13	2.98	110	2.76	2.68	2.54	242	2.48	7.85	1.77	1.75	
4.56	4.31	4.06	3.79	3.60	3.52	137	131	1.22	227	2.1	
1.86	3,81	139	1.71	1.47	1.62	10	1.09		3.04	2.8	
222	3.15	1309 -	5.94	1.94	1.50	3.81	1.02	1.86	LIM	3.5	
186	2.00	2.81	2.66	2.51	235	140	236	2.33	1.71	5.75	
448	934	3,90	3.72	136	3.44	336	321	T 15	131	2.1	
1,88	1.3369	1.75	138	1.66	1,84	1.66	1,18	1.50	1.52	2.6	
2.20 3.00	212	2.06	331	1.82	1.00	1.80	3.53	1.79	1.73	18	
4.47	2.93	3.79	2.65	2.04	E47	238	131	229	2.19	1.0	
	Alt	3.62	3.66	246	338	3.21	814	3.04	THE	2.9	
210	1.79	3.54	139	1,65	1.63	1.09	1.27	1.39	122		
1.00	2.13	204	1.96	3.90	18.87	1.82	1.79	2.37	630	1.46	
638	411	275	3.80	4.31	2.44	2,33	230	2.26	217	2.89	
		5.04	3.60	140	5.52	3.18	3.99	5.00	2.54	273	
00	1.78	1,13	3.88	List	1.62	139	1.86	1.33	1.91		
178	238	180	1.99	1.00	1.81.	131	1.27	1.7%	1.30	1.47	
29	485	275	2,67	248	241	439	531	423	3.14	2.00	
		-186	3,54	3.34	3.27	3.12	2.00	1.67	2.81	Iss	
AS .16	1.77	1.72	1.87	1.66	1.83	130	1.55	1.59	1.50	3.46	
86	2.84	3.86	1.85	1.86	1,84	179	176	1.74	1.68	Les	
24	4.00	3.75	2,65	241	2.39	2.50	225	331	2.01	200	
74	1,71		340	3.11	8.20	5.07	0.08	232	2.26	2.80	
200	1.00	5.94	5.60	1.05	134	131	1.48	E48.	140	1.39	
780 280	146	1.93	134	3.78	1.54	1.64	548	1.66	1.10	232	
X1	3.04	1.40	2.74	2,27	2.28	231	3.86	1.01	1,000	1.82	
79	148	130		2.98	1.87	2.33	2.64	2.91	140	221	
00.	1.86	187	6,89	1.52	1.50	146	1386	1.42	1.00	1.33	
26	2.56	241	1225	3.79	1.89	1.62	1.66	3.39	0.95	1.45	
63	3.66	3.29	2,99	1.15	2.10	2.00	182	100	1.80	3.50	
10	1.86	1.68	154	1.50	148	2,89	140	3.38	2.25	138	
100	1.02	1.64	1.75	1.69	1/48	544	541	1-40	1.33	3,360	
66	2.59	2.35	120	1.16	1.63	1.59	3.56	1.01	1.47	1.40	
16.	1.32	3.56	1.62	247	2.22	1.04	136	4.98	170	3.88	
(M)	1.46	1.56	1.49	1.45	141		233	3.25	2.88	132	
W.	3.85	1.77	140	1.62	1.87	129	138	7.34	128	122	
10.	237	7.77	2.87	6,00	1.88	182	1.46	1.86	138	1.30	
10	3:07	186	139	2.43	231	247	2.00	1.00	1.87	LAS	
0	1.29	1.92	1.46	141	138			100	1.81	194	
	1.90	6.72	1.60	1.86	1.52	1.34	120	-139	140	1,10	
	3.32	3.13	1.87	0.87	1.79	1.69	1,41	138	589	1.11	
#	2.80	2,67	146	226	232	2.00	1.83	138	145	1.80	
ti-	1.65	1.60	140	1.88	136			0.00	1.04	1.43	
4	1.76	146	LN .	1.52	147	1.30	127	1.15	3-39	1088	
4	2.33	196	1.90	1,79	1.72	540	134	1.19	134	UM:	
	3.77	234	239	3.14	101	132	1.17	180	130	1.39	
		_					441	1.89	1889	1.22	

States or device before any property common one or consistely also be comed before a party for a change of the contract of the

This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 4440

Unique Paper Code

: 12275401-NC

Name of the Paper

: INDIAN economy II (GE 42)

Name of the Course

: B.A. (H)/B.Sc. (H)/B. Com

(H) CBCS (Economics)-

GE (GENERIC Elective)

Semester

Duration: 3 hours 30 minutes Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- Attempt any five questions.
- All questions carry equal marks. 3.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

इस प्रधन-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना

3

अनुक्रमांक लिखिए ।

- किन्हीं पाँच प्रश्नों के उत्तर दीजिए ।
- 3. सभी प्रश्नों के समान अंक हैं।
- इस प्रश्न-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।
- Trace the various factors responsible for India's Great Slowdown? Suggest the remedial steps required to be taken.

भारत की भारी मंदी के लिए जिम्मेदार विभिन्न कारकों का पता लगाएं च आवश्यक सुधारात्मक उपचार बताएं।

- 2. What do you understand by the "Great Reversal" happening in the recent past of the Indian growth story? What role did global factors play in the happening of the Great Reversal?
 - हाल के दिनों में भारतीय विकास गाथा में हो रहे "ग्रेट रिवर्सल" से आप क्या समझते हैं ? ग्रेट रिवर्सल की घटना में वैक्विक कारकों ने क्या भूमिका निभाई?
- "Agricultural development must address the issues of doubling farmer's income and increasing agricultural productivity," Critically evaluate this statement.

"कृषि विकास को किसानों की आय दोगुनी करने और कृषि उत्पादकता बढ़ाने के गुड़ों को ध्यान में रखना चाहिए," इस कथन का आलोचनात्मक मृज्यांकन करें।

- 4. What are the major problems in agricultural marketing? Why are agricultural market reforms required? Is there a trade-off between efficiency and equity?
 - कृषि विपणन में प्रमुख्य समस्याएं क्या हैं ? कृषि बाजार सुधारों की आवश्यकता क्यों है? क्या दक्षता और समानता के बीच कोई सामन्जस्य है ?
- 5. Discuss the impact of Foreign Direct Investment (FDI) and Foreign Portfolio Investment (FPI) inflows on the Indian economy. List some of the policy options that the government needs to pursue to boost inflows?
 - भारतीय अर्थव्यवस्था पर प्रत्यक्ष विदेशी निवेश (FDI) और विदेशी पोर्टफोलियो निवेश (FPI) के अन्तरप्रवाह के प्रभावों की चर्चा कीजिए । इस अन्तरप्रवाह को तीव्र करने के लिए सरकार के लिए आवश्यक कुछ नीति विकल्पों को सचीबद्ध कीजिए ।
- "Economic reforms have failed to increase the pace of growth of the Indian manufacturing sector". In the light of the above statement, discuss the strategies required for better industrial development.

आर्थिक सुधार भारतीय विनिर्माण के विकास की गति को बड़ाने में विफल रहे हैं। उपर्युवन कथन के आलोक में बेहतर औद्योगिक विकास के लिए आवश्यक रणनीतियों की चर्चा कीजिए।

 Discuss major labour market reforms and remedial measures in addressing the irregularities that exist in the Indian labour market.

भारतीय श्रम बाजार में मौजूद अनियमितताओं को दूर करने के लिए प्रमुख श्रम बाजार सुधारों और उपचारात्मक उपायों पर चर्चा करें।

 "The services sector has emerged as the backbone for the Indian economy but has failed to generate enough employment opportunities". In this context, explain the challenges and opportunities for India's services sector.

"सेवा क्षेत्र भारतीय अर्थव्यवस्था के लिए आधार स्तम्भ के रूप में उभरा है, लेकिन रोजगार के पर्याप्त अवसर उत्पन्न करने में विफल रहा है"। इस संदर्भ में भारत के सेवा क्षेत्र के लिए चुनौतियों और अवसरों की व्याख्या कीजिए। [This question paper contains 16 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 3458

A

Unique Paper Code : 12271402

Name of the Paper : Intermediate Macroeconomics-

H

Name of the Course : B.A. (Hons.) Economics

Semester : IV (LOCF) - Cgre

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- Attempt all the questions. All the questions have three parts. Answer any two parts of each question.
- 3. All questions carry equal marks.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

 इस प्रवन-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।

 सभी प्रश्नों के उत्तर दीजिये। प्रत्येक प्रश्न के किन्हीं दो भागों के उत्तर दीजिए।

सभी प्रश्नों पर समान अंक हैं।

 इस प्रश्न - पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में शिजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

 (a) (i) Suppose there is a one-time increase in the productivity of research represented by an increase in δ where δ represents the productivity of research. Explain in the context of the Romer model, what happens to growth rate and level of technology over time? (Explain with diagrams)

> (ii) Consider the level of per capita income along the balanced growth path given by the following equation –

$$y^*(t) = (s_K/n + g_A + d)^{n/1-n} (1-S_R) \delta s_R/g_A L(t)$$

The notations have their usual meanings as in the Romer model of endogenous growth. Find the value of s_{it} that maximizes output per worker along the balanced growth path ie, $y^*(t)$. What happens to the economy when it exceeds the value? (3.5+4)

(b) (i) In the context of the Solow model with no technical change, what is the saving rate that maximizes steady-state consumption per worker? (Assume that consumption is equal to output minus investment). What is the marginal product of capital in this steadystate?

(ii) Examine in the context of the Solow model the short and long- run effects of a one-time permanent increase in the stock of labour. Assume that g (growth of technology)=0 and n (population growth rate) > 0. (4+3.5)

(c) (i) Assume that the marginal cost for a monopolist is a constant i.e., c. The demand curve is linear and has the form Q = a-bP (where a, b are positive constants), Q, P have their usual meanings and a-bc > 0. Find the profit maximizing equilibrium (both price and quantity), level of profits and consumer

5

surplus if the good were priced at marginal cost.

- (ii) Classify the following goods as rivalrous and non-rivalrous and by the extent to which they are excludable - trade secret for Coca Cola, music from a compact disc, a lighthouse that guides ships. Explain the role of the market and the government in providing each of the goods in the previous question. (4.5+3)
- (अ) (i) मान लीजिए कि अनुसंधान की उत्पादकता में एक बार की वृद्धि हुई है, जो 8 में वृद्धि द्वारा दर्जाया मया है जहां अनुसंधान की उत्पादकता का प्रतिनिधित्व करता है। रोमर मॉडल के संदर्भ में स्पष्ट कीजिए कि समय के साथ विकास दर और प्रौद्योगिकी के स्तर का क्या होता है? (आरेखों के साथ समझाएं)
 - (ii) निम्नलिखित समीकरण द्वारा दिए गए संतुलित विकास पथ के साथ प्रति व्यक्ति आय के स्तर पर विचार करें -

 $y^{+}(t) = (s_{K}/n + g_{\Lambda} + d)^{m/1-\alpha} (1 - S_{R}) \delta s_{R}/g_{\Lambda} L(t)$ अंतर्जात विकास के रोमर मॉडल के रूप में संकेतन का अपना सामान्य अर्थ है। sR का मान ज्ञात कीजिए जो संतुलित विकास पथ के साथ प्रति कार्यकर्ता उत्पादन को अधिकतम करता है अर्थात, y*(1)। मूल्य से अधिक होने पर अर्थव्यवस्था का क्या होता है?

- (ध) (i) बिना किसी तकनीकी परिवर्तन के सीलो गाँउल के संदर्भ में, प्रति कर्मचारी स्थिर-राज्य स्वपत को अधिकतम करने वाली बचत दर क्या है? (मान लें कि स्वपत आउटपुट पटा निवेश के बराबर है)। इस स्थिर-अवस्था में पूंजी का सीमांत जत्याद क्या है?
 - (ii) सोलो मॉडल को संदर्भ में श्रम के स्टॉक में एक बार की स्थायी वृद्धि को अल्पकालिक और दीर्घकालिक प्रभावों का परीक्षण करें। मान लें कि जी (प्रौद्योगिकी की वृद्धि) = 0 और एन (जनसंख्या वृद्धि दर) > 0.
- (ख) (i) मान लें कि एक एकाधिकार के लिए सीमांत लागत स्थिर है यानी सी। मांग वक्र रैस्विक है और इसका रूप Q = a-bP है (जहां a, b धनात्मक स्थिरांक हैं), Q, P के अपने सामान्य अर्थ हैं और a-bc > 0. संतुलन को अधिकतम करने याला लाभ (कीमत और गांधा ग्रोनों) ज्ञात कीजिए। लाभ का स्तर और उपभोक्ता अधिशेष यदि माल की कीमत सीमांत लागत पर थी।

- (a) Explain why, following a monetary expansion, the exchange rate always overshoots its new long-run equilibrium value. (7.5)
 - (b) Under the extended asset market approach to exchange rate determination, how does the increased risk of foreign bonds impact the value of the domestic currency relative to foreign currency (the initial impact)? How would this impact further affect the Expected Appreciation (EA) of the foreign currency (assuming that the expected exchange rate in the spot market remains unchanged) and the Risk Premium? (4+3.5)

7

- (c) (i) 'By running large deficits, the government can attract funds from abroad, which can then be used to stimulate private domestic investment. However, such action would be unwise, since the foreign countries are bound to respond unkindly to this beggar-thyneighbour policy.' Is this true or false?
 - (ii) What do you mean by stabilizing and destabilizing stabilization? (5+2.5)
 - (अ) समझए कि क्यों, मौद्रिक विस्तार के बाद, विनिमय दर हमेशा अपने नए दीर्घकालिक संतुलन मूल्य से आगे निकल जाती है।
 - (व) विनिमय पर निर्धारण के लिए विस्तारित परिसंपत्ति बाजार दृष्टिकोण के लहत, विदेशी बांड का बढ़ा हुआ जोखिम विदेशी मुद्रा (प्रारमिक प्रभाव) के सापेक्ष परेल् मुद्रा के मूल्य को कैसे प्रभावित करता है? यह प्रभाव विदेशी मुद्रा की अपेक्षित प्रशंसा (ईए) को और कैसे प्रभावित करेगा (यह मानते हुए कि हाजिर बाजार में अपेक्षित विनिमय दर अपरिवर्तित रहती है) और जोखिम प्रीमियम?
 - (श) (i) 'बड़े घाटे को चलाकर, सरकार विदेशों से धन आकर्षित कर सकती है, जिसका उपयोग निजी घरेलु निवेश को

9

प्रोत्साहित करने के लिए किया जा सकता है। हालाँकि, इस तरह की कार्रवाई नासमग्री होगी, क्योंकि विदेशी देश इस भिस्वारी-तेरा-पहोती नीति का निर्देयता से जपाब हेने के लिए बाह्य हैं। क्या यह सच है या गलत? टिप्पणी।

- (ii) स्थिरीकरण को स्थिर और अस्थिर करने से आपका क्या तात्पर्थ है?
- 3. (a) Consider an economy where:

The official budget deficit is 4% of GDP.

Debt to GDP ratio is 100%

The nominal interest rate is 10%

The inflation rate is 7%

- (i) What is primary deficit/surplus ratio to GDP?
- (ii) What is inflation adjusted deficit/surplus to GDP?

- (iii) Suppose instead that output begins at its natural level and output growth remains constant at the normal rate of 2%. Will the debt-to-GDP ratio go up or down over time?
- (iv) Explain cyclically adjusted deficit. (2+2+2+1.5)
- (b) Explain how each of the following would affect the demand for M1 and M2:
 - (M1 represents currency and checkable deposits, M2 represents M1 plus money market, market accounts and short term time deposits)
 - Banks reduce penalties on early withdrawal from time deposits.
 - (ii) The government forbids the use of money market funds for check writing purposes.
 - (iii) The government legislates a tax on all ATM transactions.
 - (iv) The government decides to impose a tax on all transactions involving any short term government securities (1.5+2+2+2)

- (c) (i) "Wars typically bring about large budget deficits". Explain this statement.
 - (ii) Explain tax distortion as a cost of inflation. (4+3.5)
 - (अ) एक ऐसी अर्थव्यवस्था पर विचार करें जहां अधिकारिक बजट घाटा सकल घरेलू उत्पाद का 4% है। ऋण से जीडीपी अनुपात 100% है नाममात्र ब्याज दर 10% है महंगाई दर 7%
 - (i) सकल घरेलू उत्पाद के लिए प्राथमिक घाटा / अधिशेष अनुपात क्या है
 - (ii) गुद्रास्फीति क्या है सकल घरेलू उत्पाद में समायोजित घाटा / अधिशेष?
 - (iii) मान लीजिए कि इसके बजाय उत्पादन अपने प्राण्तिक स्तर पर शुरू होता है और उत्पादन वृद्धि 2% की सामान्य दर पर स्थिर रहती है। क्या डेट-टू-जीडीपी अनुपात समय के साथ ऊपर या नीचे जाएगा?

(iv) चक्रीय रूप से समायोजित घाटे की व्याख्या करें।

11

(च) बताएं कि निम्नलिखित में से प्रत्येक एम । और एम 2 की गाँग को कैसे प्रभावित करेगा:

(M1 मुंडा और चेक करने योग्य जमा का प्रतिनिधित्व करता है, M2 M1 प्लस गनी मार्केट अकाउंट्स और बॉर्ट टर्म टाइम डिपॉजिट का प्रतिनिधित्व करता है)

- बैंक सावधि जमा से जल्दी निकासी पर दंड कम करते हैं।
- (ii) सरकार चेक लिखने के उद्देश्य से मनी मार्केट फांड के उपयोग पर रोक लगाती है।
- (iii) सरकार सभी एटीएम लेनदेन पर कर लगाती है।
- (iv) सरकार किसी भी अल्यकालिक सरकारी प्रतिभृतियों से जुड़े सभी लेनदेन पर कर लगाने का निर्णय लेती है।
- (ग) (i) "युद्ध आम तौर पर अंद्रे बजट घाटे को लाते हैं" इस कथन की व्याख्या करें।

2)

- मुद्रास्फीति की लागत के रूप में कर विकृति की व्याख्या कीजिए।
- (a) (i) Distinguish between credit- driven bubbles and optimistic expectations driven bubbles.
 - (ii) What are the various practices commercial banks use to solve asymmetric information problems? (3.5+4)
 - (b) (i) Distinguish between Friedman's and Phelps's versions of the fooling model?
 - (ii) What is a macroeconomic externality? How do long-term agreements impose a macroeconomic externality on the economy? (4+3.5)
 - (c) (i) What are the common elements of the original and the New Keynesian approaches?
 - (ii) Explain using the New Keynesian model why small nominal rigidities have large macroeconomic effects. (2.5+5)

- (अ) (i) ऋण-चालित बुलबुले और आशापादी उम्मीदों से प्रेरित बुलबुले के बीच अंतर करें।
 - (ii) असगमित सूचना सगस्याओं को हल करने के लिए वाणिज्यिक चैंक किन विभिन्न प्रथाओं का उपयोग करते हैं?
- (व) (i) फूलिंग मॉडल को फ्रीडमैन और फोल्स को संस्करणों को बीच अंतर को?
 - (ii) समस्टि आर्थिक बाह्मता क्या है? लंबी अविध के समझौते अर्थव्यवस्था पर व्यापक आर्थिक बाहरीता कैसे लगाते हैं?
- (स) (i) मूल और न्यू कीनेसियन दृष्टिकोण के सामान्य तत्व क्या है?
 - (ii) न्यू कीनेसियन मॉडल का उपयोग करते हुए स्पष्ट करें कि छोटी नाममात्र की कठोरता का व्यापक व्यापक आर्थिक प्रभाव क्यों होता है।
- (a) (i) 'We see convergence among some sets of countries but a lack of convergence among

the countries as a whole' Show with the help of a diagram how the neo classical growth model explains this phenomena. What other predictions does this model make?

 (ii) Does this prediction of the neoclassical model explain the differences in growth rates across the countries of the world? Discuss.

(4.5+3)

- (b) (i) What are the determinants of expected profitability of investment?
 - (ii) Explain the relationship between social infrastructure and each of the following – investment share of GDP, average years of schooling.
 - (iii) What are the determinants of social infrastructure? (3+3+1.5)
- (c) (i) If the positive interest rate differential in favour of a foreign monetary centre is 4% per year and the foreign currency is at a forward discount of 2% per year, roughly how

much would an interest arbitrageur earn from the purchase of foreign three-month treasury bills if she covered the foreign exchange risk?

- (ii) Write a short note on 'Crawling Peg System'.
 (4+3.5)
- (ग) (ग) 'गम देगां के बुछ समूहों के बीच अभिसरण देखते हैं लेकिन पूरे देगां में अभिसरण की कमी' एक आरेख की गगपना ने दिखाएं कि नव-प्रतिष्ठित विकास मॉडल इस घटना की प्याच्या कैसे करता है। यह मण्डल और कथ्या भविष्यवाणियाँ करता है?
 - (ii) प्रधा नव प्रतिष्ठित गाँडल की यह भविष्यवाणी युनिया के प्रेशों में विकास डर में अंतर की व्याख्या करती है? चर्चा प्रशे
- (ii) विवेश की अधिक्षत लाभप्रदत्ता के निर्धारक क्या है?
 - (ii) सामाजिक बुनियादी हाथे और निम्नलिखित में से प्रत्येक के बीच संबंध की व्याख्या करें - सकल घरेलू उत्पाद का नियोग हिस्सा, स्कूली शिक्षा के औसत वर्ष:
 - (iii) मामाजिक बुनियादी डांचे के निर्धारक क्या हैं।

P.T.O.

ě.

- (स) (i) यदि एक विदेशी मुद्रा केंद्र की पक्ष में सकारात्मक ब्याज दर अंतर प्रति वर्ष 4% है और विदेशी मुद्रा प्रति वर्ष 2% की छूट पर है, तो मोटे तौर पर एक ब्याज आर्बिट्रेज त्वरीद से कितना कमाएगा विदेशी तीन गहीने के ट्रेजरी बिलों में से पदि उसने विदेशी मुद्रा जोखिम को कवर किया है?
 - (ii) 'क्रॉलिंग पेग सिस्टम' पर एक सक्षिप्त टिप्पणी लिखिए।

(3000)

[This question paper contains 32 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 3289

A

Unique Paper Code

: 12271401

Name of the Paper

: INTERMEDIATE

MICROECONOMICS - II

Name of the Course

: BA (H) Eco. Core

Semester

: IV

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- 2. The question paper is divided into two sections.
- Attempt four questions in all, selecting two from Section A and two from Section B.
- 4. Use of simple calculator is permitted.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

- इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।
- 2. प्रश्न पत्र दो खंडों में विभाजित है।
- खंड A से दो और खंड B से दो का चयन करते हुए, कुल चार प्रक्रमों को हल कीजिये।
- 4. साधारण कैलकुलेटर के उपयोग की अनुगति है।
- इस प्रश्न-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

SECTION A

- (a) Suppose there are two consumers A and B who consume 2 goods X and Y in a pure exchange economy. Their utility functions are U_A = 2X_A + Y_A, and U_B = X_BY_B, respectively. If the initial endowments of the two goods are [(X_A = 2, Y_A = 10)]
 - (i) Plot the initial endowment point in an Edgeworth box.
 - (ii) Derive the consumption contract curve and plot it.

- (iii) Find the competitive equilibrium allocation and price ratio.
- (iv) Verify if the competitive equilibrium allocation is fair or not. (9.5)
- (b) A housing developer wants to build houses on a piece of land located next to an airport. However, the noise pollution from the planes that land at the airport reduces the value of houses and hence the profits of the developer. If X denotes the number of planes that fly per day and Y be the number of houses the developer builds. The profit functions of the airport and the developer are as follows:

$$\pi_A = 56X - X^2$$

$$\pi_D = 70Y - Y^2 - XY$$

- (i) If no bargains can be struck between the airport and the developer and each can decide its own level of activity, how many planes (X*) will fly to maximise the profits of the airport? Find the maximum profits?
- (ii) Given that X* planes fly, how many houses will be built to maximise profits of the developer? Find the maximum profits of the house developer.

- (iii) Suppose that a local ordinance makes it illegal to land planes at the airport because they impose an externality on the developer. Find the optimum number of houses built and the profits made by the developer under such a rule.
- (iv) Suppose there is no ban on planes landing at the airport. If a single firm buys the developer's land and the airport, how many planes will be flown and houses built to maximise joint profits? (9)
- (अ) मान लीजिए कि दो उपभोक्ता A और B हैं जो शुद्ध विनियय अर्थव्यवस्था में 2 वस्तुओं X और Y का उपभोग करते हैं। उनके उपयोगिता कार्य $U_A = 2X_A + Y_A$, और $U_B = X_B Y_B$ हैं। क्रमशा यदि दो वस्तुओं के प्रारंभिक बंदोबस्त हैं $[(X_A = 2, Y_B = 10)]$
 - प्रारमिक बंदोबस्ती बिंदु को एक एइजवर्ष बॉक्स में प्लॉट करें।
 - (ii) उपभोग अनुबंध वक्र च्युत्पन्न करें और इसे प्लॉट यहें।

- (iii) प्रतिस्पर्धी संतुलन आवंटन और मृल्य अनुपात का पता लगाएं।
- (iv) क्या प्रतिस्पर्धी संतुलन आवंटन उचित है?
- (व) एक आवास विकासकर्ता एक हवाई अबे के बगल में स्थित भूमि के एक टुकडे पर घर बनाना चाहता है। हालांकि, हवाईअड्डे पर उतरने वाले विमानों से ध्विन प्रदूषण घरों के मूल्य को कम करता है और इसलिए डेक्लपर के मुनाफे को कम करता है। यदि 5 प्रतिदिन उड़ान भरने वाले विमानों की संख्या को दर्शाता है और Y विकसित घरों की संख्या बताता है। हवाई अहडे और डेक्लपर के लाभ फलन इस प्रकार है:

$$\pi_A = 56X - X^2$$

 $\pi_D = 70Y - Y^2 - XY$

(i) यदि हवाई अइहे और डेवलपर के बीच कोई सौदेबाजी नहीं की जा सकती है और प्रत्येक अपनी गतिबिधि के स्तर पर निर्णय ले सकता है, तो हवाई अइहे के मुनाफे को अधिकतम करने के लिए कितने विमान (X*) उड़ान भरेंगे? अधिकतम लाभ जात कीजिए?

hours) are as follows:

 $(L_x = 50, K_x = 50); (L_y = 50, K_y = 50)$

endowment of labour and capital (in hundreds of

7

 (i) Find the equation of the production contract curve for the commodities X and Y.

(ii) Find the market equilibrium allocation of L and K used in production of X and Y, and the equilibrium price ratio (P₁/P_K).

(iii) At the equilibrium level of production, find the ratio K/L (factor intensity) used in the production of X and Y.

(iv) It is given that the production possibility frontier (PPF) corresponding to the production contract curve derived in part (i) above exhibits increasing rate of product transformation (RPT_{x,y}), i.e., the PPF is strictly concave to the origin. Identify the possible source of increasing RPT_{x,y}.

(3+5+2+2=12)

(ii) यह देखते हुए कि X* विमान उड़ते हैं, डेवलपर के लाभ को अधिकतम करने के लिए कितने घर बनाए आएंगे? गृह विकासकर्ता का अधिकतम लाभ ज्ञात कीजिए।

(iii) मान लीजिए कि एक स्थानीय अध्यादेश हवाईअहडे पर विमानों को उत्तरना अवैध बनाता है क्योंकि वे डेयलपर पर बाहरीता लगाते हैं। इस तरह के एक नियम के तहत बनाए गए घरों की इंग्ट्रतम संख्या और डेयलपर द्वारा किए गए मुनाफें का पता लगाएं।

(iv) मान लीजिए कि हवाई अने पर विमानों के उत्तरने पर कोई प्रतिबंध नहीं है। यदि कोई एकल फर्म डेवलपर की जमीन और हवाई अड्डा खरीदती है, तो संयुक्त लाभ को अधिकतम करने के लिए कितने विमान उज़ए जाएंगे और घर बनाए जाएंगे?

 (a) The output of commodities X and Y, as a function of homogeneous inputs (L and K) is expressed in terms of the following production functions:

$$X = 2 \sqrt{L_X K_X} \qquad Y = 4 L_Y^{1/3} \ K_Y^{2/3}$$

(अ) सजातीय इनपुट (L और K) के एक फलन के रूप में वस्तुओं X और Y का उत्पादन निम्मिलियत उत्पादन फलनों के संदर्भ में व्यक्त किया जाता है:

$$X = 2\sqrt{L_X K_X}$$
 $Y = 4L_Y^{1/3} K_Y^{2/3}$

जहां, श्रम-घट है और K, X और Y के उत्पादन में समर्पित पूंजी-घट है। श्रम और पूंजी की प्रारंभिक बंदोवस्ती (सैकड़ों घटों में) इस प्रकार हैं:

$$(L_x = 50, K_x = 50);$$
 $(L_y = 50, K_y = 50)$

- (i) वस्तुओं X और Y के लिए उत्पादन अनुबंध यक्त का समीकरण जात कीजिए।
- (ii) X और Y के उत्पादन में प्रयुक्त L, और K के बाजार संतुलन आवंटन और संतुलन मूल्य अनुपात (P_L/P_K) का पता लगाएं।

3289

9

- (iii) उत्पादन के संतुलन स्तर पर, X और Y के उत्पादन
 में प्रयुक्त K/L (कारक तीवता) का अनुपात ज्ञात
 कीजिए।
- (iv) यह दिया गया है कि उपरोक्त भाग (i) में व्युत्पन्त उत्पादन अनुबंध वक्र के अनुबंप उत्पादन संभावना सीमा (PPF) उत्पाद परिवर्तन की बढ़ती दर (RPT $_{xy}$) को प्रदर्शित करती है, अर्थात, PPF मूल बंप से मूल बंध से अवतल है। RPT $_{xy}$ को बढ़ाने के संभावित सीत की पहचान करें।
- (व) नैतिक जोस्विम और प्रतिकृत चयन बीमा बाजारों में अपूर्ण जानकारी की समस्याएं हैं। स्वास्थ्य बीमा पॉलिसियों की पेशकश करने वाली कंपनियों द्वारा सामना की जाने वाली समस्याओं के सदर्भ में उनके बीच अंतर करें। साथ ही इसी सन्दर्भ में (i) नैतिक संकट और (ii) प्रतिकृत चयन की समस्या को कम करने का उपाय सुबाइए।
- 3. (a) An individual's inverse demand function for commodity X is given by: P_x = 10 - Q_x, where the per unit market price P_x captures his marginal willingness to pay for commodity X. Assume there are 10 individuals with the same demand curve.

- Find and plot the market demand curve for X if it is a private good.
- (ii) Find and plot the market demand curve for X if it is a public good. If the marginal cost of providing the public good X is Rs. 10, find the efficient quantity of public good provided.
- (iii) State the condition for Pareto efficient allocation of
 - (a) two private goods (X and Y) between two individuals (A and B), and
 - (b) one public good (G) and one private good (Y) between A and B. Compare the two conditions. (2+4+3,5=9.5)
- (b) In a market, two 'types' of sleeping mattresses are sold - those of high quality (H) and those of low quality (L). Buyers with limited information on quality are unable to identify one type from another unless they have purchased one and used it for some time. If quality was perfectly identifiable, buyers would be willing to pay Rs. 25,000 for an H type and Rs. 18,000 for an L

type of mattress. In the presence of asymmetric information, buyers are willing to pay an average price. Manufacturers of mattresses can also offer product warranty, which is relatively cheaper for the H type manufacturers. Suppose offering a product warranty entails net costs of Rs. 5,000 and Rs. 9,000 to H type and L type manufacturers respectively. The product warranty itself does not enhance quality of the mattress produced. It is merely used as a signal of quality.

11

- (i) Will offering a warranty serve as an effective signal for separating equilibrium in the market for mattresses? Explain.
- (ii) If the proportion of H-type mattresses in the market is η, (0 < η < 1), what values of 77 achieve a pooling equilibrium?

(9)

(अ) कमोडिटी X के लिए एक व्यक्ति का व्युक्तम मांग फलन पीएक्स = 10 - क्यूएक्स द्वारा दिया गया है: जहां प्रति दर बाजार मृल्य पीएक्स कमोडिटी एक्स के लिए भुगतान करने की उसकी सीमांत इच्छा को पकड़ता है। मान लें कि समान मांग वक्र वाले 10 व्यक्ति हैं।

3289

- (i) X के लिए बाजार मांग वक्त खोजें और प्लॉट करें यदि यह एक निजी वस्तु है।
- (ii) X के लिए बाजार सांग वक खोजें और प्लॉट करें यदि यह एक सार्वजनिक वस्तु है। यदि सार्वजनिक वस्तु X उपलब्ध कराने की सीमांत लागत र 10, प्रदान की गई सार्वजनिक वस्तुओं की कुशल मात्रा जात कीजिए।
- (iii) परेटो कुशल आवंटन के लिए शर्त बताएं
 - (अ) दो व्यक्तियों (ए और बी) के बीच दो निजी सामान (एक्स और वाई), और
 - (ब) A और B के बीच एक सार्वजनिक वस्तु (G) और एक निजी वस्तु (Y) दो शर्तों की नुलना करें।
- (व) एक बाजार में, दो 'प्रकार' को सीने को गई बेचे जाते हैं -उच्च गुणवत्ता वाले (H) और निम्न गुणवत्ता वाले (L)। गुणवत्ता को बारे में सीमित जानकारी वाले खरीवार एक प्रकार को दूसरे से तब तक पडचानने में असमर्थ होते हैं जबर तक कि उन्होंने एक को खरीवा और कुछ समय के लिए इसका इस्तेमाल नहीं किया। यदि गुणवत्ता पूरी तरह से पडचानी जा

संकती है, तो खरीदार H प्रकार के लिए 25,000 रुपये और L प्रकार के गई के लिए 8,000 रुपये का भुगवान करने को तैयार होंगे। असममित जानकारी की उपस्थित में, खरीदार औसत कीमत युकाने को तैयार हैं। गई के निर्माता उत्पाद वारंटी भी दे सकते हैं, जो H प्रकार के निर्माताओं के लिए अपेक्षाण्त सस्ता है। मान लीजिए कि उत्पाद की वारंटी देने पर H टाइप और L टाइप के निर्माताओं को क्रमजः 5,000 रुपये और 9,000 रुपये की शुद्ध लागत आती है। उत्पाद वारंटी स्वयं उत्पादित गई की गुणवत्ता में वृद्धि नहीं करती है। इसका उपयोग केवल गुणवत्ता के संकेत के रूप में किया जाता है।

- क्या वारंटी की पेशकश गई के लिए बाजार में संतुलन को अलग करने के लिए एक प्रभावी संकेत के रूप में काम करेगी? समझाइये।
- (ii) यदि बाजार में H-प्रकार के यदे का अनुपात η . $(0 \le \eta \le a)$ है, तो के कौन से मान पूलिंग संतुलन प्राप्त करते हैं?
- (a) Consider a pure exchange economy consisting of 3 individuals A, B and C with identical endowments of 2 good X and Y, i.e., each has an endowment

vector (4,10). Their utility functions are $U_a = X_a Y_{a^2}$, $U_b = X_b Y_b$ and $U_c = (X_c)^{1/2} + Y_c$.

- (i) Define a 'fair' allocation. Does the initial endowment of A, B and C represent a 'fair' allocation? Explain.
- (ii) Will perfectly competitive trading between A, B and C result in a 'fair' allocation? Explain. (4.5+2-6.5)
- (b) A perfectly competitive market exists for wheat. The inverse demand is P = 200 - Q where P is the price of wheat and Q is the total quantity of wheat. The private total cost for the unregulated market is C = 50 + 80Q + 0.5Q². The production of wheat creates an externality where the total external cost is EC = 0.5Q².
 - (i) Solve for the unregulated competitive equilibrium of wheat and the socially optimal level of wheat.
 - (ii) Derive the Pigouvian tax (per unit of output of wheat) that results in the social optimum.

(c) Suppose the production possibility curve (PPC) for commodities X and Y is given by 2X² + Y² = 1900.

15

- (i) If consumers always prefer consumption bundles in which X = 3Y, what will be the optimum production levels of X and Y?
- (ii) What commodity price ratio (P_x/P_y) will result in the optimum level of production of X and Y?
 (6)
- (अ) एक शुद्ध विनिमय अर्थव्यवस्था पर विचार करें जिसमें 2 वस्तु X और Y के समान बंदोबस्ती के साथ 3 व्यक्ति A, B और C ग्रामिल हैं, यानी, प्रत्येक में एक बंदोबस्ती वेक्टर (4,10) है। उनके उपयोगिता कार्य $U_a = X_a Y_b$, $U_b = X_b Y_b$ और $U_c = (X_c)^{1/2} + Y_c$ हैं।
 - एक 'निष्पक्ष' आवंटन को परिभाषित करें। क्या A, B और C की प्रारमिक बंदोबस्ती एक 'निष्पक्ष' आवंटन का प्रतिनिधित्व करती है? समझाना।
 - (ii) क्या A, B और C के बीच पूरी तरह से प्रतिस्पर्धी व्यापार का परिणान 'उचित' आवंटन होगा? समझाना।

P.T.O.

C.

- (ब) मेहूं के लिए एक पूरी तरह से प्रतिस्पर्धी बाजार मौजूद है। व्युत्रम मांग P=200 है जहां P गेहूं की कीमत है और Q मेहूं की कुल माजा है। अनिवर्मित बाजार के लिए निजी कुल लागत $C=50+80Q+0.5Q^2$ है। मेहूं का उत्पादन एक बाहरीला पैदा करता है जहां कुल बाहरी लागत $C=0.5Q^2$ हैं।
 - मेंटू के अनिवामित प्रतिस्पधी संतुलन और मेंटू के सामाजिक रूप से इंग्ट्रतम स्तर के लिए हल करें।
 - (ii) पिगौवियन टैक्स खगेहूं के उत्पादन की प्रति यूनिटच्च को य्युत्पन्न करें जिसके परिणामस्वरूप सामाजिक इष्टर्लम होता है।
- (स) मान लीजिए कि X और Y वस्तुओं के लिए उत्पादन संभावना वक्र (PPC) $2X^2 + Y^2 = 1900$ द्वारा दिया गया है।
 - (i) यदि उपभोक्ता हमेब्रा उपभोग बंडलों को पसंद करते हैं जिसमें X = 3Y हो, तो X और Y का इष्टतम उत्पादन स्तर क्या होगा?
 - (ii) किस वस्तु मूल्य अनुपात (P_{χ}/P_{χ}) के परिणामस्वस्य X और Y के उत्पादन का इंग्टतम स्तर प्राप्त होगा?
- 5. (a) Consider the following lobbying game between two firms. Each firm may lobby the government in hopes of persuading it to make a decision that is favourable to the firm. The two firms, F1 and F2, independently and simultaneously decide whether to lobby (L) or not (N). Lobbying entails a cost of 15. Not lobbying costs nothing. If both firms lobby or neither firm lobbies, then the government takes a neutral decision, which yields 10 to both firms. If firm F2 lobbies and F1 does not lobby, then the government makes a decision that favours firm F2, yielding zero to firm F1 and 30 to firm F2. Finally, if firm F1 lobbies and F2 does not, the government makes decision in favour of FI which yields x to firm F1 and zero to firm F2. Assume that $x \ge 25$. The normal form of this game is:

17

SECTION B

		F2 -	
		L	N
FI	L	-5, -5	x-15, 0
	N	0, 15	10, 10

(i) Determine the pure-strategy Nash equilibrium of this game.

- (ii) Compute the mixed-strategy Nash equilibrium of this game.
- (iii) Given the mixed-strategy Nash equilibrium computed in part (ii), what is the probability that the government makes a decision that favours firm F1?
- (iv) As x rises, does the probability that the government makes a decision favouring firm F1 rise or fall? (1+6+2+1=10)
- (b) An electric utility company provides electricity to a small town. The demand for electricity is p(q) = 10 0.1q, and the company's costs are C(q) = 1 + 0.5q.
 - (i) Does the electric utility company exhibit the properties to be a "natural monopoly"?
 - (ii) Find the unregulated monopolist's profitmaximizing price, output, and profit.
 - (iii) The government passes a law that requires utility to practice Marginal Cost pricing (i.e., p = MC). What is the regulated monopolist's output and profit?

(iv) What is the lump-sum subsidy that the regulator must provide the electric utility company to practice MC pricing without operating at a loss?

19

(v) Compute the consumer surplus from the pricing strategies in parts (ii) and (iii).

(1+3+2+1+2=9)

(अ) दो फर्मों के बीच निम्नलिखित लॉबिंग ग्रेम पर विचार करें। प्रत्येक फर्म सरकार को फर्म के अनुकृल निर्णय लेने के लिए राजी करने की उम्मीद में सरकार की पैरवी कर सकती है। दो फर्म, F1 और F2, स्वतंत्र रूप से और एक साथ तय करते हैं कि लॉबी (L) या नहीं (N)। लॉबिंग में 15 की लागत आती है। लॉबिंग की लागत कुछ भी नहीं है। यदि दोनों फर्म लॉबी करती हैं या कोई फर्म लॉबी नहीं करती है तो सरकार एक तटस्थ निर्णय लेती है, जो डोनों फर्मों को 10 प्रतिफल देती है। यदि फर्म F2 लॉबी और F1 लॉबी नहीं करती है, तो सरकार एक निर्णय लेती है जो फर्म F2 के पक्ष में है, फर्म F1 को शुन्य और फर्म F2 को 30 प्रतिफल देता है। अंत में, यदि फर्म F1 लॉबी और F2 नहीं करती है, तो सरकार F1 के पक्ष में निर्णय लेती है जिससे फर्म F1 को x और फर्म F2 को शुन्य प्रतिफल प्राप्त होता

है। मान लें कि x>25. इस खेल का सामान्य रूप है:

	10075	F2	
		L	N
FI	L	-5, -5	x-15, 0
	N	0, 15	10. 10

- (i) इस खेल की शुद्ध रणनीति नैज संतुलन का निर्धारण करें।
- (ii) इस खेल की मिश्रित रणनीति नैश संतुलन की गणना करें।
- (iii) भाग (ii) में गणना की गई मिश्रित रणनीति नैज्ञ संतुलन को देखते हुए, सरकार द्वारा फर्म F1 के पक्ष में निर्णय लेने की क्या संभावना है?
- (iv) जैसे जैसे x बढ़ता है, क्या संभावना है कि सरकार फर्ब F1 के पक्ष में निर्णय लेती - है या काम करती है?
- (ब) एक विद्युत उपयोगिता कंपनी एक छोटे से शहर को विजली p प्रधान करती है। बिजली की मांग p(q)=10-0.1q है, और कंपनी की लागत C(q)=1+0.5q है।
 - (i) क्या इलेक्ट्रिक यूटिलिटी कंपनी गुणों को "प्राकृतिक एकाधिकार" के रूप में प्रदर्शित करती है?

- अनियमित एकाधिकार के लाभ अधिकतम मृत्य, उत्पादन और लाभ का पता लगाएं।
- (iii) सरकार एक कानून पारित करती है जिसके लिए सीमात लागत मूल्य निर्धारण (p = MC) का अध्यास करने के लिए उपयोगिता की आवश्यकता होती है। विनिधमित एकाधिकारी का उत्पादन और लाभ क्या है?
- (iv) एकमुञ्त सब्बिही कथ्या है जो नियामक को बिजली उपयोगिता कंपनी को नुकसान पर संचालन के बिना एमसी मृल्य निर्धारण का अभ्यास करने के लिए प्रदान करना चाहिए?
- (v) भाग (ii) और (iii) में मूल्य निर्धारण रणनीतियों से उपभोक्ता अधिश्रेष की गणना करें।
- (a) The bicycle market is populated by two firms, Atlas cycles (A) and Hero cycles (H), facing total demand p = 14 q, where p is the price and q denotes total quantity. On the costs side, firms are perfectly symmetric, with TC_i = 2q_i, i = A, H. (all monetary values are in thousands of rupees).

P.T.O.

ć

- (ii) If A enters the market first, chooses its output and in the next time period, H enters the market and chooses its output. Compute the market equilibrium of this sequential game (prices, quantities and profits of A and H). (5+5=10)
- (b) Each of N people chooses whether or not to follow the protocol of wearing masks, washing hands and maintaining social distancing to avoid the spread of a viral infection. Following the protocols costs each a fixed amount (= c > 0). The protocols are effective in protecting people from the spread of the viral infection if and only if at least H people follow them, where 2 ≤ H ≤ N; if the protocols are not effective, each faces a higher risk of catching the infection which gives each one a disutility (= d > c > 0). Each person ranks outcomes from best to worst as follows: (a) any

outcome in which the protocols are effective and she does not follow them; (b) any outcome in which the protocol is effective and she also followed them; (c) any outcome in which the protocols are not effective and she did not follow them; (d) any outcome in which the protocols are not effective and she followed them.

23

Find the pure strategy Nash equilibrium of this strategic game. Clearly explain how you establish that a profile is a Nash equilibrium profile. (9)

- (अ) साइकिल बाजार दो फर्मों, एटलस साइकिल (A) और हीरो साइकिल (H) द्वारा आबाद है, कुल मांग p=14-q का सामना करना पड़ रहा है, जहां p कीमत है और q कुल मांग को दर्जाता है। लागत पक्ष पर, फर्म पूरी तरह से समित हैं, TC_i = 2q_i i = A, H. (सभी मीडिक मूल्य हजारों रुपये में हैं)।
 - (i) मान लें कि फर्म एक साथ अपने आउटपुट का चयन करती हैं। बाजार संतुलन (कीमतों, मात्राओं और - और प्त के मुनाफे) की गणना करें।
 - (ii) यदि A पहले बाजार में प्रवेश करता है, तो अपना आउटपुट चुनता है और अगली समयावधि में, H बीजार

नें प्रवेश करता है और अपना आउटपुट चुनता है। इस अनुक्रमिक खेल के बाजार संतुलन की गणना करें (कीमतें, मात्रा और A और H के लाभ)।

(ब) प्रत्येक N व्यक्ति यह चुनता है कि वायरल संक्रमण के प्रसार से बचने के लिए मास्क पहनने, ताथ धोने और सामाजिक दूरी बनाए रखने के प्रोटोकॉल का पालन करना है या नहीं। प्रोटोकॉल का पालन करने पर प्रत्येक की एक निज्ञ्चित राज्ञि स्वर्च होती है (= c > 0)। प्रोटोकॉल लोगों को वायरल संक्रमण के प्रसार से बचाने में प्रभावी होते हैं यदि और केवल तभी जब कम से कम H लोग उनका पालन करले हैं, जहां $2 \le H \le N$ यदि प्रोटोकॉल प्रभावी नहीं हैं, तो प्रत्येक को सक्रमण को पकड़ने का एक उच्च जोखिम का सामना करना पहला है जो प्रत्येक को एक अक्षमता देता है (= d > c > 0)। प्रत्येक व्यक्ति परिणामों को सर्वोत्तम से सबसे खराब श्रेणी में रखता है: (अ) कोई भी परिणाम जिसमें प्रोटोकॉल प्रभावी होते हैं और वह उनका पालन नहीं करती है; (ब) कोई भी परिणाम जिसमें प्रोटोकॉल प्रभावी है और उसने उनका पालन भी कियाय (स) कोई भी परिणाम जिसमें प्रोटोकॉल प्रभावी नहीं हैं और उसने उनका पालन नहीं किया; (स) कोई भी परिणाम जिसमें प्रोटोकॉल प्रभावी नहीं हैं और उसने उनका पालन किया।

इस रणनीतिक खेल की मुद्ध रणनीति नैश संतुलन का पता लगाए। स्पष्ट रूप से बताएं कि आप कैसे स्थापित करते हैं कि एक प्रोफाइल एक नेश संतुलन प्रोफाइल है।

25

- (a) A firm sells goods in two markets, market 1 and market 2. The inverse demand in market 1 is $p_1 = 200 q_1$, and the inverse demand in market 2 is $p_2 = 100 2q_2$. The marginal cost of production is constant and equal to Rs. 40.
 - (i) If the firm behaves as a price taker (perfect competition), what would the equilibrium prices and quantities be in each market? What is the consumer, producer and total surplus?
 - (ii) If the firm acts like a monopoly and charges different prices in each market, how much would it charge in the two markets? What is the consumer, producer and total surplus now?
 - (iii) If the government does not let the monopolist charge different prices, what price will the monopolist charge? Find the consumer, producer and total surplus.

- (iv) Compare the total surplus in parts (i), (ii and (iii). (4+6+4+1=15
- (b) There are N people sitting in a room. Each one is asked to guess an integer between 1 and 100 and write it confidentially on a paper. The average of all the numbers written on the paper is taken and the person(s) whose guess is closest to 2/3 of the average is/are the winner(s). Find the Nash equilibrium action profile of this game. How will your answer change if the winner(s) will be the player(s) whose guess is closest to 2 times the mean of the guesses?
- (अ) एक फर्म दो बाजारों, बाजार 1 और बाजार 2 में वस्तुए बेचर्स है। बाजार 1 में व्युत्करम मांग $p_1 = 200 q_1$ है, और बाजार 2 में व्युत्करम मांग $p_2 = 100 2q_2$ है। उत्पादन की सीमांत लागत स्थिर है और 40 रुपये के बराबर है।
 - (i) यदि फर्म एक मूल्य ग्रहणकर्ता (पूर्ण प्रतियोगिता) के क में व्यवहार करती है, तो प्रत्येक बाजार में मंतुलन मूल और मात्रा क्या होगी? उपभोक्ता, उत्पादक और कुल अधियोग क्या है?

- (ii) यदि फर्म एकाधिकार की तरह कार्य करती है और प्रत्येक बाजार में अलग - अलग मृत्य वसूल करती है, तो वह दोनों बाजारों में कितना शुक्क लेगी? अब उपभोक्ता, उत्पादक और कुल अधिशेष क्या है?
- (iii) यदि सरकार इजारेदारों को अलग-अलग कीमत नहीं चसुलने देती तो इजारेदार किस कीमत पर वसुल करेगा? उपभोक्ता, उत्पादक और कुल अधिशेष जात कीजिए।
- (iv) भागों (i), (ii) और (iii) में कुल अधिशेष की तुलना करें।
- (व) एक कमरे में N लोग बेटे हैं। प्रत्येक को 1 और 100 के बीच एक पूर्णांक का अनुमान लगाने के लिए कहा जाता है और इसे एक कामज पर मोपनीय रूप से लिखने के लिए कहा जाता है। बामज पर लिखी गई सभी संख्याओं का औसत लिया जाता है। और जिस व्यक्ति का अनुमान औसत के 2/3 के सबसे करीब होता है, वह विजेता होता है। इस खेल की नैज संतुलन किया प्रेफाइल का पता लगाएं। आपका उत्तर कैसे बदलेगा यदि विजेता (खिलाड़ी) वह खिलाड़ी होगा जिसका अनुमान अनुमानों के माध्य में 2 गुना के करीब है?

\$289

- 8. (a) Consider Hotelling's model of a straight highway of length = 100 kilometres, where consumers are uniformly distributed along the highway. Suppose there are only two stores (S1, S2) that sell water cans on this highway, located at a distance of 30 kms and 65 kms from the beginning of the highway. Each consumer has a transportation cost equal to 0.03d², where d is the distance travelled to the nearest store.
 - (i) Calculate the demand (as a function of prices P₁, P₂) for the two stores.
 - (ii) Assume that production costs are zero and that the stores aim at maximising revenue from sale of water cans. If the two stores compete in prices, find the prices charged at Nash equilibrium.
 - (iii) Suppose a new government regulation restricts the stores from charging different prices for water cans. Instead, the store owners are given a chance to choose their locations on the highway simultaneously. If they choose the same location, they split the business evenly. Where will S₁ and S₂

- locate at Nash equilibrium? Is the Nash equilibrium location choice of S₁ and S₂ socially optimum? Explain.
- (iv) If a third store (S₁) also decides to locate on the same highway and the 3 store owners choose their locations on the highway simultaneously, find the Nash equilibrium of this game. (3+6+4+1=14)
- (b) Suppose a shopping arcade has only 2 stores selling tablet PCs. One sells Lenovo tablet PCs at a price = P₁, while the other sells iBall tablet PCs at a price = P_n. Both tablets are produced at a marginal production costs of Rs. 10,000. For the consumers, both tablet PCs are perfect substitutes. Each store's set of actions is the set of possible prices P₁ (nonnegative numbers). The low-price seller gets the entire market; if they charge the same price, they split the market.
 - (i) What is the Nash equilibrium of this price game? Explain.
 - (ii) Suppose both stores decide to include one more element in their set of actions;

i.e., charge a price per tablet PC = Rs. 20,000 and advertise that if the product is available cheaper at the other store, the customer can have it for free. Find the Nash equilibrium of this game. Explain.

(5)

- (अ) 100 किलोमीटर लम्बे सीधे राजमार्ग के होटलिंग के मॉडल पर विचार करें, जहां उपभोक्ताओं को राजमार्ग के साथ समान रूप से बितरित किया जाता है। मान लीजिए कि केवल दो स्टोर (S1, S2) हैं जो इन राजमार्ग पर-पानी के डिब्बे बेचते हैं, जो राजमार्ग की शुरुआत से 30 किमी और 65 किमी की दूरी पर स्थित है। प्रत्येक उपभोक्ता की परिवहन लागत 0.03त2 के बराबर होती है, जहां ते निकटतम स्टोर तक की गई दूरी है।
 - (i) यो बुकानों के लिए गांग (कीमतों P1, P2 के एक फलन के रूप में) की गणना करें।
 - (ii) मान लें कि उत्पादन लागत शून्य है और स्टोर का लक्ष्य पानी के डिब्बे की बिकी से राजस्य को अधिकतम करना है। यदि दोनों स्टोर कीमतों में प्रतिस्पर्धा करते हैं, तो नैश संतुलन पर लगाए गए मूल्य जात करें।

(iii) मान नीजिए कि एक नया सरकारी नियम दुकानों को पानी के विक्रे के लिए अलग-अलग कीमत यसूनने से येकता है। इसके बजाय, स्टोर मालिकों को एक साथ राजमार्ग पर अपने स्थान चुनने का मौका दिया जाता है। यदि वे एक ही स्थान चुनते हैं, तो वे व्यवसाय को समान रूप से विभाजित कर देते हैं। नैश संतुलन पर S1 और S2 कहाँ स्थान होंगे? क्या S1 और S2 कहाँ स्थान होंगे? क्या S1 और S2 कहाँ स्थान होंगे? क्या S1 और S2 कहाँ स्थान होंगे?

31

- (iv) यदि कोई तीयत स्टोर (S3) भी उसी हाईवे पर पता लगाने का निर्णय लेला है और 3 स्टोर मालिक एक साथ गाउँचे पर अपना स्थान युनने हैं, तो इस रोग का नैश संतुलन ज्ञान करें।
- (ब) मान लीजिए कि एक ग्रांपिंग आर्कंड में टेबलेट 02 बेचने वाले केवल 2 म्टोर हैं। एक लेनोबो टेबलेट PC को कीमत = P_L पर बेचला है, जबकि दूसरा आईबॉल टेबलेट PC को कीमत = P_B पर बेचला है। डोनो टेबलेट का उल्पावन 10,000 रुपये की मागुली उल्पावन लागत पर किया जाता है। उपभावनाओं के लिए, डोनो टेबलेट PC सही विकल्प है। प्रत्येक स्टोर की कियाओं का मेट संभावित कीमतों का सेट है P_L (हीर अरणाव्यक क्रियाओं का मेट संभावित कीमतों का सेट है P_L (हीर अरणाव्यक

संख्या)। कम कीमत वाले विकेता को पूरा बाजार मिलता है; अगर वे एक ही कीमत वसूलते हैं, तो वे बाजार को विभाजित कर देते हैं।

- (i) इस मूल्य खेल का नैज संतुलन क्या है? समझाना।
- (ii) मान लीजिए कि दोनों स्टोर अपने कार्यों के सेट में एक और तत्व शामिल करने का निर्णय लेते हैं:

P = 20,000 या नि: मुल्क;

यानी, प्रति टैबलेट PC की कीमत = च 20,000 और विज्ञापन दें कि यदि उत्पाद दूसरे स्टोर पर सस्ता उपलब्ध है, तो ग्राहक इसे मुफ्त में प्राप्त कर सकता है। इस खेल का नैश संतुलन ज्ञात कीजिए और समझाइये। This question paper contains 6 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 4124

: 62274403

Name of the Paper : Principles of Macroeconomics II

Name of the Course : BA (Prog.) Economics, DSC

Semester : IV

Unique Paper Code

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Answer any 5 questions.
- 3. All questions are divided into Sections A and B. Attempt any 5 questions out of 7 questions from each of the sections. Section A has short answer questions and each carries 5 marks whereas Section B contains long answer questions and each carries 10 marks.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

- इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।
- किनीं 5 प्रश्नों के उत्तर दीजिए ।
- 3. सभी प्रश्नों को रखंड अ तथा खंड बा में विभाजित किया गया है। प्रत्येक खंड में से 7 प्रश्नों में से किसीं प्रश्नों के उत्तर वीजिए। खंड अ में लघु उत्तरीय प्रश्न हैं एवं प्रत्येक 5 अंक का हैं जबकि खंड ब में से वीर्घ उत्तरीय प्रश्न हैं और प्रत्येक 10 अंक का हैं।
- इस प्रश्न पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

SECTION - A (खंड - अ)

- What determines the position of the IS curve, given its slope, and what causes the curve to shift? Explain.
 - IS वक्र की प्रवणता दी हुई है तो IS वक्र की स्थिति के निर्धारक क्या है? तथा वक्र के विवर्तन के कारण क्या है वर्णन करें।
- Why does IS curve have a negative slope? Explain diagrammatically.
 - IS वक्र ऋणात्मक ढाल वाला क्यों होता है? आरेख से वर्णन करें।

3. Under what circumstances might the LM curve be horizontal?

किन परिस्थितियों में LM-वक्र क्षैतिज हो सकता है?

4124

 Distinguish between the natural rate of unemployment and the natural level of employment.

बेरोजगारी की प्राकृतिक दर तथा रोजगार की प्राकृतिक दर के मध्य विभेद्र कीजिए।

 How does collective bargaining affect wage determination? Elaborate.

सामृहिक सौदा अक्ति मजदूरी दर को कैसे निर्धारित करती है? विस्तारपूर्वक चर्चा करें।

 Explain the impact of decline in consumer spending on the AD curve.

समग्र मांग पर उपभोक्ता व्यय में कमी के प्रभाव का वर्णन कीजिए।

7. Why is the role of the exchange rate or the terms of trade significant for macroeconomic analysis?

तमण्टिमत विश्लेषण हेतु विनिमय दर अथवा व्यापार शर्तो की महत्त्वपूर्ण भूमिका क्यों है?

SECTION - B

(खंड - ब)

 How and why do the income and interest sensitivities of the demand for real balances affect the slope of the LM curve. Diagrammatically explain.

वास्तविक श्रेषों के मांग की आय तथा ब्याज के प्रति संवेदनशीलता LM वक के दाल को बैसे और क्यों प्रभावित करती है।

Elaborate on the short and the long-run impacts of an open market sale on the interest rate and output.

ब्याज दर तथा उत्पादन पर खुले बाजार बिक्री के अल्प तथा दीर्घकालीन प्रभावों की विस्तारपूर्वक व्याख्या करें।

 Suppose you have the following information about a two-sector close economy:

$$C = 2000 + 0.75Y$$

I = 1200 - 24i

L = 0.25Y - 15i

M/P = 2910

4124

5

Drive the equation of IS and LM curves and find out the equilibrium values of income and rate of interest.

माना आपको एक द्वि क्षेत्रीय बंद अर्थव्यवस्था के बारे में निम्न सूचना दी गई है।

C = 2000 + 0.75Y

1 = 1200 - 24i

L = 0.25Y - 15i

M/P = 2910

IS तथा LM पक्रों के समीकरणों को व्यूउत्पन्न कीजिए तथा आय एवं ज्याज की वर के संतुलन मृत्यों को ज्ञात करें।

 "Price-setting decisions by firms determine the real wage paid by firms." Elaborate it by using a suitable diagram.

"फर्मों के ग्रास कीमत निर्धारण निर्णय फर्मों के ग्रास दी गई वास्तविक मजबूरी को निर्धारित करती है" विस्तार से चर्चा करें।

5. How does an increase in unemployment benefits lead to an increase in the natural rate of unemployment?

P.T.O.

ė.

वेरोजगारी हित लाभों में वृद्धि बेरोजगारी की प्राकृतिक दर में किस प्रकार वृद्धि करती है?

 Explain what will happen to output and inflation in both the short and the long-run if the effects of the tax cuts are stronger on aggregate demand than on aggregate supply.

स्पष्ट करें कि यदि कर कटौती का प्रभाव समग्र पूर्ति की नुलना में समग्र मांग पर अधिक पड़ता है तो अल्प एवं वीर्घकाल दोनों में उत्पादन और मुद्रास्कीति का क्या होगा?

 "A legal minimum wage may create unemployment".
 Substantiate your answer to accept or refute the statement by using suitable diagram.

"एक वैधानिक न्यूनतम मजदूरी बेरोजगारी उत्पन्न कर सकती है" उपयुक्त आरेख का प्रयोग करके कथन को स्वीकार अथवा खंडन करने के लिए अपने उत्तर की पुष्टि कीजिए। [This question paper contains 10 printed pages.]

Your Roll No20041563019

Sr. No. of Question Paper: 4441

Unique Paper Code : 12275403

Name of the Paper : Public Finance

Name of the Course : B.A. (Hons) / B.Sc. (Hons) /

B.Com. (Hons)

Semester : IV

Duration: 3 hours 30 minutes Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- The question paper is divided into two sections.
- Attempt five questions in all, selecting three from Section A and two from Section B.
- 4. Simple calculator is permissible.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

 इस प्रक्रन-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।

- 2. प्रश्नपत्र वो खंडों में विभाजित है।
- स्वंड ए से तीन स्वंड बी से दो का चयन करते हुए, कुल पाँच प्रानों को इल करें।
- साधारण कैलकुलेटर की अनुमति है।
- इस प्रज्ञ-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

SECTION A

- (a) What is the importance of fiscal functions of the state with respect to allocation distribution and stabilization? Explain.
 - (b) Discuss why imperfect competition may lead to Pareto inefficiency especially under monopoly market structure. (6)
 - (क) आवंटन, वितरण और स्थिरीकरण के संबंध में राज्य के महत्वपूर्ण वित्तीय कार्य क्या हैं? व्याख्या करें।
 - (स्व) विवेचना करें कि क्यों अपूर्ण प्रतिस्पार्ध विशेष रूप से एकाधिकार बाजार संरचना के तहत परिटी अक्षमता का कारण बन सकती है।

- (a) What are externalities? How do these lead to market failure? (6)
 - (b) Discuss with the help of a diagram, the gains and losses to the society from moving from a socially inefficient level of output to a socially efficient level of output in the presence of negative externalities. Is a zero level of externality socially desirable? (9)
 - (क) बाह्यताएं क्या हैं? ये बाजार की विकलता का कारण कैसे बनते हैं?
 - (ख) नकारात्मक बाह्यताओं की उपस्थित में समाज को सामाजिक स्प से अक्षम उत्पादन स्तर से सामाजिक स्प से उत्पादन के सक्षम स्तर तक जाने से होने वाले लाभ और हानि की एक आरेख की सहायता से विवेचना करें। क्या बाह्यता का भून्य स्तर सामाजिक स्प से बांछनीय है?
- 3. (a) Many government programs both redistribute income and correct a market failure. What are the market failures associated with each of these programs?
 - (i) Social security
 - (ii) Public elementary education

(6)

- (b) 'In dealing with a negative externality problem, Pigouvian tax and Pigouvian subsidy schemes bring an equally efficient outcome with different distributional consequences.' Discuss. Mention two problems associated with the Pigouvian subsidy program. (7+2)
- (क) कई सरकारी कार्यक्रम आय का पुनर्वितरण करते हैं और बाजार की विफलता को ठीक करते हैं। निम्न प्रत्येक कार्यक्रम से जुड़ी बाजार की विफलताएं क्या हैं?
 - (i) सामाजिक सरका
 - (ii) सार्वजनिक प्रारंभिक शिक्षा
- (स्व) 'एक नकारात्मक बाह्यता समस्या से निपटने में, पिगौवियन टैक्स और पिगौवियन सब्सिडी योजनाएं विभिन्न वितरण परिणामों के साथ समान रूप से सक्षम परिणाम लाती हैं।' विवेचना करें। पिगौवियन सब्सिडी कार्यक्रम से जुड़ी वो समस्याओं का उल्लेख कीजिए।
- 4. (a) What is tax incidence? What are the various alternative concepts of tax incidence? (7)
 - (b) Explain using diagrams how introduction of a tax into a competitive market creates a wedge between the price that buyers pay and the price that sellers receive in the case of (i) Unit tax (ii) Ad-valorem tax

- (क) कर भार क्या है? कर भार की विभिन्न वैकल्पिक अवधारणाएं
- (स्त) आरेखों का उपयोग करके व्याख्या करें कि कैसे निम्न (i) यूनिट टैक्स और (ii) एड वोलेरम टैक्स के मामले में प्रतिस्पर्धी बाजार में कर की शुक्तआत केला द्वारा भुगतान की जाने वाली कीमत और विक्रेता द्वारा प्राप्त की जाने वाली कीमत के बीच एक अंतर पैवा करती है।
- 5. Write short notes on any two:
 - (a) Pareto optimal conditions for the provision of public and private goods (use diagrams) (7.5)
 - (b) Utility possibility curve and welfare maximization (7.5)
 - (c) Role of coverage and time period in the distribution of tax burden (7.5)

किन्हीं दो पर संक्षिप्त टिप्पणी लिखिए:

- (क) सार्वजनिक और निजी वस्तुओं के प्रावधान के लिए पारेटो इष्टतम स्थितियां (चित्रों का उपयोग करें)
- (ख) उपयोगिता संभावना वक्र और कल्याण महत्तमिकरण

behind this? How has the relative share of Central and state governments in the revenue space provided by POL products changed from 2011-12 to 2019-20 before and after devolution of taxes? (15)

वर्ष 2020 की पहली छमाही में, जब वैदिवक कच्चे तेल की कीमतें औसतन 40 डॉलर प्रति वैरल से नीचे रहीं, पेट्रोलियम, तेल और स्नेडक (पीओएल) उत्पादों पर भारत की खुदरा कीमतें उच्च बनी रहीं। इसके पीछे क्या कारण थे? करों के हस्तांतरण से पहले और बाद में 2011-12 से 2019-20 तक पीओएल उत्पादों हारा प्रदान किए गए राजस्य स्थान में केंद्र और राज्य सरकारों की सापेक्ष हिस्सेदारी कैसे बदल गई है?

 Discuss the gains from the implementation of Goods and Services tax (GST). What are the distortions associated with GST? (15)

वस्तु एवं सेवा कर (जीएसटी) के क्रियान्वयन से होने वाले लाभों की विवेचना कीजिए। जीएसटी से जुड़ी विकृतियां क्या है?

Consider the following information about an economy:

C = 100 + 0.5(Y-T)

T = 100

G = 200

I = 100

Where C is the consumption function, G denotes government expenditures, T is taxes and I is planned investment.

- (a) Find the equilibrium level of output (income) by way of calculation as well as graphically. Also find the government expenditure multiplier and the tax multiplier. (6)
- (b) Define and derive the balanced budget multiplier. If the government increases its expenditure and taxes by 100 units each, what would be the impact on the equilibrium level of income? Calculate. Will it remain unchanged? Why or why not? (9)

अर्थव्यवस्था के बारे में निम्मलिखित जानकारी पर विचार करें :

C = 100 + 0.5(Y-T)

T = 100

G = 200

1 = 100

जहाँ C उपभोग फलन है, G सरकारी व्यय को दर्शाता है, T कर है और I नियोजित निवेश है।

- (क) गणना के साथ-साथ ग्राफिक रूप से आउटपुट (आय) के संतुलन स्तर का पता लगाएं। सरकारी व्यय गुणक और कर गुणक भी ज्ञात कीजिए।
- (ख) संतुलित बजट गुणक को परिभाषित और प्राप्त कीजिए। यदि सरकार अपने व्यय और करों में से प्रत्येक में 100 इकाई की पृक्षि करती है, तो आय के संतुलन स्तर पर क्या प्रभाव पढ़ेगा? शणना करें। क्या यह अपरिवर्तित रहेगा? क्यों अथवा क्यों नहीं?
- (a) Discuss the role of Finance Commission towards cooperative federalism and how it can remove the imbalance in regional development in India.

(9

- (b) Explain the difference between:
 - (i) Fiscal deficit and primary deficit
 - (ii) Revenue deficit and effective revenue deficit (3+3)

- (क) सहकारी संघवाद के प्रति वित्त आयोग की भूमिका और यह भारत में क्षेत्रीय विकास में असंतुलन को कैसे दूर कर सकता है की विवेचना कीजिए।
 - (ख) इनके के बीच अंतर स्पष्ट करें:
 - (i) राजकोषीय घाटा और प्राथमिक घाटा
- (ii) राजस्व घाटा और प्रभावी राजस्व घाटा

(6000)

[4 his question paper contains 12 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 3047

Α

Unique Paper Code

: 12273404

Name of the Paper

: Research Methodology

Name of the Course

: B.A. (Hons) Economics -

LOCF - SEC

Semester

: 1V

Duration: 3.5 Hours

Maximum Marks: 75

(or as per DU rules)

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- The question paper consists of 8 questions.
- Question 1 is COMPULSORY and carries 25 marks.
- Attempt any five questions out of questions 2-8. Each question carries 10 marks.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

- इस प्रक्रन पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।
- इस प्रश्न-पत्र में आठ प्रश्न हैं।
- पहला प्रश्न अनिवार्य है और इसके 25 अंक हैं।
- प्रश्न क्रमांक 2 8 में कोई 5 प्रश्न करें। प्रत्येक प्रश्न 10 अंक का है।
- इस प्रश्न-पत्र का उत्तर अग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।
- (a) "The structure of a research paper is a gateway to a research project". Discuss.
 - (b) A marketing company wants to know the popularity of a newly launched product across males and females. A survey was conducted on a sample of 200 respondents. Develop an appropriate frame of analysis for this exercise.

(c) Enlist five problems that a social science researcher may face with secondary data sources with an example.

- (d) What are the determinants of validity and reliability of a research instrument? Do these determinants differ across quantitative and qualitative research?
- (e) A researcher outsourced data analysis work for her academic research. Is this ethical/ unethical in a real life setting of our contemporary world which is governed by the market economy?
- (अ) 'शोध आलेख की संस्थना एक शोध रिपोर्ट को समझने में मुख्य भूमिका निभाता है, इस कथन की व्याख्या करो।
- (ब) एक विपणन कंपनी एक नए उत्पाद की पुरुषों और महिलाओं में प्रसिद्धि के बारे में जानना चाहती है। इसके लिए 200 प्रतिचादियों (रेस्पोडेंट्स) का सैंपल इक्कट्ठा करती है। इस सम्बंध में विक्रलेषण का कौन सा तरीका उचित होगा?

- (स) सामाजिक विज्ञान के ओधकर्ता को माध्यमिक छटा स्रोतों के सन्दर्भ में किन पाँच समस्याओं है ? उदारहरण देकर बताए।
- (द) किसी ग्रोध उपकरण की वैद्यता और विश्वसनीयता के कौन-कौन से निर्धारक तत्व होते हैं ? क्या मात्रात्मक और गुणात्मक शोध को आधार पर विषय में कोई अंतर है ?
- (इ) एक श्रोधकर्ता ने अपने अकादमिक शोध के छटा विश्लेषण विश्लेषण का काम किसी बाजार की संस्था से पैसे डेकर करवाया है! बाजारीकरण के इस दौर में क्या ऐसा करना शोध आचारों का उल्लंघन है ?
- (a) How do an essay and a working paper differ from a published research paper?
 - b) Which element of the research process leads to fresh dimensions of the existing literature on a particular theme? How?
 - (अ) एक निबंध और एक विकींग पेपर किसी प्रकाशित शोध आनेख से तरह शिन्न होते हैं?

(ब) शोध आलेख का कौन-सा हिस्सा शोध के नए अध्यामों को जन्म चेता है ? और कैसे ?

- 3. (a) How does a research design differ from a study design? What role does the literature review play in deciding a study design?
 - (b) Research outcomes based on quantitative data are influenced by categorical variables. Elaborate on this using five possible ways of categorizing variables.
 - (अ) शोध प्रास्प किस प्रकार अध्ययन प्रास्प से अलग होता है ? एक अध्ययन प्रास्प का चयन करने में साहित्य अवलोकन किस तरह से मदद करता है ?
 - (ब) श्रेणी चर किस तरह से माजल्मक आंकड़ों पर आधारित एक शोध के परिणामों को प्रभावित करता है ? इन चरों का पाँच प्रकार से वर्मीकरण करते हुए समझाइये ।
- (a) Can good research be conducted without framing a hypothesis? Explain.

- (अ) क्या बगैर परिकल्पनाओं का इस्तेमाल किये एक अच्छी शोध संभव है ? वर्णन करें।
- (ब) किसी क्षेत्र में एक जन स्वास्थ्य नीति पिछले तीन दशकों से चलायी जा रही है। कोई शोधकर्ता इसकी प्रभावशीलता जानना चाहता है। इसके लिए उसे कौन सा अध्ययन प्रारूप इस्तेमाल करना चाहिए?
- 5. (a) The human resource manager of a company that employs 600 people would like to introduce new uniforms. She attempts to find support for her decision by talking to a sample of 10% of employees. Outline two methods to draw a sample, and mention the advantages and disadvantages of both methods.

- (b) An external aggression has forced thousands of students from country X to return to their home countries. You have been asked to suggest some policy prescriptions for rehabilitating them. What kind of sampling method will you use? Also briefly discuss the mode of enquiry you will use.
- (अ) मानव संसाधन प्रबंधक एक कंपनी, जिसमें 600 कर्मचारी काम करते हैं, में नई वहीं लागू करना चाहती है। वह 10 प्रतिशत कर्मचारिओं से बात करने के आधार पर अपने इस निर्णय के पक्ष में समर्थन जानना है। ऐसा करने के लिए कौन से दो सैपलिंग के तरीके वह अपनाये ? इनके फायदें और नुकसान के बारे में भी समझाओं।
- (४) बाहरी हमले की वजह से हजारों विद्यार्थिओं को X देश से अपने-अपने घर लौटना पड़ता है। आपको उनके पुनर्वास के लिए कोई निति सुझाने के लिए कहा गया है। आप कौन-सा सैंपलिंग गेथड चुनेंगे और पूछताछ का तरीका क्या अपनापेंगे?

 (a) An organization conducts a survey about the employee experience who underwent a training session. The following questions were asked on the Likert scale.

Statement 1: The training was relevant.

Statement 2: The instructor was engaging.

Statement 3: The quality of the course material used was poor.

Statement 4: The multimedia tools used were not effective.

Statement 5: The content used was easy to understand.

Statement 6: The overall experience with the training session was satisfactory.

Each statement has five possible responses. For a positive statement, the corresponding five-point numerical scale is as follows:

Strongly Agree 5; Agree 4; Uncertain 3; Disagree 2 and Strongly Disagree 1

Two employees' feedback is presented in the table below. Which employee found the training better?

	Employee 1					Employee 2						
Statement No.	1	2	3	4	5	6	1	2	3	4	15	6
Strongly Agree	ti.					T						
Agree		F		#	#					*		
Uncertain						#						т
Disagree			#									T
Strongly Disagree			1									

- (b) Explain the concepts of 'inflation factor' and 'sampling fraction'. What are the common errors in conducting a sample survey?
- (अ) एक संगठन उन कर्मचारीओं के किसी प्रशिक्षण के अनुभव में एक सर्वे करता है लिकर्ट पैमाने पर आधारित उनसे निम्नलिखित प्रक्र पूछे गए:

कथन । : प्रशिक्षण प्रासंशिक था

कथन 2 : प्रशिक्षक अच्छा था

कथन 3 : पाठ्यक्रम की सामग्री घटिया थी

कथन 4 : मस्टीमीडिया उपकरण प्रभावी नहीं थे

कथन 5 : विषयवस्तु आसान धी

कथन ७ : कुल मिलाकर प्रशिक्षण सत्र संतोषजनक था

प्रत्येक कथन के पाच संभव उत्तर हैं। एक 'सकारात्मक कथन' के लिए, पाच-अंक के संख्यात्मक पैमाने स्तर निम्नानुसार है: दृइता से सहमत-5; सहमत-4; अनिश्चित -3; असहमत-2 और दृइता से असहमत-1

दो कर्मचारीयों की प्रतिक्रिया नीचे तालिका में दी गयी है। कौन से कर्मचारी के अनुसार प्रशिक्षण सत्र बेहतर था?

		कर्मचारी ।			कर्मचारी 2							
Statement No.	1	2	3	4	5	6	1	2	3	4	3	6
हदता से सहमत	.#										*	
सहमत		#		#	0					*		1
अनिश्चित		17	1			#	N.	*				1
असहमत	71		a					1			1	+.
हदता से असहमत	3 6											1.

(ब) इन्यलेशन फैक्टर और सैंपलिंग फ्रेंग की अवधारणों को स्पष्ट कीजिए। एक सैंपल सर्वे करते समय होने वाली सामान्य बुटियों का वर्णन कीजिये।

- (a) Coding of data depends upon the measurement scale of a quantitative variable, Elaborate.
 - (b) What is the difference between referencing and citation? Describe three common referencing styles that are used in academic research.
 - (अ) आंकड़ों की कोहिंग मात्रात्मक चर के माप के पैशाने पर निर्भर करती है। विस्तार समझाईये।
 - (ब) सन्दर्भ और उद्धरण में क्या अंतर है ? अकादमिक शोध में प्रयुक्त होने वाले किन्हीं तीन सन्दर्भ शैलीयों का वर्णन करें।
- 8. Write short notes on any two of the following:
 - (a) Role of ethics in research
 - (b) Qualitative approach to research
 - (c) Snowball sampling
 - (d) Reliability of a research instrument

निम्नलिखित में से किन्हीं दो पर लघु टिप्पणी लिखो:

- (अ) शोध में आचार की भूमिका
- (ब) गुणात्मक शोध विधि
- (स) स्नोबॉल सैंपलिंग
- (द) शोध उपकरण की विश्वसनीयता

[This question paper contains 12 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 3729

A

Unique Paper Code

: 62273601

Name of the Paper

: Basic Computational Techniques

for Data Analysis

Name of the Course

: B. A.(Prog.) SEC

Semester

: VI

Duration: 3 Hours

Maximum Marks: 50

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- You are expected to answer any four (4) out of the eight (8) questions given below.
- Each question is of twelve and a half marks (12%).
 Each question has sub parts.
- 4. Use of simple calculator is allowed.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों को लिए निर्देश

- इस प्रजन-पत्र को सिलते ही ऊपर दिए गए निधारित स्थान पर अपना अनुक्रमांक निश्चिए ।
- अग्रप्ते नीचे दिए गए आठ (8) प्रश्नों में से किन्हीं चार (4) का उत्तर देने की अपेक्षा की जाती है।
- अप्रत्येक प्रजन साढ़े खारह अंक (12%) का है। प्रत्येक प्रजन के उप भाग होते हैं।
- साधारण कीलकुनेटर को उपयोग की अनुगति है।
- इस प्रज्ञन पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में वीजिए, लेकिन सभी उत्तरों का नाध्यम एक ही होना चाहिए ।
- 1. (a) How would you interpret the sign and magnitude of a calculated "r"? Consider in particular the values r = 0, r = -1 and r = +1. (4)
 - (b) "Compound interest is an interest on interest".

 Explain this statement by using a suitable numerical example.
- (c) The linear correlation coefficient for the following data is 0.985658. Interpret the relationship

between these two variables X and Y on the basis of the following data. (4.5)

	A	
4	х .	Y
2	. 5	4
3	S	7
4	9	10
5	12	14
6	14	15
7	16	17
8		

- (अ) आप परिकलित 'r' को चिक्त और परिमाण की व्याख्या कोसे ' करेंगे ' विशेष रूप से मानों r = 0, r = -1 और r = +1 पर , विचार करें।
- (व) "चक्रवृद्धि ब्याज ब्याज पर ब्याज है"। एक उपयुक्त संख्यात्मक उदाहरण की सहायता से इस कथन की ब्याख्या कीजिए।
- (स) निम्नलिखित डेटा के लिए रैखिक सहसंबंध गुणाँक 0.985658 है। निम्नलिखित ऑकडों के आधार पर इन दो चरों X और Y के बीच संबंध की व्याख्या कीजिए।

	A P		8	, c
19	X	Y		5
2	5		- 4	
3	8		7	
4	9		10	
5	12		14	4
6	14		15	Same and
為	16		17	
8				In (Ctrl) -

- (a) In addition to RBI data base, which other agencie
 bring out the data on macroeconomic aggregates
 Briefly discuss the main features and application
 of such data.
 - (b) Write the syntax for calculation of skewness i excel from the following data set and also interprethe result of skewness found if skewness i -0.20435. (4

Class	Α	В	С	D	E	F	G	н	1
Marks	78	58	98	87	67	54	34	58	80

(c) (i) Find out the confidence interval and interpret it using the following data.

Data							
Sample Standard deviation	25.28						
Sample mean	43.89						
Sample Size	27						
Confidence level	95%						

- (ii) What is the level of significance from the above data?
- (iii) Define Type I and Type II error. (4.
- (अ) आरबीआई देटा चेस के असाचा, कौन सी अन्य एजेंसिया मेजो-इकोनोमिक एग्रीगेट्स पर डेटा लाती हैं ? ऐसे डेटा की मुख्य विशेषताओं और अनुप्रयोगों पर संक्षेप में चर्चा करें ।
- (व) निम्नलिखित डेटा सेट से एक्सेल में स्क्यूनेस की शणना के लिए सिटेक्स लिखे और पवि स्क्यूनेस -0.20435 है तो स्केयनेस को परिणाम की व्याख्या भी करें।

1	Class	A	В	C	D	E	F	G	н	1
7	Marks	78	58	98	87	67	54	34	58	80

 (स) (i) विश्वास अंतरास का पता लगाएं और निम्नलिखित डेटा का उपयोग करके इसकी व्याख्या करें।

Data	
Sample Standard deviation	25.28
Sample mean	43.89
Sample Size	27
Confidence level	050

- (ii) उपरोक्त आंकड़ों से महत्व का स्तर क्या है ?
- (iii) टाइप I और टाइप II बुटि को परिभाषित करें।
- (a) Explain the nature and types of data used in social science research. Discuss the various methods of analysis of quantitative data.
 - (b) The following table indicates the percentage of residential electricity consumption in the United States, in a recent year organized by type of use.

 (4)

Type of Use	Percentage %
Cooking	2%
Cooling	15%
Electronics ·	9%
Heating	15%
Lighting	13%

10%
10%
304
23%

- (i) Construct a bar chart, and a pie chart.
- (ii) Which graphical method do you think is best for portraying above data?
- (e) Can we compare the standard deviation for both the following data sets? State how can you determine the variability of these data sets?

(4.5)

A	A	. 8	
1	Student	Height (Cr W	leight (vol
2	1	178	65
	2	180	70
	4	175	71
	. 5	185	72
1	6	190	73

(अ) सामाजिक विज्ञान अनुसंधान में प्रयुक्त हेटा की प्रकृति और प्रकारों की व्याख्या करें। माजात्मक हेटा के विक्रलेषण के विभिन्न तरीकों पर चर्चा करें। (व) निम्न लालिका संयुक्त राज्य अमेरिका में हाल के वर्ष में उपयोग के प्रकार द्वारा आयोजित आधासीय विजली खपत के प्रतिशत को इंगित करती है।

	Type of Use	Percentage %
_	Cooking	2%
-	Cooling	15%
1	Electronics	9%
+	Heating	15%
+	Lighting	13% .
	Refrigeration	10%
*	Water Heating	10%
	Wet Cleaning	3%
	Other	23%

- (i) एक बार चार्ट और एक पाई चार्ट बनाइए।
- (ii) उपरोक्त डेटा को चिवित करने के लिए आपको कौन सी चिवनय विधि सबसे अच्छी लगती।
- (स) क्या हम निम्नलिखित दोनों हेटा सेट के लिए मानक विचला की तुलना कर सकते हैं ? बताएं कि आप इन केटा सेटों की परिवर्तनशीलता कैसे निर्धारित कर सकते हैं ?

3729

9

À	A	8	c	D
1	Student	Height (Cf	Weight (KG)	
-2	1	178	65	
3	2	180	70	
4	3	175	71	
5	4	185	72	
6	5	177	73	
7	6	190	79	

- 4. Write short notes on any two of the following:
 - (a) Methods of data collection
 - (b) R Studio
 - (c) Covariance

(12.5)

निम्नलिखित में में किसी दो पर संक्षिप्त टिप्पणी लिखिए:

- (अ) डेटा संग्रह के तरीके
- (प) R स्ट्रियो
- (स) सहप्रसरण
- (a) "A coefficient estimate is statistically significant at the 10% significance level". Explain. (4)
 - (b) What is NPV? What function would be required to calculate NPV in Excel. (4.5)

(c) Write significance of Boxplot in Excel. (c)

10

- (अ) "एक गुणांक अनुमान 10% महत्व स्तर पर सास्थ्यकीय रूप से महत्वपूर्ण है"। समझाइये ।
- (व) NPV क्या है ? एक्सेल में NPV की मणना करने के लिए किस फंक्शन की आवश्यकता होगी।
- (स) एक्सेल में बॉक्सप्लॉट का महत्व लिखिए।
- 6. (a) Write the syntax in MS Excel for finding Kurtosis and also determine the type of Kurtosis of the following data set. (4)

X 22 26 62 54 34 40 28

(b) Explain the importance of Line diagram and Histogram. What are the advantages and disadvantages of using them in data analysis?

(4)

(c) The following table exhibits the relation between change in temperature and sale of ice-cream. Build a linear regression equation from given ANOVA table below. (4.5)

	Conflictors	Standard Error	t Stat	Paroline	Lawer 9336	Upper 95%	Lower 95.6%	Upper 93.0%
Intercept	8,050741	4.691719			-4.97555	21.07704	4.97556	21.0770
ssic of loc-	0.000.00		4.740017		6.00517	0.000647	8.00012	A-00064

(अ) Kurtosis लोजने के लिए एम एस एक्सेल में सिटैक्स लिखें और निम्नलिखित डेटा सेट के Kurtosis के प्रकार को भी निर्धारित करें।

v	22.	20	200		_		
-4	22	26	62	54	34	40	28

- (व) रेल्य आरेख और हिस्टोग्राम के महत्य की व्याख्या करें। डेटा विश्लेषण में उनका उपयोग करने के क्या फायदे और नुकसान है?
- (स) निम्न तालिका तापमान में परिवर्तन और आइनक्रीम की बिक्री के बीच संबंध दर्शाती है। नीचे वी गई एनोबा तालिका से एक रेखिक समाख्यण समीकरण बनाइए।

Coefficients	Standard Error	2 Day	Total .	Laurer	Upper	Liner	Upper
	errer .	2 2000	Peration	93%	93%	95,0%	95.0%

Intercept 8.056741 4:801739 - 1.715947 0.161314 -4.97556 21.07704 4.97556 21.0770

sale of

cresm 6,000408 8.6E-05: 4.749017 0.008977 0.00017 0.000617 0.00017 0.00064

(a) The file Sedans contains the overall miles per gallon (MPG) of 2021 midsized sedans:

32	46	16	30	34	56	48	28	44	36	54	20
32 69	22	33	22	14	38	37	32	30	45	33	25

- (i) Compute mean and median.
- (ii) Compute the variance, standard deviation, range, coefficient of variation. (6.5)

P.T.O. .

- (b) What do you mean by hypothesis? Is it necessary to formulate hypothesis in every research study in social sciences?
- (अ) फाइल सेहान में 2021 मध्यम आकार की सेडान की कुल मील प्रति गैलन (एकीपीजी) शामिल है:

32	46	16	30	34	56	48	28	44	36	54	20
69	22	33	22	14	38	37	32	30	45	33	25

- (i) माध्य और माध्यिका की गणना करें।
- (ii) विधरण, मानक विचलन, भ्रेणी, भिन्नता के गुणांक की गणना वारें।
- (च) परिकल्पना से आप क्या समझते हैं ? क्या सामाजिक विज्ञान के प्रत्येक शोध अध्ययन में परिकल्पना तैयार करना आवश्यक है ?
- 8. Write short notes on any two of the following:

- (i) Goodness of Fit R2
- (ii) Equated Monthly Instalment (EMI)
- (iii) OLS Regression Method

निम्नलिखित में से किन्हीं दो पर संक्षिप्त टिप्पणी लिखिए

- (i) फिट R2 की अच्छाई
- (ii) समान मासिक किस्त (ईएमआई)
- (iii) OLS रिवेशन विधि

[This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 3478

A

Unique Paper Code

: 12271602

Name of the Paper

: Development Economics - II

Name of the Course

: CBCS LOCF Core - B.A.

(Hons.) Economics

Semester

· VI

Duration : 3 Hours

Maximum' Marks: 75

Instructions for Candidates

Write your Roll No. on the top immediately on receipt of this question paper.

This paper consists of 8 questions.

Answer any five questions.

The marks for each question are written along with the questions.

Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

4.

इस प्रश्न - पत्र के मिलते ही कपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए ।

- 2. इस प्रश्न-पत्र में 8 प्रश्न हैं।
- किन्हों पाँच प्रश्नों के उत्तर वीजिए।
- प्रत्येक प्रश्न को अंक प्रश्न को सामने दिए गए हैं।
- इस प्रका-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में वीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।
- In developing countries, fertility rates continue to be sticky and high, even in the face of falling death rates.
 Analyse the various social and economic factors that help in explaining the micro inertia of fertility rates at the household level. (15)

विकासशील देशों में, मृत्यु दर गिरने के पावजूद भी प्रजनन दर्भूस्थिर और उच्च बनी हुई है। विभिन्न सामाजिक और आर्थिक कारकों का विक्रतेषण करें जो घरेलू स्तर पर प्रजनन दर की सूक्ष्म जड़ता की समझाने में मदद करते हैं।

 Development proceeds via the joint transfer of labour and agricultural surplus from the traditional agricultural sector to the modern industrial sector. Explain the process with the help of suitable diagrams. (15) विकास पारंपरिक कृषि क्षेत्र से आधुनिक औदयोगिक क्षेत्र में श्रम और कृषि अधिशेष के संयुक्त हस्तांतरण के माध्यम से होता है। उपयुक्त असेत्वों की सहायक्षा से प्रक्रिया को स्पष्ट कीजिए।

- (a) Why is fixed rent tenancy considered to be a more efficient contractual arrangement than sharecropping? Explain using the concept of Marshallian inefficiency in this context. (10)
 - (b) How can sharecropping contract be used as a device to screen tenants? (5)
 - (अ) स्थिर किराये की किरायेवारी को बटाईदारी की नुसना में अधिक कुशल संविदात्मक व्यवस्था क्यों माना जाता है? इस संदर्भ में मार्शिलयन अक्षमता की अवधारणा का प्रयोग करते हुए व्याख्या करें।
 - (ब) घटाईटार अनुबंध का उपयोग किरायेदारों की स्क्रीनिंग के लिए एक उपकरण के इव में कैसे किया जा सकता है?
- 4. A prudent land reforms policy has the ability to increase overall employment and output in the economy. Elucidate the statement using the nutrition-based model of labour market.

 (15)

एक विवेकपूर्ण भूगि सुधार नीति में अर्थव्यवस्था में समग्र रोजसार और उत्पादन बढ़ाने की समता होती है। श्रम बाजार के पोषण अरधारित गाँउल का प्रयोग करते हुए इस कथन को स्पष्ट कीजिए।

- (a) What are the various possible forms of collateral in the rural credit market? (2)
 - (b) If a collateral is valuable to both the lender and the borrower, derive the condition under which there will be no default. Also specify, how can eredit be used as a veil for acquiring collateral? (4,3)
 - (c) Assume that a moneylender from a remote village can earn 20% rate of interest if he deposits Rs. 10,000 in a nationalised bank, with no fear of losing any of this money. However, alternatively he can take a risky option and lend the same in the informal market at a higher rate and thereby earning a risk premium. For each of the case below, calculate the minimum rate of interest that this moneylender would be lending in the informal market. Also, find out what is the risk premium in each case.

- (i) With probability 1/3 that the loan will be repaid with interest, probability 1/3 that only the principal will be repaid, and probability 1/3 that the loan will not be repaid at all.
- (ii) With probability 1/2 the loan will be repaid with interest, and with probability 1/2 the loan will not be repaid at all. (3)
- (अ) ग्रामीण करण बाजार में संपादिवेंक के विभिन्न संभावित हुए क्या है?
- (घ) यदि ऋणदाता और उधारकर्ता दोनों के लिए एक संपार्श्विक मृत्यवान है, तो उस गर्त की प्रप्त करें जिसके तहत कोई चूक नहीं होगी। यह भी निर्दिष्ट करें कि संपार्श्विक प्राप्त करने के लिए केंडिट को पर्टे के रूप में कैसे उपयोग किया जा सकता है?
- (स) माम ले कि एक दूरदराज के गांच से एक सामुकार 20% ब्याज दर अजिंत कर सकता है यदि वह एक राष्ट्रीयकृत बैंक में 10,000, राममे जमा करता है। इस पैसे को खोने का कोई दर नहीं है। हालांकि, वैकल्पिक रूप से वह एक जीखिम भरा विकल्प से सकता है और उसे अनीपचारिक बाजार में उच्च दर पर उधार दे सकता है और इस तरह एक जीखिम प्रीमियम अर्जित कर

सकता है। नीचे दिए गए प्रत्येक मामले के लिए, ब्याज की न्यूनतम दर की गणना करें कि यह साहुकार अनीपधारिक बाजार में उधार देगा। साथ ही, पता करें कि प्रत्येक गमले में जोखिन प्रिमियम क्या है?

- (i) प्राविकता 1/3 के साथ कि ऋण ब्याज के साथ चुकाय और प्राविकता 1/3 कि केवल मुद्धान चुकाया जाएगा, और प्राविकला 1/3 कि ऋण बिल्कुल चुकाया नार्ग जाएगा।
- (ii) प्रायिकता के साथ ½ ऋण ब्याज के साथ चुकावा जाएगा, और प्रायिकता के साथ ½ ऋण विल्कुत भी नहीं चुकाया काएगा।
- What is the rationale of economic regulation in general? Explain why command and control approach dominates the policies for environmental regulation worldwide when most economists believe economic incentives are much better. (5,10)

सामान्य रूप से आर्थिक विनियमन का आधित्व क्या है? समझए कि दुनिया भर में पर्यावरण विनियमन के लिए शीतियों पर कमान और नियजन दृष्टिकोण क्यों हावी है, जब आधिकाश अर्थआस्थियों का मानना है कि आर्थिक बोलाहन बहुत केवा 3478

 Elecidate how ignoring the structural fault lines manifested itself into the Global Financial Crisis of 2008? What lessons does the crisis bestow upon the financial world? (15)

स्पन्ट करें कि 2008 में पेविनक विश्लीय सकट में सर्व्यनात्मक दोध रेसाओं की अमरोबंधी क्षेत्रे हुई? विश्लीय पुलिया पर सकट ह्या समक देता है?

8. Write short note on any two:

(7.5 each)

- (a) Positive effects of population growth on development
- (b) Impact of globalization on the poor as users of public services and common resources
- (c) Policies for development and environment
- (d) Lender's risk hypothesis

किन्हीं दो पर संक्षिप्त टिप्पणी विकार

Andre 141

(अ) विकास पर जनसंख्या वृद्धि वे सकाराभक प्रशान

3478

(म) सार्वजनिक सेवाओं और सामान्य संसाधनों के उपयोगकर्ताओं के रूप में गरीयों पर वैश्वीकरण का प्रभाव

(क) विकास और पर्यावरण के लिए नीतिया

(व) क्रम्णवाता की जोसिम परिकल्पना

(3000)

[This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 3925

Unique Paper Code : 62277603

Name of the Paper

: Economic Development and

Policy in India - II

Name of the Course

: B.A. (Prog.) DSE

Semester

: VI

Duration : 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2: Answer any 5 questions.
 - 3. All questions carry equal marks.
 - 4. Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

- इत प्रश्न-पत्र के मिलते ही अपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक तिरिवए।
- किनीं 5 प्रश्नों के उत्तर दीजिए ।

- सभी प्रश्नों के समान अंक हैं।
- इस प्रमन-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन तभी उत्तरों का माध्यम एक ही होना चाहिए.
- What do we mean by macroeconomic stability or balance? What has been India's record on external balance from 1991 to 2016?

समिष्ट आर्थिक स्थिरता या संतुलन से हमारा क्या तात्पर्य है? 1991 से 2016 सक बाहरी संतुलन पर भारत का रिफॉर्ड क्या रहा है?

 What have been the drivers of transformation in agriculture and allied activities since 1991? Does this also imply a transformation of the rural sector? Explain.

1991, के बाद से कृषि और संबद्ध गतिविधियों में परिवर्तन के कारक क्या रहे हैं? क्या इसका मतलब ग्रामीण क्षेत्र का परिवर्तन भी है? समझाएं।

3. (a) What are the main arguments in favour of land reforms? What are the factors which affect the success of land reforms?

> भूमि तुमार के पक्ष में मुख्य तर्क क्या हैं? भूमि शुमारों की सफलता को प्रभावित करने वाले कारक कौन से हैं?

3925

(b) What are the areas of concern and the needed corrections required with respect to irrigation in the Indian agriculture?

भारतीय कृषि में सिंचाई के संदर्भ में ध्यान देने वाले मुद्दे और आवस्थल तुधार कौन से हैं?

 The trajectory of the industrial sector of India since independence has been quite sluggish in terms of its contribution to the Gross Domestic Product. Evaluate

आज़ादी के बाद से भारत के औद्योगिक क्षेत्र का प्रक्षेपवक्र ज़ीक्षेपी में योगदान के मामले में काफी मन्दर्गति रहा है। इसका मून्यांकन करें।

5. What are the major arguments in favour of Foreign Direct Investment (FDI) for a country? Flow has India benefited from FDI after substantially opening up the economy to FDI?

किसी देश को लिए प्रत्यक्ष विदेशी निवेश (FDI) को पक्ष में प्रमुख तर्क क्या हैं? अर्थव्यवस्था को एफडीआई के लिए पर्याप्त रूप से खोलने के बाद एफडीआई से भारत किस तरह लाभान्यित हुआ है?

 Explain the challenges of the services-led growth of the Indian Economy citing the role of liberalisation in this sector.

इस क्षेत्र में जवारीकरण की भूमिका का हवाला देते हुए भारतीय अर्थव्यवस्था के सेवा प्रेरित विकास की चुनीतियों की व्याख्या करें।

"There are constraints on public, household and corporate balance sheets, abandoning export orientation is akin to killing the only goose that can lay eggs." Using the above statement, explain whether the trade policy adopted in the Indian economy is warranted and will it work in the future?

"सार्वजनिक, घरेलू और कॉर्पोरिट चैतेंस शीट पर दवाब हैं, निर्पातीन्तुखता को छोड़ना और देने वाली एकमात्र हम को मारने जैसा है।" उपरोक्त कथन का प्रयोग करते हुए स्पष्ट करें कि बचा भारतीय अर्थव्यवस्था में अपनाई गई व्यापार नीति की आवश्यकता है और क्या यह भविष्य में काम करेगी?

- Write short notes on any two of the following:
 निम्नलिक्त में से किन्हीं दो पर संज्ञिप टिप्पणी निकिए:
 - (a) Inflation Targeting
 मृद्रास्फीनि को लक्षित करना
 - (b) Low skill manufacturing exports कम कोशल विमिर्माण निर्मात
 - (c) Privatisation theory নিত্ৰীকলে ভিত্ৰাল
 - (d) Servicification trends in Indian Manufacturing भारतीय दिनिर्माण में सेवाकरण की प्रवृतियाँ

(3500)

[This question paper contains 14 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 3183

Unique Paper Code

: 12277608

Name of the Paper

: Environmental Economics

Name of the Course

: B.A. (Hons.) Economics

Discipline Specific Elective

(DSE)

Semester

: VI

Duration: 3.5 Hours

Maximum Marks: 75

(or as per DU rules)

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper,
- All questions carry equal marks.
- 3. Attempt any five out of eight questions.
- 4. Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्वेश

इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमाक लिखिए।

- आठ में से कोई पाँच प्रक्न हल करें।
- इस प्रक्रन पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।
- (a) 'Biocentrism is in stark contrast with Anthropocentrism in its moral valuation of sentient life forms.' Comment.
 (7)
 - (b) Briefly describe some of the major sources of water pollution in India. Discuss some policy measures that have been undertaken by the government to reduce water pollution in India. (Reference: "State of Environment Report - India 2009")
 - (अ) 'बायोसेंट्रिज्म मानव जीवन रूपों के नैतिक मूल्यांकन में मानवज्ञास्य के साथ बिल्कुल विपरीत है।' टिप्पणी करें।
 - (व) भारत में जल प्रदूषण को कुछ प्रमुख स्रोतों का संक्षेप में वर्णन करें। भारत में जल प्रदूषण को कम करने के लिए सरकार हारा किए गए खुछ नीतिगत उपायों पर चर्चा करें। (संवर्भ) "राज्य पूर्यावरण रिपोर्ट-भारत 2009")

3

- (a) Consider a society with two consumers, X and Y. Suppose X's demand for air quality is given by Q_x = 1 P, where P is the marginal willingness to pay for air quality by X. Similarly, Y's demand is given by Q_y = 2 2P. Suppose the marginal cost of supply is P.
 - (i) What is the socially efficient quantity of clean air?
 - (ii) How much clean air would a competitive market provide? (1.5,1.5)
 - (b) Explain the concept of excludability and rivalry in the context of public goods and bads. Categorize the following according to the extent of excludability and rivalry in one of the four categories - rival and excludable, rival and nonexcludable, non-rival and excludable and non-rival and non-excludable. Justify your answer briefly.
 - (i) Household Garbage
 - (ii) Fishery with regulation
 - (iii) Greenhouse Gases
 - (iv) Local beach with control access

P.T.O.

(6)

- (c) What are stock pollutants? Derive the efficient level where the marginal savings from emitting a unit of pollution today equals the weighted sum of all marginal damages that may occur in future.
- (3) दो उपभोक्ताओं, X और Y के साथ एक समाज पर विचार करें। मान लीजिए कि X की वायु गुणवन्ता की मांग $Q_x = 1 P$ द्वारा दी गई है, जहां P, X द्वारा वायु गुणवन्ता के लिए भुगतान करने की सीगांत इच्छा है। इसी तरह, Y की मांग $Q_y = 2 2P$ द्वारा दी गई है। मान लीजिए आपूर्ति की सीगांत लागत P है।
 - (i) स्वच्छ हवा की कुशल मात्रा क्या है?
 - (ii) एक प्रतिस्पर्धी बाजार कितनी स्वच्छ हवा प्रदान करेगा?
- (य) सार्वजनिक वस्तुओं और बुरे के संदर्भ में विष्करण और प्रतिइदिता की अवधारणा की व्याख्या करें। चार श्रेणियों में से एक में बिष्करण और प्रतिइदिता की सीमा के अनुसार वर्गीकृत करें -प्रतिइद्धी और विष्कृत, प्रतिइद्धी और गैर-बिष्कृत, गैर-प्रतिइंडी और बिष्कृत और गैर-प्रतिइद्धी और गैर-बिष्कृत। अपने उत्तर की संक्षेप में पुष्टि कीजिए।

- (i) घरेलू कचरा
- (ii) नियमन के साथ मत्स्य पालन
- (iii) ग्रीनहाउस गैसे
- (iv) नियंत्रण पहुंच के साथ स्थानीय समुद्र तट
- (स) स्टॉक प्रदूषक क्या हैं? कुशल स्तर प्राप्त करें जहां आज प्रदूषण की एक इकाई के उत्तर्जन से होने वाली सीमांत बधत भविष्य में होने वाली सभी सीमांत क्षतियों के भारित योग के बराबर हो।
- (a) How are prescriptive regulations different from economic incentives? What are their advantages over prescriptive regulations? (4.3)
 - (b) What is the Contingent Valuation approach? Clearly specify the steps involved in the Contingent Valuation approach. What are its limitations?

(2,4,2)

- (अ) निर्देशात्मक नियम आर्थिक प्रोत्साहनों से कैसे भिन्न हैं? निर्देशात्मक नियमों पर उनके क्या फायदे हैं?
- (व) आकस्मिक मृत्यांकन दृष्टिकोण क्या है? आकस्मिक मृत्यांकन वृष्टिकोण में शामिल चरणों को स्पष्ट रूप से निर्दिष्ट करें। इसकी सीमाएं क्या है?

- 4. (a) Consider a firm that is competitive in goods (output) market but a sole supplier of pollution i.e., a monopolist in the provision of pollution (bad). Prove that a monopolist provider of pollution can manipulate the emission tax by reducing pollution below the efficient level. Also shade the deadweight loss graphically. (7)
 - (b) A steel manufacturer produces output at costs, C_s = ½ Q_s² where Q_s is the quantity of steel produced in tons. Each ton of steel comes with 2 units of emissions. Pollution damage is Rs. 2 for each unit of emissions. Therefore, government charges Rs. 2 per unit of emissions as a Pigouvian fee. The firm sells competitively at Rs. 12 per ton.
 - (i) Find the equilibrium level of steel production. Flow much does the manufacturer pay in emission fees? What are its profits?
 - (ii) Because of technological innovation, there exists a device which would reduce firm's emissions to one unit for each ton of output. How much would the firm be willing to pay for such a device? (4,4)

- (अ) एक फर्म पर विचार करें जो माल (उत्पादन) बाजार में प्रतिस्पार्धी है, लेकिन प्रदूषण का एकमात्र आपूर्तिकर्ता है, यानी प्रदूषण (खराब) के प्रावधान में एकाधिकार है। साबित करें कि प्रदूषण का एकाधिकार प्रदाता कुशल स्तर से नीचे प्रदूषण को कम करके उत्सर्जन कर में हेरफेर कर सकता है। डेडवेट लॉस को ग्राफिक रूप से भी छायांकित करें।
- (थ) एक स्टील निर्माता C = ½ Q,² लागत यर उत्पादन का उत्पादन करता है, जहां Q, टन में उत्पादित स्टील की मात्रा है। प्रत्येक टन स्टील 2 यूनिट उत्सर्जन को साथ आता है। प्रवृषण से उत्सर्जन की प्रत्येक इकाई के लिए ह. 2 नुकसान होता है इसलिए सरकार रुपये 2 प्रति यूनिट उत्सर्जन पिगीवियन शुल्क के रूप में बसूलती है। फर्म प्रतिस्पर्धी रूप से रुपये 12 प्रति टन पर केवती है।
 - इस्थात उत्पादन का संतुलन स्तर ज्ञात कीजिए। निर्माता उत्सर्जन शुल्क में कितना भुगतान करता है? इसके लाभ क्या है?
 - (ii) तकनीकी नवाचार के कारण, एक उपकरण भोजूद है जो प्रत्येक टन उत्पादन के लिए फर्म के उत्सर्जन को एक इकाई तक कम कर देगा। फर्म ऐसे उपकरण के लिए कितना भगतान करने को तैयार होगी?

- (a) "Agriculture sector is among the worst affected sectors due to climate change". In this context, explain the Ricardian method used by economists to quantify the impact of changes in weather patterns on crop yields.
 - (b) Compare the demand and willingness to pay curves for a marketable good i.e. petrol, and air pollution? Illustrate graphically, shade the consumer surplus in both cases. (8)
 - (अ) "जलवायु परिवर्तन के कारण कृषि क्षेत्र सबसे बुरी तरह प्रभावित क्षेत्रों में से है"। इस संदर्भ में, फसल की पैदावार पर मौसम के पैटर्न में बदलाव के प्रभाव को मापने के लिए अर्थशास्त्रियों द्वारा उपयोग की जाने वाली रिकार्डियन पद्धति की ब्याख्या करें।
- (य) एक विषणन योग्य वस्तु यानी पेट्रोल, और वायु प्रदूषण के लिए मांग और वक्र का भुगतान करने की इच्छा की तुलना करें? वोनों ही मामलों में उपभोक्ता अधिशेष को रेखांकन द्वारा चित्रित करें।
- (a) Suppose that a wood pulp mill is located on the bank of the river. The private marginal cost (MC) of producing wood pulp (Rs. per ton) is given by the function

 $MC_{pvi} = 10 + 0.5Y$

Y: tons of wood pulp produced

Each ton of wood pulp produces pollutant that flows into the water which causes damage valued at Rs. 10. There persists external cost.

The marginal benefit (MB) to society of each ton of pulp produced (in Rs.) is given by

MB = 30 - 0.5Y

This can be understood as the demand curve of wood pulp for society.

- (i) Find the profit-maximizing output of wood pulp.
- (ii) Find the pulp output which maximizes net social benefits.
- (iii) Explain why the socially efficient output of wood pulp is lower than the private profitmax output level. (3)
- (b) According to the Coase theorem, if there are no barriers to reaching an agreement, 'we get efficiency, regardless of how property rights are

initially distributed. There are six basic assumptions behind the theorem. Discuss any four of the assumptions and show how efficiency is affected if these assumptions are violated.

(12)

(अ) मान लीजिए कि लकड़ी की सुगदी मिल नदी के किनारे स्थित है। लकड़ी की लुगदी (रुपये प्रति टन) के उत्पादन की निजी सीमांत लागत (MC) फंक्शन झारा दी जाती है

 $MC_{pvt} = 10 + 0.5Y$

Y: टन लकड़ी की लुगदी का उत्पादन किया गया

लकड़ी को लुगदी का प्रत्येक टन प्रदूषक पैदा करता है जो पानी में वह जाता है जिससे रुपये 10. की क्षति होती है। बाहरी लागत वनी रहती है।

समाज को उत्पादित प्रत्येक टन लुगदी (रुपये में) का सीमात $m_{\rm H} = 30 - 0.5 {
m Y}$ हारा दिया जाता है।

इसे समाज के लिए लकड़ी की लुगदी की मांग वक्र के रूप में समझा जा सकता है।

 (i) लकड़ी की लुगदी का लाभ - अधिकतम उत्पादन ज्ञात कीजिए।

- (ii) लुगदी उत्पादन का पता लगाएं जो शुद्ध सागाजिक लाभ को अधिकतम करता है।
- (iii) बताएं कि लकड़ी की लुगदी का सामाजिक रूप से कुशल उत्पादन निजी लाभ-अधिकतम उत्पादन स्तर से कम क्यों है।
- (ब) कोस प्रवेय के अनुसार, यदि किसी समझौते तक पहुंचने में कोई बाधा नहीं है, तो हम दक्षता प्राप्त करते हैं. भले ही संपत्ति के अधिकार शुरू में कैसे वितरित किए जाते हैं। प्रमेय के पीछे छह बुनियादी धारणाएँ हैं। किन्हीं चार पूर्वधारणाओं की चर्चा कीजिए और दिखाइए कि यदि इन मान्यताओं का उल्लंधन किया जाता है तो दक्षता कैसे प्रभावित होती है।
- 7. (a) Two identical firms save money from polluting. A firm's marginal savings from emitting an amount e is given by 10 2e_j. The two firms differ in their impact on ambient pollution concentration. Two units of emissions from firm 1 result in one unit of ambient pollution. Firm 2 has twice the impact on ambient pollution from the same amount of emissions.
 - (i) What are the transfer coefficients for each of the two firms?

Ċ.

- (ii) If the marginal damage per unit of ambient pollution is given by MDA (p) = 2p. What are the efficient levels of emissions and marginal cost to each firm? Also compute the total ambient pollution.
- (b) "Existing experimental and quasi-experimental evidence on Command and Control (CAC) and Market Based Instruments (MBI) policies in developing countries, specifically, clearly indicates that CAC and MBI policies can have significant environmental benefits in developing countries." Do you agree? Elaborate.
- (अ) दो समान फर्म प्रदूषण से पैसा बचाती हैं। एक e उत्सर्जित करने से एक फर्न की सीमांत बचत 10 - 2c, हारा दी - जाती है (MS, = 10 - 2e.)। दोनों फर्न परिवेश प्रदृषण एकाग्रता पर उनके प्रभाव में भिन्न हैं। फर्म 1 से उत्सर्जन की दो इकाइयों के परिणाम स्वरूप परिवेश प्रदूषण की एक इकाई होती है। फर्म 2 का उत्सर्जन की समान मात्रा से परिवेशी प्रदूषण पर दुगना प्रभाव पडता है।
 - (i) दोनों फर्मों में से प्रत्येक के लिए स्थानांतरण गुणांक क्या

13

- (ii) यदि परिवेशी प्रदूषण की प्रति इकाई मामूली क्षति MDA (p) = 2p द्वारा दी जाती है। प्रत्येक फर्म के लिए उत्सर्जन के कुशल स्तर और सीमांत लागत क्या हैं? कुंल परिवेश प्रदूषण की भी गणना करें।
- (ब) "विकासशील देशों में कमात एंड कंट्रोल (CAC) और मार्केट बेस्ड इंस्ट्रमेंट्स (MBI) नीतियों पर मौजुदा प्रयोगात्मक और अर्ध - प्रयोगात्मक साध्य, विशेष रूप से, स्पष्ट रूप से इंगित करता है कि CAC और MBI नीतियों के विकासशील देशों में महत्त्वपूर्ण पर्यावरणीय लाभ हो सकते हैं।" क्या आप सहमत हैं? विस्तार में बताना।
- (15)Write short notes on any three:
 - (i) European Union Emissions Trading Scheme (EU-ETS)
 - (ii) Use and Non-Use Value of Environmental Resources
 - (iii) Green and brown issues in environment
 - (iv) Tax Interaction Effect
 - (v) Value of Statistical Life

किन्हीं तीन पर संक्षिप्त टिप्पणियाँ लिखिए:

- (i) यूरोपीय संघ उत्सर्जन व्यापार योजना (ईयू-ईटीएस)
- (ii) पर्यावरणीय संसाधनों का उपयोग और गैर-उपयोग मृत्य
- (iii) पर्यावरण में हरे और भूरे रंग के मुद्दे
 - (iv) टैक्स इंटरेक्शन प्रभाव
- (v) सारिव्यकीय जीवन का मूल्य

This question paper contains 6 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 3004

A

Unique Paper Code

: 12271601

Name of the Paper

: Indian Economy - II

Name of the Course

: B.A. (H) Economics

Semester

: VI

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- Attempt any five questions.
- 3. All questions carry equal marks 15 marks each.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

 इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।

- कोई पाँच प्रश्न हल कीजिए।
- सभी प्रजनों के अंक समान हैं, प्रत्येक के लिए 15 अंक ।
- इस प्रश्न पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।
- Critically examine the economic strategy of the current government to achieve back the lost growth. Discuss in this context the progress achieved in terms of building what Arvind Subramanian calls the "hardware and software of economic success".

खोई हुई वृद्धि को वापस पाने के लिए वर्तमान सरकार की आर्थिक रणनीति का आलोचनात्मक परीक्षण कीजिए। इस संदर्भ में अरविंद सुबमण्यम जिसे "आर्थिक सफलता का हाडवियर और सॉफ्टबेयर" कहते हैं, के निर्माण में प्राप्त प्रगति की विवेचना करें।

 Discuss in detail the evolution of Indian trade policy since 1991, identifying both the significant progress made through reform and the areas where further progress is required. सुधारों के माध्यम से हुए महत्वपूर्ण प्रगति और क्षेत्रों, जहाँ और प्रगति की आवश्यकता है कि पहचान करते हुए 1991 के बाद से भारतीय व्यापार नीति के विकास पर विस्तार से चर्चा करें।

 "Abandoning export orientation is akin not just to killing the goose that has laid golden eggs. It is akin to killing the only goose that can lay eggs." Discuss this statement in the context of India's more recent inward orientation.

"निर्यात अनुकूलन को छोड़ना कोवल उस हस को मारने जैसा नहीं है जिसने मुनहरे और दिए हैं। यह उस एकमात्र हंस को मारने जैसा है जो और दे सकती है।" भारत को हाल के इनवार्ड ओरिएटेशन के संदर्भ में इस कथन की विवेचना कीजिए।

4. Discuss the trends in the Indian labour market. Do you think that reforms aimed at making the labour market more flexible will succeed in raising economic growth and generating more employment in India? Give reasons in support of your answer. भारतीय श्रम बाजार की प्रवृत्तियों की विवेचना कीजिए। क्या आपको लगता है कि श्रम बाजार को अधिक लचीला बनाने के उद्देश्य से किए गए सुधार भारत में आर्थिक विकास को बदाने और अधिक रोजगार पैदा करने में सफल होंगे? अपने उत्तर के समर्थन में कारण दीजिए।

5. The income carned by farmers from agricultural activities has seen low to high growth in different periods during the last three decades. In none of the periods do farmers' income or profitability of farming show any squeeze. Discuss the factors contributing to such trends.

पिछले तीन दशकों के दौरान विभिन्न अवधियों में कृषि मतिविधियों से किसानों इस अर्जित आप में निम्न से उच्च वृद्धि देखी सई है। किसी भी अवधि में किसानों की आप या खेती की लाभप्रदता में कोई कमी नहीं दिखाई देती है। ऐसी प्रवृत्तियों में योगदान करने वाले कारकों की चर्ची कीजिए।

 There are a few non-negotiable aspects that any government should keep in mind before implementing any change in agrarian policy. Discuss in detail these aspects in the Indian context and suggest the ways by which the problems of food security and inequalities can be best tackled with.

कुछ अपरिवर्तनीय पहलू हैं जिन्हें किसी भी सरकार को कृषि नीति में किसी भी बदलाव को लागू करने से पहले ध्यान में रखना चाहिए। भारतीय संदर्भ में इन पहलुओं पर विस्तार से चर्चा करें और उन तरीकों को बताएँ जिनके द्वारा स्वाद्य सुरक्षा और असमानताओं की समस्याओं का सबसे अच्छा हल निकल सकता हो।

7. "Even after a quarter-century of market-oriented reforms, why did India fail to catch up with the Asian economies to cement its reputation as a successful industrial nation with rising manufactured exports?" Discuss.

"बजार- उन्मुख सुधारों की एक चौथाई सदी के बाद भी, भारत एशियाई अर्थव्यवस्थाओं के साथ बढ़ते हुए निर्यात के सदर्भ में एक सफल औद्योगिक राष्ट्र के रूप में अपनी प्रतिष्ठा को मजबूत करने में विफल क्यों स्वा?" चर्चा करें। 8. Critically examine the status of liberalization in services in India and the challenges that have plagued this process. Do you think by further liberalization and strategical use of the international negotiations in services India can leverage new opportunities created by the Covid-19 pandemic?

भारत में सेवाओं के उदारीकरण की स्थिति और इस प्रक्रिया को प्रभावित करने वाली चुनौतियों का आलोचनात्मक परीक्षण करें। क्या आप मानते हैं कि सेवाओं में और अधिक उदारीकरण तथा अन्तराष्ट्रीय समझौता वार्ता का रणनीतिक उपयोग से भारत कोविड-19 महामारी के कारण उत्पन्न नए अवसरों से लाभ उठा सकता है? [This question paper contains 6 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 3357

Unique Paper Code : 12277606

Name of the Paper . . : MONEY AND FINANCIAL

MARKETS

Name of the Course BA (HONS) ECONOMICS

Semester VI - CBCS DSE

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All questions carry equal marks.
- 3. Answer any FIVE (5) questions.
- 4. Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

- इस प्रेंग्न-पत्र को मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक सिखिए।
- संशी प्रश्नों के बराबर अंक हैं।

P.T.O.

- किन्हीं पाँच (5) प्रानों के उसा वीगिए।
- इस प्रथन पथ का उत्तर अधेजी या दियी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक हो होना थादिए ।
- (a) Examine the role of public, commercial banks, and the central bank in the determination of money supply in an economy.
 - (b) Differentiate between monetary and liquidity aggregates of the third working group. What is the basis of this differentiation? (6)
 - (अ) एक अर्थव्यवस्था में मुद्रा आपूर्ति के निर्धारण में सार्वजनिक,
 वाणिज्यिक वैंकों और केंद्रीय वैंक की भूमिका की जांच करें।
 - (थ) तीसरे कार्य समृद्ध के मीडिक और तरलता समग्र के बीच अंतर
 करें। इस भेडभाव का आधार क्या है?
- (a) Why is asset securitization an example of market intermediation? In what ways can securitization reduce the cost of funds for the issuer?
 (8)
 - (b) "Better credit risks do not subsidize poor credit risks when symmetric information exists" whereas "Honest borrowers subsidize dishonest borrowers when information is asymmetric" Explain. (7)

3357

(अ) परिसंपत्ति प्रतिभृतिकरण बाजार शायस्थता का एक उताहरण क्यो है? प्रतिभृतिकरण किस प्रकार जारीकर्ता के लिए निर्दायों की लागत को कम कर सकता है?

(व) "सममित जानकारी मौजूद होने पर बेहतर क्रेडिट जोखिम खराव क्रेडिट जोखियों को सब्बिडी नहीं देते हैं" जबकि "ईमानदार उध्यायकर्ता बेईमान उध्यारकर्ताओं को सब्बिडी देते हैं जब जानकारी विषय होती है" विवेधन करें।

(a) Compare and contrast the sequence of events in financial crises in United States and East Asian Countries. (8)

(b) In what ways Futures differ from a Forwards contract and Options contract? (7)

 (अ) मंतुक्त राज्य अमेरिका और पूर्वी एकियाई देशों में विसीय संकटों में घटनाओं के अनुक्रम की अंतर और नुलमा करें।

(व) वाग्या किस तरह से अग्निम अनुबंध और विकल्प अनुनं ? ।

(a) Explain how the expectation hypothesis and segmented market hypothesis are extreme versions of the preferred habitat hypothesis. Under what

P.T.O.

3

5

conditions yield curve would be upward sloping, downward sloping or flat according to Preferred Habitat Hypothesis. (6)

(b) A coupon bond maturing in one year has a face value of Rs 1000 and a coupon rate of 8%. If the market interest rate is 6% at the time of purchase, calculate (a) price (b) current yield c) yield to maturity of this bond. What effect would a rise in the market rate of interest to 10% have on its price and yield?

- (अ) स्पष्ट करें कि कैसै प्रत्याजा परिकल्पना और त्यहित बाजार परिकल्पना अधिमानित आवास परिकल्पना में चरन संस्करण हैं। प्रेफर्ड हैबिटेट हाइपोधिसिस के अनुसार किन परिस्थितियों में उपज बक्त ऊपर की और इसान बाला, नीचे की और इसान बाला या सपाट होंगा।
- (ब) एक वर्ष में परिपक्क होने बाते कूपन बांड का अफित मूल्य 1000 रुपये और कूपन दर 8% है। पटि स्वरीट के समय बाजार व्याज दर 6% है, तो (अ) मूल्य (ब) वर्तमान उपज (स) इस बांड की परिपक्कता तक उपज की गणना करें। बाजार की व्याज दर में 10% की वृद्धि से इसकी कीमत और उपज पर क्या प्रभाव पड़ेगा?

 (a) What were the policy responses to the two banking crisis in the Indian economy for the period;

1997-2002

After 2008

(10)

(b) How can the existence of asymmetric information provide a rationale for government regulation of financial markets? (5)

(अ) 1997-2002 2008 के बाद अवधि के लिए भारतीय अर्थव्यवस्था में दो वेंकिंग सकट के लिए नीतिगत प्रतिक्रियाएँ क्या थीं।

- (च) असमनित जानकारी का अस्तित्व विकीय बाजारी के सरकारी विनियमन के लिए एक तर्क कैसे प्रदान कर सकता है?
- (a) Describe how BASEL III is an enhancement over BASEL II. (10)
- (b) Examine the lags observed in the operation of monetary policy. (5)
- (ठा) वर्णन करें कि कैसे BASEL III, BASEL II की नुलना में एक विस्तार है।

- (ब) मौद्रिक नीति के संघालन में देखे गए अंतराल की जांच करें।
- Distinguish between Conventional and Unconventional Monetary policy measures? Discuss various unconventional monetary policy measures, their key features and their applications in India. (15)

परंप्ररागत और अपरंपरागत मीद्रिक मीति उपायों के बीच अंतर करें? भारत में विभिन्न अपरंपरागत मीद्रिक नीति उपायों, उनकी प्रमुख विशेषताओं और उनके अनुप्रयोगों पर विवेचन करें।

- 8. Write short notes on any two of the following:
 - (i) Policy Rate Corridor
 - (ii) Monetary transmission mechanism
 - (iii) Certificate of Deposits (CDs) (15

निस्नलिखित में से किन्हीं दो पर संक्षिप्त टिप्पणी लिखिए

- (i) पॉलिसी रेट कॉरिडोर
- (ii) मौद्रिक संघरण तंत्र
- (iii) जमा प्रमाणपत्र (सीडी)

(2000)

[This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 3805

Unique Paper Code : 62275604

Name of the Paper

: Principles of Macroeconomics

Name of the Course

: B.A. (Prog.) GEC

Semester

Duration: 3.5 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- Answer any 5 questions.
- Every questions carry equal (15) marks.
- Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।

- 3. सभी प्रश्नों के अंक समान (15) हैं।
- इस प्रश्न पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।
- (a) List the principal professional activities of macroeconomists. What role does macroeconomic research play in each of these activities?
 - (b) Differentiate between GDP and GNP. (10,5)
 - (अ) समष्टि अर्थशास्त्रियों के मुख्य व्यावसायिक गतिबिधियों की सूची तैयार करें। इन सभी गतिबिधियों में समष्टि अर्थशास्त्र शोध की भूमिका का वर्णन करें।
 - (ब) GDP व GNP में अंतर स्पाट करें।
- (a) Explain the steps involved in the estimation of GDP using the value-added method.
 - (b) Find the Net Value Added at factor cost -

3805

3

Items	Amount (in Rupees)
Indirect taxes	25 (lakhs)
Depreciation	5
Closing stock	10
Opening stock	20
Value of output	540
Purchase of raw material	140
	(10,5)

- (अ) GDP के गणना में मूल्य संवर्धन बिधि का वर्णन करें।
- (ब) साधन लागत पर जुद्ध मूल्य वृद्धि जात करें

सामान	रकम (रुपये में)
अप्रत्यक्ष कर	25 (लाख)
मृत्य हास	5
आखरी वचा हुआ माल	10
आरम्भिक माल	20
उत्पाद मृत्य	540
कच्चे माल की खरीद	140

 Suppose you have been given the following information about the closed economy

$$C = 20 + 0.8 Y_d$$

1 - 50

G = 20

T = 10

Yd = Disposable Income = Y - T

- (i) Find the equilibrium level of national income (Y).
- (ii) Find an equilibrium level of consumption (C) and savings (S).
- (iii) Are savings equal to consumption at the equilibrium level of income?
- (iv) Calculate the equilibrium level of national income when government spending is increased by 10 units.
- (v) Calculate the value of the government spending multiplier. (5×3)

एक वंद अर्थवावस्था के बारे में निम्न जानकारी दी गयी है:-

$$C = 20 + 0.8 Y_d$$

1 = 50

G = 20

T = 10

(Yd = ब्वय योग्य आय = Y-T)

- (i) राष्ट्रीय आय के साम्य स्तर को ज्ञात करें।
- (ii) उपभोग व बचत को साम्य स्तर को जात करें।
- (iii) क्या आय के साम्य स्तर पर बचत उपभोग के बराबर होगा ?
- (iv) जब सरकारी थ्यय 10 बढ़ जाय तो राष्ट्रीय आय के साम्य स्तर को जात करें।
- (v) सरकारी व्यय गुणक के मूल्य की गणना करें।
- 4. (a) Describe the various components of Aggregate Savings. What are the uses of Private Savings?
 - (b) What is the difference between real and nominal interest rates? If inflation rises in a country, how will it affect the real interest rate? (9,6)

P.T.O.

- (अ) समग्र बधत के विभिन तत्वों की व्याख्या करें। निजी बचत के क्या उपयोग हैं?
- (ब) वास्तविक व मीद्रिक व्याज दर में अंतर स्पष्ट करें। अगर मुद्रा स्फीति बढ़ती है तो इसका प्रभाव वास्तविक व्याज दर पर क्या पड़ेगा?
- 5. Explain the Net Exports function using a suitable diagram. What are the factors responsible for the shift in the Net Exports function? (15)

शुद्ध निर्यात फलन की सचित्र व्याख्या करें। इसके खिसकाव के लिए उत्तरदाई तत्वों की व्याख्या करें।

- 6. (a) What are the functions of money?
 - (b) What do you understand by Monetary Policy? What are the instruments of Monetary Policy? (9,6)
 - (अ) मुद्रा के क्या कार्य हैं ?
 - (ब) मौद्रिक नीति से आप क्या समझते है ? मौद्रिक नीति के उपकरण क्या है ?

- (a) Illustrate the determinants of Demand for and the Supply of Central Bank Money.
 - (b) What do you mean by the velocity of money? In 2012, suppose that the GDP was \$15,829 billion, and M2 money stock was an average \$10,476 billion circulated in the economy. What is M2 velocity here? (9,6)
 - (अ) केंद्रिये बैंक के मुद्रा पूर्ति व माँग के निर्धारक तत्वों की व्याख्या करें।
 - (व) मुद्रा की गति से आप क्या समझते हैं ? मान लिया 2012 में GDP \$ 15,829 बिलियन था और M2 औसत जमा मुद्रा \$ 10,476 बिलियन मुद्रा चलन में था, तो M2 की गति मात करें।
- 8. Write short notes on any two:
 - (i) Speculative demand for money
 - (ii) GDP Deflator
 - (iii) User cost of capital
 - (iv) Automatic Stabilizers

(7.5×2)

P.T.O.

किन्हीं दो की संक्षिप्त व्याख्या करें:-

- (i) सहेबाजी हेतु मुद्रा की माँग
- (ii) अपस्कीतिक GDP
- (iii) पूँजी की उपयोगकर्ता लागत
 - (iv) स्वचालित स्थिरकरक

(7500)