DSC: CLASSICAL DYNAMICS OBE

Problem 1. Solve the following cases using Lagrange's equation of motion:

- a) Linear harmonic oscillator (solve by Hamiltonian also)
- **b**) Compound & double pendulum (Determine the time period of oscillation)
- c) A mass 2m is suspended from a fixed support by a spring (S₁), of spring constant, 2k.
 From this mass, another mass, m, is suspended by another spring (S₂) constant, k, (Fig. 1). Find equation of motion of the coupled system.

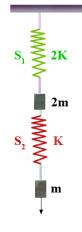


Figure 1

Problem 2. Consider a bead of mass *m* frictionlessly gliding on a wire which rotates with constant angular velocity ω . Fig. 2 shows the bead move in the earth gravitational field.

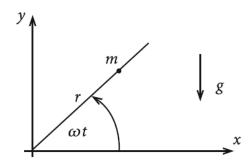


Figure 2 Bead on a rotating wire in the earth's gravitational field

- a) Which constraint forces are present?
- **b**) Formulate the Lagrangian function for the bead.
- c) Determine the Lagrange equation of motion and find its general solution.
- **d**) Use the initial conditions

$$r(t = 0) = r_0$$
 & $\dot{r}(t = 0) = 0$

How large ω be at the least to force the bead to move outwards for $t \to \infty$?

e) How would we have to treat the problem in Newton's mechanics?

DSC: CLASSICAL DYNAMICS OBE

Problem 3. A box is gliding without friction along the *x* axis with constant velocity v_0 . On the bottom of the box there oscillates, also in *x* direction and frictionlessly, a mass *m* being fixed by a spring (spring constant: *k*) at the back-wall of the box (Fig. 3).

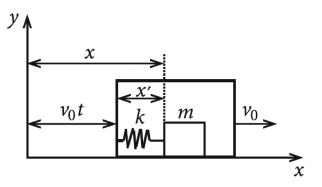


Figure 3 Oscillating mass in a with constant velocity frictionlessly gliding box

- a) Find the Hamilton function in the rest system of coordinates \sum . Is *H* a conserved quantity? Is *H* identical to the total energy *E*? Derive Hamilton's equations of motion.
- **b**) Investigate the same problem in the co-moving system of coordinates Σ' .

Problem 4. A planet of mass *m* & an angular momentum *L* moves in a potential, V(r) = -k/r, where *k* is a constant. If it is slightly perturb radially, find the angular frequency of radial oscillation.

Problem 5. Incompressible liquid is flowing steadily through a circular pipe. Determine the rate of flow of liquid through pipe with uniform gradient of pressure difference is maintained across the length *l*.

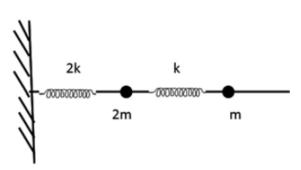
Problem 6. A particle of mass 1 kg is undergoing small oscillation about the equilibrium point in the potential $V(x) = \frac{1}{2x^{12}} - \frac{1}{x^6}$ for x > 0 meters. Determine the time period of the oscillation.

Problem 7. Two beads of mass 2m and m can move without friction along a horizontal wire. They are connected to a fixed wall with two springs of spring constants 2k and k as shown in Fig. 1:

(a) Find the Lagrangian for this system and derive from it the equations of motion for the beads.

- (b) Find the eigenfrequencies of small amplitude oscillations.
- (c) For each normal mode, sketch the system when it is at the maximum displacement.

DSC: CLASSICAL DYNAMICS OBE



Problem 8. A tape of 0.015 cm thick and 1.00 cm wide is to be drawn through a gap with a clearance of 0.01cm on each side. A lubricant of dynamic viscosity 0.021 Ns/m^2 completely fills the gap for a length of 80 cm along the tape. If the tape can withstand a maximum tensile force of 7.5 N calculate the maximum speed with which it can be drawn through the gap.