
Numerical Methods Practical

Basic Concepts

and

Practical Number: 2

To find the absolute value of an integer

By
• Dr K. Priyanka
•Ms Deepti

Basic Concepts
Data Types

 Mathematica is not a type of language in strict sense. i.e. before defining a variable we

don’t have to specify the type of variable.

For Example:

x = 0.2

0.2

x = 5

5

x + “ COVID- 19”

5+COVID- 19

 Notice that we are not specifying anywhere that x is a real variable or integer variable or

string.

 While applying operators Mathematica doesn’t check the type of variable.

 Mathematica achieve the concept of variable type through the concept of Head.

For Example:

x = 2.3

Head [x]

Real

x = 1;

Head [x]

Integer

z = 3 + 4i;

Head [z]

Complex

x = { 1, 2, 3, 4, 5 };

Head[x]

List

x = 22/7

Head[x]

Rational

x = “Winner”

Head[x]

String

 So, each variable has “head” associated with it, which can be

accessed through the function Head [] and value of “head” can be

treated as variable type.

Constants and Variables

 Constants and variables are the building
blocks of a programming language.

 Constant means it does not change its value.
For example:

5=2

Set::setraw: Cannot assign to raw object 5.>>

 Variables are those symbols or combination
of symbols that can change their value.

 It is usually a good idea to use variable names
that begin with a lower case letter.

 There are different ways of defining variables.

 First form is Direct Assignment, which is done
by “:=” symbol and it creates a global definition.
For example:

Clear[x];

y:= 3+5x

y

3+5x

 To see all definations associated with a symbol, we
enter “?” followed by the symbols name.

?y

Global`y

y:=3+5x

 If we change the value of x to 3, and check the value of y, it
will be updated according to x.

x=3;

Print[“y= ”,y];

y=18

?y

Global`y

y:=3+5x

 Second form of assignment is assignment with Evaluation, which is
done with the “=” symbol.

z=x+y

21

?z

z=21

x=2;

Print[“z = ”,z];

z=21

Print[“y= ”, y];

y=13

 Change in value of x or y did not result in corresponding
change in z but there is a change in the value of y.

Defining variable by Rule Table

 Syntax

{a -> 2, b -> 3, c - > 4}

{a->2, b->3, c->4}

 This way of defining in a rule table is not used until it is
applied with the expression having Replace All “/.”
operator. For example:

a + b + c

a+b+c

a + b + c /. {a -> 2, b -> 3, c - > 4}

9

Relational Operators
 Operators used to check relation between the variables and

expressions

x == y : equal, checks whether x and y are equal.

x != y : unequal, checks whether x and y are unequal.

x > y : checks whether x is greater than y

x >= y or x ≥ y : checks whether x is greater than equal to y

x < y : checks whether x is less than y

x <= y or x ≤ y : checks whether x is less than equal to y

x ==y==z : check whether x, y and z are all equal

x!=y!=z : checks wkhether x,y and z are all unequal

 A relational expression is either true or false.

Mathematica provides logical constants: True and False

6>6

False

(2+3)==5

True

Logical Operators
 Logical And (&&) evaluates its arguments in order and

return False immediately if any of the argument is False
and return True if all arguments are True.

5 > 4 && 10> 5

True

5 > 4 && 10 < 5

False

 Or (II) evaluates its arguments in order and return True immediately if any of
the argument is True and return False if all arguments are False.

5>4 II 10>12

True

10>12 II 4>5

False

 !expr: returns True if expr is False and returns False if expr is True.

x = 5;

!(x>4)

False

!(x < 4)

True

Control Statements and loops
 If Condition

Syntax: If [Condition, t, f] gives/evaluate t if the condition
evaluates to True and f if the condition evaluates to
False.

If [Condition, t] gives/evaluates t if the condition evaluates
to True and will not do anything if the condition
evaluates to False

Practical Number: 2
To find the absolute value of an integer

absFun [x_] = If [x≥ 0, x, -x];

Print [“Abs(- 4) = ”, absFun[- 4]];

Print [“Abs(5) = ”, absFun[5]];

Abs (- 4) = 4

Abs (5) =5

