22 Chapter 1 » The Statistical Basis of Thermodynamics

, : ’ 15 iti
that s, if the numbers n; are generally 0, occasionally 1, and rarely greitir':}j]: Eecilc:;dlfuon
(3) in away defines the classical limit. We must, however, remembert ;1 1 "™ Of the
application of the correction factor 1/N!, which replaces (1) by (2), that our results agree

with reality at least in the classical limit. .
In Section 5.5 we shall demonstrate, in an independent manner, that the factor by

which the number of microstates, as computed for the “labeled molgct'llesf, l;e rfeduceq S0
that the formalism of classical statistical mechanics becomes a true limit of the formalism
of quantum statistical mechanics is indeed N'.

Problems

1.1. (a) Show that, for two large systems in thermal contact, the m'meer QO(EO® Ey) of Sectlon_ l.?
can be expressed as a Gaussian in the variable E;. Determine th.e _root—mean—square deviation
of E; from the mean value E; in terms of other quantities pertaining to the prob}em.

(b) Make an explicit evaluation of the root-mean-square deviation of E) in the special case when
the systems A; and A; are ideal classical gases.

1.2.  Assuming that the entropy S and the statistical number © of a physical system are related through

an arbitrary functional form

S=f(),

show that the additive character of S and the multiplicative character of necessarily require that
the function f(£2) be of the form (1.2.6).
1.3. Two systems A and B, of identical composition, are brought together and allowed to exchange both

energy and particles, keeping volumes V4 and V3 constant. Show that the minimum value of the
quantity (dEx/dN,) is given by

pnaTp—pupTy
Tg—Ta

where the 1’s and the T"s are the respective chemical potentials and temperatures.

1.4. Inaclassical gas of hard spheres (of diameter D), the spatial distribution of the particles is no
longer uncorrelated. Roughly speaking, the presence of n particles in the system leaves only
a volume (V — nyy) available for the (n + 1)th particle; clearly, vy would be proportional to
D3.Assuming that Nuy « V, determine the dependence of Q (N,V,E) on V (compare to
equation (1.4.1)) and show that, as a result of this, V in the ideal-gas law (1.4.3) gets replaced
by (V — b), where b is four times the actual volume occupied by the particles.

1.5. Read Appendix A and establish formulae (1.4.15) and (1.4.16). Estimate the importance of the
linear term in these formulae, relative to the main term (z/6)e
confined to a cube of side 10 ¢m; take ¢ — 0.05 eV.

- L.6. Acylindrical vessel 1 m long and 0.1 m in diameter is filled with amonatomic gas at P = 1 atm and
T =300K. The gas is heated by an electrical discharge, along the axis of the vessel, which releases
an energy of 107 joules. What will the temperature of the gas be immediately after the discharge?

-1.7. Study the statistical mechanics of an extreme relativisitic gas characterized by the single-particle
2 energy states

*3/2, for an oxygen molecule

he . 1/2
e(ny, ny, nz) = T (n% 4 nf, il ng) ,

'-f'r“‘iﬁstéa'd of (1.4.5), along the lines followed in Section 1.4, Show th
.- 4/3,instead of 5/3, . P 3
-~ 1.8. Consider a system of quasiparticles whose energy e

at the ratio Cp/Cy in this case is

igenvalues are given by

e(My=nhv; n= 0,1,2,....
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Problems 23

Obtain an asymptotic expression for the number  of this system for a given number N of the

quasiparticles and a given total energy £. Determine the temperature 7" of the system as a function

of E/N and hv, and examine the situation for which L/ (Nhv) 3 1,
1.9. Making use of the fact that the entropy S(N, V, E) of

a thermodynamic system is an extensive
quantity, show that

N a8 38
Nf—) +VC—) () ~s
(‘W ve IV )y TPGE )y, =

Note that this result implies that (~Nyu + PV + E)/T =S, thatis, Ny =E+ PV —S.

1.10. A mole of argon and a mole of helium are contained in vessels of equal volume. If argon is at 300 K,
what should the temperature of helium be so that the two have the same entropy?

1.11. Four moles of nitrogen and one mole of oxygen at P =1 atm and T = 300K are mixed together to

form air at the same pressure and temperature. Calculate the entropy of mixing per mole of the air
formed.

1.12. Show that the various expressions for the entropy of mixing, derived in Section 1.5, satisfy the
following relations:
(a) FOl'aﬂNl,Vl,Nz, and Vz,

(AS)1=2 = {(AS) — (AS)*} >0,

the equality holding when and only when N; /Vi =N/ Vs
(b) For a given value of (N} + N»),

(AS* < (V; +N2)kIn2,

the equality holding when and only when N; = Nj.

1.13. If the two gases considered in the mixing process of Section 1.5 were initially at different
temperatures, say Ty and T3, what would the entropy of mixing be ir: that case? Would the
contribution arising from this cause depend on whether the two gases were different or identical?

1.14. Show that for an ideal gas composed of monatomic molecules the entropy change, between any

©  two temperatures, when the pressure is kept constant is 5/3 times the corresponding entropy
- change when the volume is kept constant. Verify this result numerically by calculating the actual
values of (AS)p and (AS)y per mole of an ideal gas whose temperature is raised from 300 K to 400 K.

; .1.1.5.‘ We have seen that the (P, V)-relationship during a reversible adiabatic process in an ideal gas is

governed by the exponent y, such that
: PVY = const.

- Consider a mixture of two ideal gases, with mole fractions f; and f; and respective exponents y
- and y,. Show that the effective exponent y for the mixture is given by

1 __f b
BRI o B e y—1 n-1 "p-1
18, Establish thermodynamically the formulae
R P URE e R gp op

() =s and v(,—) ~N.
, V(‘?T)u a )

Exl)ress the 'préssure P of anideal classica! gas in terms of the variables ;2 and T, and verify the
above formulae. -
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Problems 37

(or from the states of polarization of the vibrational modes); this requires a multiplica-
tion of both expressions (4) and (5) by a factor of 2, leaving the conversion factor °

unchanged.

Problems

2.1. Show that the volume element
3N
do = [(dqidp

i=1

of the phase space remains invariant under a canonical transformation of the (generalized)
coordinates (g, p) to any other set of (generalized) coordinates (Q, P).

[Hint: Before considering the most general transformation of this kind, which is referred to as a
contact transformation, it may be helpful to consider a point transformation — one in which the
new coordinates Q; and the old coordinates g; transform only among themselves.]

2,2, (a) Verify explicitly the invariance of the volume element dw of the phase space of a single particle
under transformation from the Cartesian coordinates (X, ¥, Px, Py» p:) to the spherical polar
coordinates (r,0,¢,Pr, Do, Pg)-

(b) The foregoing result seems to contra

LALiM s piiad ek avdare Ttk

dict the intuitive notion of “equal weights for equal solid

angles,” because the factor sin@ is invisible in the expression for dw. Show that if we average
out any physical quantity, whose dependence on pp and ps comes only through the kinetic
energy of the particle, thenasa result of integration over these variables we do indeed recover
the factor siné to appear with the subelement (d6 dg).
2.3. Starting with the line of zero energy and working in the (two-dimensional) phase space of a classical
rotator, draw lines of constant energy that divide phase space into cells of “volume” h. Calculate the
energies of these states and compare them with the energy eigenvalues of the corresponding

- quantum-mechanical rotator.
2.4, By evaluating the “yolume” of the relevant region of its phase space, show that the number of
_ microstates available to a rigid rotator with angular momentum = M is (M/h)?. Hence determine
the number of microstates that may be associgted with the quantized angul'ar momentum
M;= /i + DIk, wherej=0,1,2,... 0r 3 3.5 Ifnerpret the resu‘It pll};SlcaILy. o
[Hint: It simplifies to consider motion in the variables 6 and ¢, with M= = py + (Po/sind)".]

2.5. Consider a particle of energy E movingina one-dimensional potential well V{(g), such that

Vv
mh LA & (mE - WP~
* - Show that the allowed values of the momentum p of the particle are such that
P d 1+ —l-)h
%p q =7 2 »
e oon m are the angular displacement 6 and the angular

| 2.6.. The generalized coordinates of a simple pendulu _ !
S rgéntum mi2é. Study, both mathematically and graphically, the nature of the corresppndmg_
"' trajectories in the phase space of the system, and show that the area A enc(licilsled by a trajectory is
" equal to the product of the total energy E and the time period t of the pendulum.
' AL hich a given energy E can be

7. Derive (i) a 1 ion for the number of waysinw :
Derive (i) an asymptotic eXpress n o sional harmonic scillators, the energy eigenvalues of the

" distributed among a set of N one- : : . i
~ oscillators being (1 -+ §) hain =012 and (il the corresponding expression for the “Volme of
ik relevant régibﬁ-df (hie phase space of this systerm. Estqblish the correspondence between the
 two results, showing that the conversion factor wo is precisely -
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38 Chapter 2 » Elements of Ensemble Theory

2.8. Following the method of Appendix C, replacing equation (C.4) by the integral
o0
[ e~ rPdr=2,
0
show that

N
Van = f f n 47r72drl = BT RHN/(3N)!.
g: e i=1

Using this result, compute the “volume” of the relevant region of the phase space of an extreme
relativistic gas (s = pc) of N particles moving in three dimensions. Hence, derive expressions for
the various thermodynamic properties of this system and compare your results with those of

Problem 1.7.
2.9. (a) Solve the integral

f [ (dxy...dx3N)
0<le.|<R

i=1

and use it to determine the “volume” of the relevant region of the phase space of an extreme
relativistic gas (¢ = pc) of 3N particles moving in one dimension. Determine, as well, the

number of ways of distributing a given energy E among this system of particles and show that,
asymptotically, wg = h3V.

(b) Compare the thermodynamics of this system with that of the system considered in Problem 2.8.
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