NEUROHYPOPHYSIAL HORMONES

Neurophysin: Oxyphysin pressophysin

OXYTOCIN

Source of Secretion:

- Secreted mainly by paraventricular nucleus and partly supraoptic nuclei.
- Transported from hypothalamus to posterior pituitary through the nerve fibers of hypothalamo-hypophyseal tract.
- In the posterior pituitary, the oxytocin is stored in the nerve endings of hypothalamohypophyseal tract.
- When suitable stimuli reach the posterior pituitary from hypothalamus, oxytocin is released into the blood.
- Oxytocin is secreted in both males and females.

- Chemistry and half life
- Oxytocin is a polypeptide containing 9 aminoacids.
- It has a half-life of about 6 minutes

- Action on mammary glands (milk letdown/ milk ejection reflex)
- Action on uterus

- Causes ejection of milk from the mammary glands.
- Oxytocin causes contraction of the myoepithelial cells and flow of milk from alveoli of mammary glands to the exterior through duct system and nipple.
- The process by which the milk is ejected from alveoli of mammary glands is called milk ejection reflex or milk letdown reflex.
- It is one of the neuro-endocrine reflexes.

Action on mammary glands

- As this reflex is initiated by the nervous factors and completed by the hormonal action, it is called a neuroendocrine reflex.
- During this reflex, large amount of oxytocin is released by positive feedback mechanism

- Throughout the period of pregnancy, oxytocin secretion is inhibited by estrogen and progesterone.
- At the end of pregnancy, the secretion of these two hormones decreases suddenly and the secretion of oxytocin increases.
- Oxytocin causes contraction of uterus and helps in the expulsion of fetus.
- It is also an example of neuro-endocrine reflex and positive feedback mechanism

Vasopressin

- Also called as anti diuretic hormone
- Source of Secretion
 - Secreted mainly by supraoptic and paraventricular nucleus in small quantity.
 - From here, this hormone is transported to posterior pituitary through the nerve fibers of hypothalamo-hypophyseal tract, by means of axonic flow.

- Polypeptide containing 9 amino acids.
- Its half-life is 18 to 20 minutes

Retention of water

- Major function of ADH is retention of water by acting on kidneys.
- It increases the facultative reabsorption of water from distal convoluted tubule and collecting duct in the kidneys.

- In large amount, ADH shows vasoconstrictor action.
- Particularly, causes constriction of the arteries in all parts of the body.
- Due to vasoconstriction, the blood pressure increases.
- ADH acts on blood vessels through V1A receptors.
- However, the amount of ADH required to cause the vasopressor effect is greater than the amount required to cause the antidiuretic effect.

- One of the stimuli for causing intense ADH secretion is decreased blood volume.
- This occurs especially strongly when the blood volume decreases 15 to 25 per cent or more; the secretory rate then sometimes rises to as high as 50 times normal.

Diabetes insipidus

 Diabetes insipidus is a posterior pituitary disorder characterized by excess excretion of water through urine due to a defect in ADH secretion

Causes:

- This disorder develops due to the deficiency of ADH, which occurs in the following conditions:
 - Lesion (injury) or degeneration of supraoptic and paraventricular nuclei of hypothalamus
 - Lesion in hypothalamo-hypophyseal tract
 - Atrophy of posterior pituitary
 - Inability of renal tubules to give response to ADH hormone. (Nephrogenic diabetes insipidus)

- Polyuria
- Polydipsia
- Dehydration