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9-17. Oscillations of Hanging Chain LLLLLLL, (LLL

Consider a uniform chain or a flexible string hanging from a
rigid support under the action of gravity. Let 1.hc chain undergo small
oscillations 1n a plane. Let free end of_ the chain be taken as reference
level for distances. I.,cl P be any point having coordinates (x, y), x
peing distance of chain from frec end and y being small deviation.

If initially at t = 0, the chain is given a displacement y, (x),
ie.,

atr =0,y =y (x)

x

(1)

Ocommmcmgmmmm =

then at time ¢, we may write

y=y(x1) . (2) Fig. 9.9

In this case, the tension T in the chain is variable, therefore we have from equation (4) of
section 9-13 :

?y _d (.9
M T ax (T ax)

where m is the mass per unit length of the chain.
In this case T =(mx).g

e {3)

Py 9 ( dy
Hence m 32 =9y \MX8. )
d?y _ ( 2y b_)
or may =mg\x 554+ 5
;)2)’ ay I az.v
a2t ox~ g or e (4)
This equation represents the differential equations for the vibrations of the hanging chain.
By the method of separation of variables, let its solution be
y (x, 1) = el y (x)
' ] 2 ) 2
a_-‘ — ei(ul a._\ L‘_ O] a L4
dx

This gives x

’ — I —
ox ox2” ¢ ax?
.) ) ) az y .
Also 5= i €' v (x), 55 = ~0? e v (x)

Substituting these values in (4), we get

Cancelling the common factor e, we get

Rv v @ _ ¢
"axZ*ax“g v=0 ... (6)

This equation may be reduced to Bessel’s equations by change of variable on putting

22 . or z = ,\,‘M x\2 - (7)
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Substituting these values in (6), we get

g , (4(02 )zL div (Mﬁ)z [ dv +4m2 Loov
do’* g 2022 "\ g ) 47 o g 2z 0z
, 9%y av
or ._az+.,.) +22v=0

This is Bessel's equation, whose general solution is given by
=AJy(2) +BYy (2)

aV] 40)2
?2 0 g

where J; (2) and Y (2) are the Bessel’s and Ncumann’s functions of order zero

Atx=0,z=0and [¥) (2)]. 5, o= =

o "3?1},

-

2;
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e ()

Therefore if displacement of chain y remains finite at x = 0, we must have B = 0, Ty,

equation (9) would reduce to

v =AJo(z)=AJO(2m\/€)

So far w is undetermined. In order to find @, we use the boundary conditions

v=0atx=s
Equation (10), then yields

0 =4l (20 \/Tg‘)

For a non-trivial solution A # 0, therefore J, (20) q] L ) =0

8

If we let p = 20 \/ E
g

Equation (11) becomes J, (1) = 0

- (10
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From the table of Bessel‘s function cquation (13) is satisfied for values of p given b

2-405, 5-520, 8-654, 11-792, ectc.

Then the possible values of @ [=§ 1/ &;- ] from (12) are given by

2:405 ’
», =57 ;;_ _52{) f

These correspond to a characte
corresponds 10 ©,, we must have

Vn '—"A,,Jo (20),, '\’ ':“, )

8654 f

ristic fum.mm v given by (l()) for eac.h value of ®. If %

o (14
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2 rL)
e the most general solution of (5) of cquation (4
1']1(‘“»"’rL ) may be expressed as
N X
5 - .’ 2(\) - ‘(ye .
y (o) Z| ’ ( "N g ) o cos @nt + B sin 0,1 (16)
D
e arbitrary constants to be determi
A, and B, arc ar clermined by the b '
where An Oundary conditions
In this case the initial condition is that at r = 0, al -
This leads to condition B, =0
Then equations (16) at t =0, becomes
< ’ X
vo(X) = 2 A Jy |20, -
r n=1 8 (|7)

That is arbitrary displacement y
zeroth order.

- ,x
Now substituting s =2

equation (17) becomes yq (x) = 2 ApJog(n,2)
. n=1

o (x) may be expanded into a series of Bessel's functions of

.. (18)

.. (19)

To find coefficients A,, we multiply (19) with z Jo (M4 2) and integrate between limits 0
and 1, we get

[ l

] 2yo (s2) Jo (Wz) dz = T A, ] zJo (,2) Jo (142) dz.
0 0

Using orthogonal property of Bessel’s functions, we get
I

I Z - ¥o (s2%) Jo (W2) dz = Ay - % )2 ()
0

l
2
A -_——
* 512 (1) !)Zyo (s22) Jo (Wi2) dz

Selling k= n, we gcl

!

2 3
o .. 20)
() (])zy" (s2%) Jo (H42) dz

Equations (19) and (20) determine the possible modes of oscillations of hanging chain.

918, Vite s
18, Vibrations of a Rectangular Membrane
Inorder 10 consider the vibrations of a membrane, let us assume
L. The membrane is perfectly flexible.

2 The density of membrane is uniform throughout. 1
licular to membrane anc

isy 3. When set in vibrations the displacement is in a direction perpen
e Y g . e
Y small from equilibrium position.



Let ¢ be the mass per unit arca of the T |
membrane and 7 the normal force per unit L
length. If the membrane is perfectly flexible, (X, y+ 5y)
the tension is distributed evenly throughout (X+ 8% y 4 5
its arca i.c. material on opposite sides of any
line segment dx is pulled apart with a force of - i
T- dx. dy Tdy

Consider an clementary section dx dy of (xy (x+ 8%, )
the membrane in the xy plane. Let u be the
displacement of the membrane from its 1 T
equilibrium position. This displacement is
the function of time and position of the point Fig. 9:10 :
on the membrane. If this element of the membrane is displaced through 8u in a d;
perpendicular to xy plane, then the force acting in this direction is T 8u at length 8x.
the force acting per unit length is

du _du . £ N
T«S.\' =T5; (in the limit)

e

T A R

TCCliqn ’
Thcrcfme

Therefore the force in perpendicular direction at edge (x + 8x) is

du
L dx
While the force acting at edge x is

dy

T+ Ox

. Net force normal to surface of membrane due to above forces at edges x and x + dx is

T dy [(%‘i‘)“ " (% )j = Tg—i‘—; dx dy ! o (1) |

Similarly, the net normal force at edges y and y + 8y is
¥ [(ay).v+ & (ay).\'. =¥ dy? 8x 0) - @

0%u  d%u
Therefore the net force on the element =T w2t a_y2 dx - dy wer (3)

From Newton's second law of motion this must be equal to mass (o dx dy) of the element
multiplied by its acceleration i.e.,

Pu Call
T (8x2 + ayz) dx 8y = (o dx dy) 37
Cancelling out the common factor 8x 8y on both sides, we get
Pu  du _1 du @

T dy? ~v2 o

’ T. .
where v = Pt the velocity of the wave

Equation (4) represents (two-dimensional) wave equation for the membrane.
olution of Wave Equation (Method of Separation of Variables)

As u is a function of x, y and 1, therefore by the method of separation of variables, we !
write

nay

ux,y,)=X@Yy1m=0y 1) )

7



where & (% N=X@YO)is lh.c l.m.u:lion of xand y and 1 (1) is the function of ¢ only
Substiluling (5) in (4) and dividing throughout by 1 ; we get
19% 1 %0 _ 1 9t
dax2 ¢ dy?  vitan

In this equation left hand side is the function of x ang y 3 while right h

.. (6)

and side is the

2
al to the same constant (— o

o only ; therefore cach side must b
nction of 7 only ¢ cqu ~7) say ; then

fu
we have
122 19% _ o?

o ox2 ¢ oyr vZ

-~ {7)
1 9t w? 2t
nd IR = y2 or 32 +0T=0 .. (8)
The solution of equation (8) may be expressed as
T=A; e+ A, e ™ ort=A, cos Wt + A, sin ot .. (9)
where A; and A, are arbitrary constants.
Further, equation (7) may be expressed as
2 2 2
%+%+%¢ -0 . (10)

This is ordinary Helmholtz equation in two variables x and y and its solution may easily
be obtained by method of separation of variables or by Green’s function techniques.

If a and b are sides of membrane, fastened at the edges x=0, x=a, y =0 and y=b;then
the boundary conditions are

u =0 a x =0
u =0 at x =a . (11)
u =0 at y =0
u =0 at y=b
Further, if we substitute ¢ = X (x) Y (y) in (10) and divide by XY ; we get
1ex 1 @
)(E)x2+)’ay2+v2 -
192Y w? 1 9% . (12
4 X2 V=TT oy "

In this equation left hand side is a function of x only ; while right hand is a function of y
only ; therefore each side must be equal to the same constant (k?) say

e, L X 02 92X [9’—2_k2]x=0 . (13)
lLe. X ag2 + = =k or pY% + V2

2
or _% %27)2' =k or %;}2:_,,;(2 Y=0 . (1)

The solution of equation (13) and (14) may be expressed as

X =Bsin[ (%—:——kz) .r+8‘] . (15)

.. (16)
Y = Csin (ky +6,)

Where B, C, §, and 3, are arbitrary constants.
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According to boundary condition u = Datx=0andx=a

2
(0)
we have from (15), 8, =0and a (v_l - kz) =mn;m=1,2,3 i
= (1)
. mmnx
X, =Bsm Lt
and eeneral solution for Xis X = 2 B, sin—— L \.
: g m a “3) |

Also according to boundary condmon n=10al
y =0and b ; cquation (16) gives

5, =0and kb=nm;n=1,2,3 (1 |
. nmy :
Hence Y, =C,sin o

and the general solution for Y is
Ty
Y —Z Y, -Z C, sin —— L ) - (20)

The value of ® is given by equation ( 17) L&,
(m2 Lz) - a* = min? ori'oz—2 = ,,,Z;tz + k2
v2 v a
Substituting value of & from (19) ; we get
w2 m?n? nin?
viT @ T

or W =Vn \/[(%2 + ';;25)] = O,,, (say) .. (21)

This equation represents the possible angular frequencies.
Hence the complete solution of vibrating rectangular membrane is given by

u=XxYmt®

= Z B,, sin mnxz Ca Ly {A, COS W,,, I+ Aj sin co,,,,,t]

b
= Z 2 [Aup COS @Wpp t + By Sin @, 2] sin "’:x sin "Zv .. (22)
m n
where A,,, and B,,, are new arbitrary constants which may be determined from initial conditions
of displacement and velocity.
Let at r = 0, displacement u (x, y, 1) = ug . (23)
. (24)

.. du .
and velocity u (x, y,1) = (dr)r Zo= Yo
Using (23) i.e., at t =0, u = uy ; equ. (22) gives

uy = ) 2 A, Sin m:x sin ﬂ;_t)_' . (29)

Multiplying both sides of the equation with sin-mf"! and integrating between limits X =0
lox=a; we get

. NnNm
Z A, SIN L2
n a

mnx

. (26)

ug Sin dx

QN

© —



. S 1113 :
\gain multiplying this cquation with sin 5, And integrating between limits y=0toy=
l .
p; we obtain a b
4 . Mmnmx ., Nnmy
Amn =g iy sin sin == dx dy

a / .. (27)
00

l !
a

h
. MUX . nmy
I J g sin sin de dy
00

with these values of A, and B,,,, equation (22) gives the required solution.

Ex. 22. Find the displacement of a square membrane
along it with initial velocity and initial amplitude as zero

an

.. (28)

of unit length and unit wave velocity
and A sin tx sin 2my respectively.

(Rohilkhand 2000)
Solution. The general solution of a vibrating rectangular membrane is given by

. . mnx nm
U = Z Z (Amn COS O,y + By sin ©,,,) sin .

e £ TsmT .. (1)
m? n?
where ®,,, = v 2T p
a b
4 . Nm
z,,,,;g]juosm X in bydxdy
00
ab
4 ] . mmnx nmy
and = “y
B s ab o j u g sin sin = dx dy
00
Here

a =b=1,v=1 and u (initial velocity) = zero

Opn =1 Nm?+ n?and B,,, = 0

Also given uy = A sin mtx sin 27y

Ann =4A sin T x sin 27y sin m7x sin nxy dx dy. Integrating we get

o.———‘
O Sy vt D S—y -

A, =4A sin 7tx sin 21y sin 7 x sin 2xy dx dy

O C———

sin? 1x dx sin? 2ny dy

O Sm—

1
4A]

0
|

1
=A I (1 = cos 2mx) dx l (1 = cos 4my) (ly}
0 0

AXIxXx]1=A



All other cocf! ficicnts Ay, arc zcro

. Vm2+nl=n \/(|)2 +(2)? = \jgn. hence cqumion(”kaS thepy
" mn — I'm |

n =Acos V5 1t t sin mx sin 27y
This is required expression.

9-19. Normal Modes in Three Dimensions

Consider sound waves confined in a rectangular box of sides a, and ¢, The boung. ‘

defined by coordinate axes v =0,y =0,z = Oand thelinesx=a,y=hand 7= n’lcg '

equation of waves is
2 0 P61 2%
a2 t oy 227 Tu? ax? ‘
where u is the speed of waves. Clearly ¢ is the function of x, y, z and «. By the e
separation of variables let _
.y, =XXYMZ@)TI®
where X, ¥, Z and T are the functions of x, y, z and 7 only respectively.
Substituting (2) in (1) and dividing throughout by X (x) ¥ (y) Z (z) T (1), we get
192X 1 9%Y 10%Z 19°T
xoe "y o Yz oe i o
192y 1932 1 9°T_ _19%X
Y 9y? 'Z0z2 “wT a2~ "X ox?
In this equation L. H. S. is the function of y, z, ¢ but independent of x while RHS. js:
function of x only ; therefore each side must be equal to a constant say (+k,2)

1 92X
"X an =tk .
l82Y+1_822 1 BZT_kz
Y dy? T Z 9z2  ulTarr T !
Equation (5) may be expressed as
L2z _LPT_ ., 19
Z 022 wTorr~ "V T )
In this equation L. H. S. is the function of z, 7 and is independent of y and R. H. 5.5°
function of y ; so cach side should be equal to a constant k,? (say)

and

1 92y |
= Ty gyr=kand .
192Z 1 92T

- k2=
Z32 " wror ~ki=kt

Equation (8) may be expressed as

A 9T

2
I T 9’z

———

L
Z dz2

In this equation L. H. S. is the functj i i 1
o . . H. S, i nction of 7 o : ~tion of 2°
s0 each side must be equal to a constant k4% (say). nly. while R H. § is the functi

1927 |
Z a2 =ki? K

| ar
and T vl JE , 2 ;
T on ki? = ky? = ky2 |
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‘23‘-\,:4-&',2.‘( =0

ox*

W (12
> + k22 Y =0 ( )
Jy*

- (13)
= k32 Z =0

-)IT soe (|4)
T a2 o
- PP +utk*T =0

where k2= k2 + ko? + ky?
the solutions of equations (12), (13), (14) and (15) are
X = AI edik x
Y = A, ettiky
Z =A 3 etikz
T =A 4 etiuxt
Thus the final solution is
¢ =XYZT
O = A etikx priky ot ikyz iukt

. (15)

or

... (16)
where A1 Ay A3 Ay =A (anew constant)

Equation (16) may be expressed as
® =A (cos kyx £ i sin kyx) (cos kyy i sin kay) (cos kyz + i sin kyz) etiuks

- (17)
Using boundary condition ¢ = 0 along x =0, y =0, z = 0, we note that the coefficients of

cosine terms involving x, y, z, will be zero and using uk = @ where @ is angular frequency,
equation (17) takes the form

¢ = A sin k,; x sin kyy sin kyz e*o!

.. (18)
Again ¢ =0atx=a,y=>bandz=c gives
sin kya = 0, sin k,b = 0 and sin k3¢ =0
= kia =nm, kyb = nym and kyc = na where ny, ny, n3 are integers
Thus we have
19)
nm n,m _mn .
kl =—|a_'k2=—5— andk;— c
Thus k2 = klz + k22 + k32
m?  ny? 1_13_2_) .. (20)
o w=w(Feiiea
2n
As _2n
s k=3
2 2
212 n- N '__L)
- (_k—) =n2(uz+b e
2 . (2D
m?  ompl M

>[N
| |
~
<
Lo
"~
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As A= v where vis frequency, equation (21) gives

" m? oyt ong?
I s —w+ 57t 7
2 a’ b c (2

This equation gives the normal modes of vibrations in three dimensions. Each combing;
of (ny. ny. ny) is called a mode. 'on

The cigen functions ¢ are given by

nnxy nymy nynz .
=Y¥YYTA sin ——— sin = sin —— etio¥
¢ =X LAninon, b c - (23)

n,ony oy a

9-20. The Vibrations of Circular Membrane
The basic equation of vibration of a membrane in (wo dimensions is

gy o2, Pu_ 1
=2t 9y T v on e (1)

In the case of circular membrane, it is convenient to use polar coordinates (r, 0) viz.,
x=rcosB@andy=rsin®
Transforming equation (1) from cartesian to polar coordinates ; we get
12 (0 131 O
ror\"ar) TR 002 v2 or ~ @
Now let us consider symmetric case where the motion is started in a symmetric manner
about the origin so that the displacement u of membrane is a function of r and r and is

independent of angle 6. Then the displacement

u=u(rt) . (3)
obviously, g—g = 0; hence equation (2) in the case of symmetrical vibrations takes the form
1d ( au) 1 9%u
10 (.94 7% .. (4
ror\" or vZ dr? _ ®
By the method of separation of variables, let us substitute
)

u(r,t) =Rt ()
where R is a function of r only and T is a function of 7 only. Substituting (5) in (4) and

dividing by Rt ; we get
1 d%t . .. (6)

ll_i( Q_@) 1 dJ7T
Rror\"or)] Tvitor

In this equation left hand side is a function of r only and rigzht hand side is a function of !

only ; therefore each side must be equal to the same constant -5~ sy, ie.,

1 !-Q-(rQB') __0? o (D)
R ror\"or/ — V2
| 9%t _ o? DT o . @)
and TR =V or S+ W t=0.
Equation (8) in time function has the same form as for a rectangular membrane. Hence "
solution is given by )

T = Aeti® = A cos Of + Az sin ©f
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sguation (7) may be expressed as
que

LR 1R o?
RD}Q+RI'Dr+v2 =0

R 1R w2

« 8ﬂ+rar+vTR =0
d’R 1 0R
Lo S S 2p _
i nm Tty or ¥ KR =0 ... (10)
w
here k =—
A v (1)

given by

Equation (8) is a Bessel’ equation of zeroth order ; for which the general of solution is

R =B Jy (kr) + C Y, (kr)

- (12)
where B and C are arbitrary constants ; J; and Y, are Bessel’s functions of zeroth order of first
and second kind respectively.

Since the amplitude of vibration is finite at the origin r= 0 : therefore R must be finite at r
=0.But ¥ (kr) > e as r = 0 ; hence we must have C = 0, Equation (12) then gives

If a is the radius of the membrane and the periphery of the membrane is fixed, then
amplitude of vibration must be zeroat r=a; i.e.,

BJy(ka)=0 or Jy(ka)=0 . (14)

(Since B#0)
From the table of Bessel’s functions, we note that equation (14) is satisfied if kg hqs values
2:404,5-520, 8653, 14-93 etc. Accordingly the fundamental angular frequency ®, is given by

ml =kv="—7" (15)

The other possible angular frequencies may be given by using other values of ka given

2bove. It is obvious that there are infinite number of natural frequencies possible, which are not
multiples of each other.

- b
If possible solutions of o are denoted by ®,, then the general solution (11) for R may be
Expressed as

w,r .. (16)
R =23,,Jo(k,,r)=ZB,.Jo( v )

“+ The complete solution is given by

> (%)
u=Rt= 2, (A,cosm,,t+Azsinm,,!)3nJo v
n=1
< ©," .. (17a)
Z (C, cos Wt + Dy sin 1) Jo ( v )

n=1\

2 ' ( + J (l 1b)
( cos Vv k,,l D" sin v k,‘ l) 0 (k,,r)
n

Wy
n=l (since k,=

v
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The arbitrary constants C, and D, may be evaluated by initial conditiong that ;
du Wity
dr = (r, 0) s,
o |
atr=0.
Substituting 1= 0 and u = 1y in (17h) . we get

Hy = Z Cy Jo (kpr)

displacement for any value of risu=ug (r)atr=0 and initial velocity is

= (I,
Multiplying both <|du of this equation by r Jo(k,, r) and integrating between limits 0 ang
a, wc gel

u
ﬂ

ug rJo (K, r)dr—Z C, f rlo (knr) Jo(kypr)dr = j r (Jo (kyr))? dr

o .

0
(other terms Vaniship,,
2
= Cp 51 (k) |
[using orthogonal property of Bessel’s f“"Cﬁan :
This gives i,
: T Jo (kur) d :
Cn ~ a2 ]2 (k,a) tg - rJo (kpyr) dr
0
Setting m =n, we get :
C “z—lu crJo(k,r)dr 19
" a2 (k,a) ] OO - (19)
0

Now differentiating equation (17b) with respect to time ; we get
u = Z (= Cp vk,sinv k.t + vk, D cos v k,t} Jy (k,r)
n=1

Now using u = u.o atr =0, we get

g =3 vk, D, Jo (ks 1)
Multiplying again by r Jy (k,, r) and integrating between limits 0 and a, we get

a ad

a
J u‘o rdo(k, rydr=2. v k,D, ] rJo (k,r) Jo (k1) dr = vk, D, J rJo? (k,, r) dr

0 0 0
= vk, D,," a?z-’ 12 (k@) (other integrals vanishin
This gives
D, = v 2a21|2 (koa ] uorlo(k,,,r)dr
Setting m = n, we get 0
D,= + ] o r Jo (k, 1) dr .. (20
vk,a’J,*(k,a) :

With these values of C,, and D,, equation (17a) gives required solution.



