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In view of condition (iif) i.e. u=0aty=0for0 S x<{; we have

B,+D, =0
or K D, =-B, - (10)
= n o= z,| B, (™ — g~y sin ﬂl‘- = 2B, sinh —,—- sin ?
r= r=1
- N, sin _..‘.. mx
g,l sinh sin ! ) - (1D

(sctting 2B, =N,)
Using (iv) boundary condition, equation (11) yields

F(x) = ZI N, sinh me' sin ﬂ,‘— ' . (12)

—_—

This equation represents half-range Fouricr scries with the general constant N, sinh r:b
which may be determind by usual method of Fourier scrics.

Multiplying both sides of (12) by sin 2

:tx and inicgrating between the limits (0, ), we

get
L _ i
l F(x) sin ;tx dx= 2, N, sinh r_r:_Q l sin % sin m:txd.r
0 r=1 -4
= z Nr Slnh Lﬂ—b _l. sr'm = Nm si h "l‘l‘(b .l
r=1 ! 2 i
1
i 1 2 . mmx
e New == "imb " 1 I F (x) sin =~ dx
inh 1 °
[
o Ne =="""%b 1 ] F:((ysin =2t .. (13)
sinh T °

Substituting this value of N, in equation (12), we gel the required solution of temperature
distribution :

Solution of Laplace’s equation in Two-dimensional Cylindrical coordinates.
(r, 8) : Circular Harmonics

1

u -_—.% >, lrn:b sinh n:_y [ ] F(r) sin mT‘dl]sin rl:.g ... (14)
r=1 sinh T a

The Laplace equation V2u = 0 in cylindrical coordinates is

du 1 9%2u azu
rar( Rae’ =0 = (1)

If we assume that the function u is mdcpcndcm of coordinate z, then Laplace's equation in
two-dimensional cylindrical coordinates takes the form

1 9 du 1 92u
rar ar) BEoe:=0 . (2




B

-

. - iy |
In this equation « is the function of r and 0 ; therefore by the method of ¢
variables 1 may be written as |
w(r,®=R(r)O (0) . iy |
where R is the function of r only and © is the function of 0 only. Substituting this value nrj |
in cquation (2) ; we have ' .
@ d ([ dR R 9?0 _ l

5 (r5) e

cparation ‘

of |

P A ; RO
Dividing this equation by 2 we gel

L[«ﬂ+ dR|_ 193 i
RLFar ™" ar 1T 0 902 e () |

In this equation left hand side is the function of r only ; while right hand

. side s |
function of @ only ; therefore cach side must be equal to the same constant n2 (say). of
: L[, 22R OR]_ 5
ie. R 2 3 |="
d*R JR i
2 £ 2R =
or r* SR +rar. n“R =0 v (5)
1% _,
and “©a02 ="
320 ’ ' )
or 302 +n20O =.0 & ‘ , ....(6)
The solution of equation (5) may be expressed as
R=A,r"+B,r"n#0 ' e (7)
while equation (6) represents simple harmonic motion and its solution may be expressed as |
©=C,cosn®+D,sinnd, n=0 . e (8)

where A,, B, C, are arbitrary constants.
If n =0, the equations (5) and (6) take the form

d’R  dR .

2 - % e ~
r ar2+rar—0 oss {9

)
and 902 = 0 ... (10)
The solution of these equations may be expressed as

R =Aqlog. r+ By - (11)
and © =Cyb + Dy . (12)

The solution of Laplace's equation in cylindrical coordinates when the function u is

independe are called circular harmonics and the number n is called the degree of harmonic.

The circular harmonics g (r, 8) and u, (r, 8) of degree zero and n are respectively given by
g (r, 8) = (Ag log r + By) (Cy8 + Dy) . (13)
t, (r,8) = (A, r" + B, r") (C, cos n® + D, sin n8) . (14)

A general single valued solution of Laplace’s equation may be obtained by summing up
the solutions (13) and (14) for all integral values of n and thus we have

)
w=aglog, r+ ZI " (a, cos n® + b, sinn@) + 3 r(c, cos n0 + d, sin n0) + ¢y
n=

= . (15)

where ag, a, b, c,, d, and ¢q are arbitrary constants,



T, cos n0dd | =0

T, cos n0 40 + J = (1))

i

T, sinn@ dO + | T, sin n0 d0

r
r
D —y O —t
N — ;) ;1"—_.;;'

4

2
L [Ti=T; (1 - cos m'l:)J= [rm g form odd

= 3 ‘e “2)
"R on 0 for n even

Substituting values of co, a, and b, in equation (5), the required steady state temperatyre in
the region inside the cylinder is given by
#

TW+T, < 2 : % =
W = 12 2, EE(T'-B)S"‘"B(R) yn=1,3,5.. . (13)

i

=T|+T2+2(T|—T2) i (_I:)ZP'I Sm(2p—l)9

2 n p=1 R 2p—l

(P=123..) (1)

v 250 Solution of Laplace’s Equation in General Cylindrical coordinates (Genera
Cylindrical Harmonics)

The Laplace's equation
Viu=0
in cylindrical coordinates (r, 6, z) is
19 (du) . 19% Q% _
rar(rar)+ r2892+az2_0 )

In this equation u is the function of r, 8 and z, therefore by
variables « may be writtenas u (r,0,2) =R (r) © 6)Z(z) e (2)

where R is the function of r only, © is the function of 8 only and Z is the function of z only.
Substituting value of u in equation (1) and dividing by R © Z, we get

Ia(a_R_) | 920 1922

the method of separation of

rRor\"ar ) * 7@ 02 tZ op =
L¥2_ 1290 1 26
* Zazz_—rRar(r o/ re el - G)
In this equation left hand side is the function of z alone while right hand side is the
function of r and @ and is independent of z, therefore cach side must be equal to the same
constant k2 (say), i.e.
1077 9’z
7 922 =k20r52——k22=0 e (4
I d ( aR 1 0%
and - =) %9 _,
R O (’ ar) P26 o =K &)

Multiplying equation (5) throughout by r2

, we get
23R rdr |30 2Ry 2
RIR™R ar " @am=kr o =S5, LR 9’0

LIK 22y _ 1
Rare"'R ar'i-kr)-—@aez .. (6)



\gain the left hand side is the function of r on)
A

(herefore cach side must be equal to the sam
LU

Y s while right hand side is the function of 0
“inl. |

€ constant m? (say), j.e.

10°0 _ © . .0
-5 30° =meor =oy + m ©=0 (D)
ROR roR 55
. Eaﬂ*R ar+L re=m
PR IR
R ,-28'2 +rar+(k r“—m<)R =0 . (8)
The solution of equation (4) is given as
Z=C,e'+ C, ez (9)
The solution of equation (7) may be expressed as
© = Cycos m8B + C, sin m0 (10)
In order to solve equation (8), let us substitute
kro=x e (11
then equation (8) takes the form '
d2R dR
2 TR L0 2 —
XEITHX ax+(.7c -mH)R=0 . (12)
This is Bessel's differential equation. Its solution is given by
or R = Cs Jm (X) + C6 'I-m (x) = Cs Jm (kr) + Cﬁ J—m (kr) ... (13a)
for m as a fraction
or R =CsJ, (kr) + C4 Y, (kr) ... (13b)

form an integer or in general
Thus the general solution of Laplace’s equation in cylindrical coordinates (r, 8, z) is given
by

u(r,8z) =R(r)© () Z (2)

=[Cy e + C, &) [C3 cos mB + C, sin mB] [Cs J,, (kr) + Cg Y (kP)] ... (14)
These solutions of Laplace’s equation are called general cylindrical harmonics. If we lel-k
fixed constant and if we require u to be a single valued function of 8, then m must take
only integral values and consequently the solution takes the form

e

u= Y, ek (A, cos m0 + B, sin mB) + [‘-"k: (Cyy cos mB + Dy, sin '"9)] Jwkn) - (13)

m={()

be a

. . : ' ical problems
This solution remains finite at r = 0 and is specially uscl'gl n c?r:au.\ zlfli;t\r\‘c;«tl E\r'alu:ued
and the problems of steady state heat condition. The constants in the solution may

¥ using the boundary conditions of the specified problem.

3 i : Spherical
96~ Solution of Laplace’s Equation in Spherical Polar Coordinates : Spheric
Harmonics
The Laplace’s equation
Vi =0
In spherica] polar coordinates (r, 0, ¢) takes the form .
' 1 u
1 d du I J ( a_lg) T
ﬁg(rza_r) T2 sin 0 00 sin096) * 1 2sin? 0 09 |
. 2 . (1
1 du
: a ?Ju ] _a___ K E.)_'i ) W Y% i 0
- 3("25) *sin0 aa(‘““ean sin? 0 20



.."Wfi
From this equation it is obvious that w is the function of (r, 0, ) ;
method of separation of variables its solution may be expressed as

w(r,0,¢)=RKOD

therefore by the

v (Y
where R is function of r only, © is the function of 0 only and @ is the function of ¢ only,
Substituting (2) in (1), we get
d | ,(ROD) 1 d ). ,9d(ROD |92 (RO®) .
57-["‘ o [tsmooo YT 00 [ it ag =0
Dividing by ROD, we get
19 (,0R 1 i( Q_Q) 1 2D
R ar(' ar) *osin0a0 \M0%50) * T sinT e gz =0
Multiplying throughout by sin? 8, we get .
sin8 9 ( ,JRY  sinB 9 (. 8_@) 1%
R ar("‘ ar) 7o 20 (s'“e #) T oap=0
sinleg(rzg_@)_‘_sinﬁ_a_(s, 9@)_-1_(’)2_@
R ar\" or © 90 00/ " @ 9¢2 .(3)

In this equation LHS is the function of r and 6 onl

y while RHS is a function of ¢ only,
therefore for the validity of this equation, each side must

be equal to same constant m? (say), so

that
sin?Bd (,0R) sin® 3 (. 20 _ o
R a,—(’2 ar) "o 9 (""‘ 0 ae) =m @)
| 92d 92D
and - 38_(:)3-:"'2 = aq’2+mz(D=0 .5

Now dividing equation (4) by sin? 8, we get

19 (L8R 1 3 (. 30\ m
R or (" ar) " ©sin0 00 (s“‘ 0 ae) ~sin?0
1 (LRY_ 13 (. 20\, m?
R or (r— Br) " ©sinH o0 (sm 939) " sin?0
In this equation LHS is the function of ronly while RHS is the function of only;

therefore for the validity of this equation, each side must be equal to same constant n (n + 1)
say.

13 (,0R) _ PR IR _
Rar(rzar)-n(n+l) = rla’a+2rar-n(n+l)R—0 ...(6)
. 1l 9 (. .90 m2_
wd _@sinﬂaﬂ(sme96)+sin29-n("+l)
| 9 (. ,d0 m?
=3 sin 0 36 (sme 69) - [n (n + l)—sinlelezo .1
The solution of equation (6) is
R=Ar +Br-—n!

.(8)
In equation (7), we put x = cos 0 and transform the variable 0 in x,
dO  JO dx (o) :
90 = ax 0 =~ sin 0 PR cquation (7) becomes

()

_ 9 1ein2 ‘j_@_] [ __m? -]-_
sinOr')O[sm Gﬂx e+ D sin? 0 Q=0




d 2 ‘1@] [ _-_’lz_._] 5

) 5;[(I .\)a-\_ +inn+1) (0 - 1D O=0
20 J0 2
5,00 | 20 [ _m

. ““-"ax! 2x E).\‘+ nin+1) ————-(l _xz)]e=0 ...(9)
This is associated Lagendre's equation, its solution is

O=CP"(x)+D Q" (x)
& ©@=CP,/(cos 8) + D Q," (cos 0) ...(10)
The solution of equation (5) is

¢ = E cos (md) + F sin (m¢) (1)
Therefore the solution of Laplace’s equation will be

u=RO ® = (Ar" + Br="') [CP," (cos 0) + D Q,”(cos 0)] (Ecosm & + F sinm $)...(12)
The most general solution of Laplace’s equation will be

u=2 X A"+ B,rh (C,, P (cos 8) + Drn Q4 (cos 8) (E,, cos m¢ + F,, sin ma)

..(13)
Simpler Solution

The solution is too complicated to handle, therefore usually angular part of solution is
handled together, for this we put

S(6, 9) = O(0) d(¢) ...(14)

5 (8, ¢) is the function of 8 and ¢ and is called the surface harmonic. 1f ¢ is constant, then
S is the function of @ only and is called the surface zonal harmonic. For this we put

u(r, 8, &) = R(r) S0, ¢)

..(15)
Substituting u = RS from (2) in (1) and dividing by RS ; we get
1D (LaRY, 1 3 (. .2S 1S
R ar(‘"2 ar) *Ssin0 08 (s"‘ ® % ) *Ssin?e 292"
19 (,9R I 9 (. .98 1 a8
o Ea—r(’2§7)="s sin 8 09 (S"‘eae)" S sinZ 0 262 K15}

In this equation the left hand side is the function of r only and right hand side is the

function of © and ¢ ; therefore each side must be equal to the same constant ; n (n + 1) say ; n
being a constant

%%(ﬂ%ﬁ):n(n-&l) )
. 2
ie. r2%§+2r%%-n (n+1HR=0 - (17)
; 19 (s 998 : a1S:n n+l)
™ " Ssin® ﬁ("'“eae)'sm!a_&w (
19 (Gne®) L —2—S+|n+l)S=0 - (18)
” sin @ 00 (5'“939) *omie gt "
The solution of equation (17) is (19)
api=] -
R=Ar"+Br

. anlace’s equation in
IfS=35, is the solution of equation (18), then the solution of Laplace’s equa
spherical polar coordinates is expressed as

.. (20)
u=RS=Ar+Br-"-1HS§,




This solution is called the spherical harmonic. The subscript n on S, signifies that h
came value of n must be used in both terms of cquation (8).

Surface Zonal Harmonics. 1f the function u i.s independent of ¢, then S, is the funcn,,n:
of 0 only i.e. S, is the zonal surface harmonic. In this case we have |

9% |

a9 0 (2l)l

and equation (18) reduces to 1
LD (. 95

siﬁé‘ﬁ(sm 9—96-) +nn+1)S,=0 -

In we substitute x = cos 8 and transfrom the independent variable 8 to the indepenge,
variable x

a5, . 08,
%o =" sin GE)T
in equation (22) ; we obtain
dS,
‘qirliee?_e [u —x2) ax} +n(n+1)8,=0
or 53; {(1 -x%) %‘i} +nn+1)§,=0 e (1)

This equation is Legendre differential equation. If n is positive integer, the solution of
equation (23) is Legendre polynomial given by

Sp =P, (x)= P, (cos 0) (M

As Laplace’s equation is linear equation, the linear combination of solutions of the type of
(20) is also a solution. Hence the general solution of Laplace’s equation when S, is
independent of ¢ is given by

u =Z,0(A,,:"'+B,,r""‘l) P, (cos 6) ... (9)

where A, and B, are constants to be determined by boundary conditions of specified problem.

SOLVED EXAMPLES
Ex. 8. If S, and S,, are zonal spherical harmonics, then prove that

] [ 5, 8,dS=0,n#m (Kanpur 1998 Meerut 1997)
Solution. The grccn's theorem is
]” (¥, V2, W, V29 ) dV = ” (W,V¥, -¥,V¥ ) dS o (1)
v 0y
Let us substitute
Wy =S, and W, = S, @

then W) and ‘¥, satisfy Laplace’s equation, i.e.
V¥, =0 and V2, = 0,

Hence the volume integral on left hand side of (1) vanishes.

. . | If we consider the surface of 0
unit sphere in Green's theorem i then we have

J .
(V'¥), =;-)-r(r"‘ S, =mrm = Sw=mS, atr=1



e

— —

a0 O 5 =—kMhq .. (5)

Fquation (4) is the Helmholtz equation which may ag

cation of variables. Equation (5) may be expressed as
separ: T
§t— = —k2h? §t

wnd
ain be solved by the method of

Jntegrating, we get
log T==k2h% 1+ log A
here log A is constant of integrtion, Equation (6) gives
where 102 T= A o-kihn
Thus the complete solution of equation (1) is
2,2
u= q)(.t, Y, 2) ‘[(f) = ¢(X, ¥, z)e—k het

The reason ‘for choosing_thc constant (- £2) 1o be negative is that the lemperature of a body
decreases-with increase of time. Now we shall discuss the solution of heat flow equation in

. (6)

- (7)

ariable Linear Flow (Heat Flow Equation in one dimension)

Let us consider a bar of finite length  and of uniform section,
small in comparison with the radius of curvature. Let us assume that the surface is impervious
10 heat so that there is no loss of radiation from the sides. Let the initial temperature of the bar
be given and its ends be kept at constant temperature zero. If one end of the bar is fixed at

origin and the distances along the bar be denoted by x, then the equation of heat flow (in one
dimension) may be expressed as

the diameter of which is

du_ 1 u
dx® = h? 31 . (1)
The boundary conditions are
u=0whenx=0
=0 when x = I} for all values of ¢ w (2)
u=f(x)att=0and u#oo fort=-oo .. (3)
Let the solution of equation (1) be expressed as
ux,)=0(x)t gr) - (4)
Substituting this in (1) and dividing throughout by ¢ T ; we get
_l_a% _ 1 91 . (3)
& dx2 h2t ot

In this equation left hand side is the function of x only while right hand side is the func_tion
of t only ; therefore if above equation is satisfied, ecach side must be equal to a constant
- 02 (say), i.e.

l_ a_zg - 2 QEQ 24 = 0 P (6)
¢ 922 -—fx or =2 + 0L*¢
- v ()
o L&, 8—t=-(12h281 (
ht ot orort
Integrating (7) ; we obtain . -
e )Iog t=-02h?t+log C (log C being constant of integration)

This gives ()
1= C e ! )



_.J'S[h |

ure
The general solution of equation (6) is
¢ = A sin o + B cos oy
(9
Now ¢ must satisly houndary conditions (2). The first condition ¢ =0 at y = 0 Biv
B =0.In order that ¢ = 0 atx = [; we must have .

A sin af = 0 or al = rxt for a non-trivial solution (r=0,1, 2-3..;,|
This gives the allowed values of o as
m

— - (10
For each value of r, there corresponds a solution of differential equation (6) of the form |

¢, =A, ‘iln!EIl )

where A, is an arbitrary constant. |

Substituting value of o from (10) in (8) ; we get :

= C e (rmhll)t |

Thus we see from (4), (11) and (12) that the solution of equation (1) for each value of ris l
of the form

u, = A, C e~ (rehi’t gip T —[-—N e~ (reh/l)’s gin EIX_ e (13)

where N, = A, C new aribitrary constant. |

By summing over for all values of r, the general solution of equation (1) may be expressed
as |

u= Z, N, e (rmhiD)’ sin % v (14) |

(Summation starts from r = | since term corresponding to r = 0 vanishes)

The constant N, is determined using initial condition (3) i.e. u=f(x) at r = 0. Using this
equation (14) gives

fx)= 2 N, sin ’% . (15)

r=|

.y _— : . : . mx :
which is Fourier sine series. To evaluate A, we multiply both sides by sin~"— and integrate

between limits 0 to [ and obtain,
1 [

Jf(x) sinﬂ?—xdx= rzl N, [ sin r—’lu—smwdx- Z N, 8,,” =N, é

0 0
|

i.e. N, % [f(x) sin m;udx

0

Replacing m by r, we obtain
!

N, =?'l' Jf(x) sin r—r;{dx ..(16)
0

Substituting this value of N, in cquauon (14) we get the desired solution of differential
equation (1).



if instead of the ends of the bar being kept at temperature zero, they are impervious to heat
hen |h;‘ poundary conditions of the problem become
- thet

du =0atx=0
‘1-‘ for all values of ¢ (17
o
- = O H l X= l
dx e
n=ffort=0,u#eoatt=oco . (18)
In this case we have u = C e ¢ (x) ; where
¢ =A sinox + B cos owx
i %?— =0 A cos ox — B sin o ...(19)
Now, first boundary condition g—': =0atx=0, givesA =0
and the second boundary condition %:- at x = 0 gives
Bsinal=0
For a non-trivial solution B # 0; therefore sin o/ = 0
oo al=rn e ="1’—t'r=0, 1,2,3,...... ...(20)
Continuing the same reasoning as before, we obtain the general solution
u =Ny+ Z| N, e~ b/t oo % . (21

Atr=0, u=f(x) gives
f(x)=Ny+ rz,l N, cos r% - (22)

This is half range cosine series. The constant Np is determined by integrating (22) between
limits (0, 1)

! !
ie. ] f(x)dx =N, ] dxie. Ny= ]7 ] f(x)dx . (23)
' 0 0 0

The constant N, is determined by multiplying both sides of (22) by cos 1:’1 and integrating

between limits (0, I). This gives
-

N,:%If'(x) cos %d\: - (24)
0
Substituting values of Ny and N, in (21) ; we get the desired solution.

Ex. 12. The ends A and B of a rod 20 ¢m lon
respectively until ste

60° C respectively,

g are at temperatures 30° C and 80° C
ady state prevails. The temperatures at the ends are changed 10 40° C and

Find the temperature distribution in the rod at time t. (Delhi 1999)

Solution. In steady state the temperature gradient remains same throughout the rod. Initial

. 0,-0 0 - 3(
Temperature gradient = —! 22030

I = 59 =25°Ckm
Initial temperature distribution in rod (in steady state)
u=30+25x

-~ (1)

T m——



when 1

1
Ao = 100 X (E) I Po (x) dx = 50 I ldx =50

0 0

when 71

1 |
N\ .y e o e x?2
A = 100 x (2)I I|(.\) dx = |50; Xdx=150x% [—2—]=75
0 0 0
when n =2
5 f : | 3 :
- 250 [ 3x-
= = = - 2 _ A B Ol 1
A, = |00x(2) J P,(x) dx 250] 2(3.t 1)dx = ) [3 —x] =.0
0 0 0
when n =3
| I 1
B 7 _ 5x — 3x 350 [5x4 3x2
A,_lmlepg(x)dx_.’,soj(———z ) dx = 2 [4 “ZJ

and so on.
- 175
u = Zl A, P,(cos 0) = [50 + 75 P (cos ) —TP3 (cos B) + ... ]
n=
This is required temperature distribution.

9-14. The Equation of Motion for the Vibrating String

A string is a cord or wire whose length is very large as compared to its diameter and which
is perfectly uniform and flexible. When a string is stretched between two points with a large
tension, plucked transverse vibrations are produced in it. In order to simplify the problem, let
us assume that the string vibrates only in vertical plane.

Consider the motion of an element PQ of
the string of length dI. Let O be the origin Y
and (x,y) and (x + dx, y +dy), the Tix + ax)
coordinates of points P and Q respectively. i 8 (x + dx)
Let T'(x) and T (x + dx) be the tensions at P :
and Q respectively and 0(x) and 0 (x + dx) the :
angles which the tangents at P and @ make . *
with X-axis, If’i\ and j are unit vectors along ‘ :
X and Y-axes respectively, then the net
horizontal force along X-axis acting on the T i 5
clement PQ : ;
A :
=T (x +dx) cos 8 (x + dx) - T (x) cos 0 ()] i 5 ;
v (1)
The net vertical force along Y-axis acting Fig. 9-6

on the element PQ

= [T (x + dx) sin 0 (x + dx) - T (x) sin 0 (x)] 4 - (2)

Assuming that the vibrations take place in the vertical plane only, the horizontal motion 15
negligible and hence, force represented by (1) is zero.




ngth of the string, then mass of the element PQ = 4 dl

If m is the mass per unit le
the equation of motion, neglecting all other forces, i gives
N,

According to Newton's law,
Ay A
dr
Dividing by dx j we gel

A 9y T (x+ dx) sin 0 (x + dx) = T (x) sin 0 (x)

m dl i =T (x+dx)sin 0 (x +dx) =T (x) sin 0 (l)lj

m E: ¥ ;i?f = dv

But dl? = di? + dy?
6\) ]uz d%y T (x +dx)sin B (x +dx) - T (x) sin 0 (x)

= [I T (8.1 darr ~ dx

Taking the limit dx = 0; the above cquation can be written as
av\2]i2d%y 9
- [1 (a‘) ] ~5 =5 (Tsin0) o
dy/o.

But sin B = tan 8 = yox

V1 + tan2 0 _\Il + (dy/dx)? .
Then equation (3) can be written as
d’y dy\2]12 /ox
md_; |+ (a») ]1 I dy/ox ]
g X V1 o+ (dy/dx)?

\

Let us restrict ourselves to small vibrations, so that the slope éi- is small compared to

unity, then we have

d%y _ 2 [ dy ]
m g =37 (5) -
Let us further assume that the tension T is constant throughout the string, then
a2y 32
m g =T g2
aZ T aly
or dr " m dx - 6)
d%y 32
or n = ¢2 ] .. (6)
n
where ¢ =(I) =L )
m m

The constant ¢ has the dimensions of velocity and actually it is the velocity which the
wave travels along the string. Equation (6) represents the equation of motion of the vibtrating
string.

Cor. If in addition a vertical force f per unit length acts on the string, then the equation of
motion of the vibraling string is given by
2y A A
mdl—% i 2 _| =[T(x+dx)sinO(x+dx)=Tx)sin0O )] j+f-dlj

which yields as before
md2 o2
o .. (8)
"ar =TaetS (



i
is the g cravitational force per unit length of

string, then f= _
the \lbr'lllng._. string will be g nf mg

| s and the equation of
mnl'nn (

ke B
dr dx .
015 1 Alembert’s Solution
E The wave cquation for the vibrating string is
2y _1 9y
dx? ¢t ot »
Obviously, this displacement y is the function of x and ¢, i e,
y =y(x,1)
Let us introduce the two new variables u and v such that v (2)
u=x+ctandv=x-ct
Evidently, "
v
dx ~ox
ou v @
o a - "€

From (2) and (3), it is obvious that y may be considered as the function of new variables u
and v i.e.

y=y v . (5)
This implies
dy 9y du 9y dv 9y , 9 , 9y d (3 3
ax‘au'ax*av'ax‘au'”a L= et = ( E)v)'y - (6)
From which
J d d
N Cge T Ao (7
ox ~ou ' v )
Similarly,
a)- ay au a)? 8v E_’z g.)l ey = i_i (8
ot ~ou ot av au.c+(av) ( C)“"(au av)‘v (8)
From which
9 _ (9 _9 " (9)
a =€ (au B av)
Al
S0 az)' 9 (dy p) )(a_y ay) 3)’_‘_@_2%_'*_2_3_2%_
ax? " ox (ax ) = (Bu dv/ \du tov ) Toud ov? Ju dv
o Py 2 2 9y, (2,
i ar a_(a:)”(au“av)c(au*av)

du? t a2 Ju v

Using (10) and (11) ; equation (1) gives : .
Q_'?_z_y‘- N 32}. az | . Cz (azy a y 2 ___._2—)
2T 2T Juav

or 4__82_L _oie Kl (av)___o

d2 - (D
=c? [32 E_}_)i -2 X }

. (12)



Integrating this with respect (o n 3 we obtain

{—)l = f(v) ; the constant of integration.

dv

Integrating again with respect to v (now) ; we get
y=F, (u)+ _[f(\') dv =F, (n) + F; (v)
where F; and F, are arbitrary functions of « and v respectively. Substituting values Of“and
|

from (3), we gel
y = Fi(x+ct)+ FZ (x=c1)

(I3
This is called D Alembert’s solution of vibrating string.

Physical Interpretation. If Fy (x + ct) is plotted against x, the curve has exactly
same form as that of Fy (x) but every point on it is displaced a distance cf to the Jef; of t,
corresponding point in F (x). The function F (x + ct) thus represents a wave of displace
of arbitrary shape travelling towards the left along the string with the same speed c. In the
manner /7, (x - cr) represents a wave of displacement travelling to the right along the Strity
with the same speed c. Thus the general solution represents the sum of these two Wayg
travelling in opposite directions with the same speed c.

Cor. Consider a string of length / both ends fixed. Suppose a wave of arbitrary shy,

given by y = F (ct + x) - (14
is approaching the origin (x = 0). At the origin the displacement must be of the form
y =—F (ct - x) o (15

Since the sum of (14) plus (15) is zero at x = 0 for all ¢. This shows that the transvery
waves in stretched string are inverted by reflection from a fixed end.

i /9'16/ Fourier Series Solution (The Method of Separation of Variables)
: . dly oYy
To find the solution of wave equation 32 = 2 2 (D)

we require certain initial conditions and restrictions of the string, known as boundan
conditions.

If we take initial instant ¢ = 0, then boundary conditions may be written as
initial position y, (x) = y (x, 0)

and initial velocity vq (x) = [ %)tl ]f o

If the string is fixed at its ends, then we also have
y (0, I) =Yy (l, t) = 0. o (3)

To find the solution of (1) by the method of separation of variables, let us consider that 1
solution is of the form

Yy, n=Xx)é @), L
where X is the function of x only and ¢ the function of  only. Then we have

I _ X Py gy

dx ~ T Ox  ax2 _¢5x—2

dy Jo 92 )2
and Dy, 9y 9%

a =X o anr “Xa,2



