Functional group detection

1. Test for carboxylic acid group

(a) **Litmus test**- Add blue litmus solution (1 drop) to an aqueous solution of acid, appearance of a red colour indicates the presence of a carboxylic acid (blue litmus paper may be used in place of a blue litmus solution)

(b) **Sodium bicarbonate test** (*Functional group test*): To a saturated solution of sodium bicarbonate add small amount of given organic compound. Brisk effervescence indicates the presence of carboxylic acid group.

(c) Fluorescein test: Heat a small amount of organic compound, resorcinol and conc. sulphuric acid (1-2 drops) in a clean and dry test tube till a dark brown coloured liquid is formed. Then add few drops of this solution into a beaker containing dilute NaOH solution (10 mL NaOH diluted to 100 mL). Appearance of red colour solution with green fluorescence indicates the presence of dicarboxylic acid.

(d) Test for Oxalic acid (Blue ring test): Heat a small amount of given organic compound, resorcinol (2-3 flakes) and water (1 mL) in a test tube. Cool the contents and add few mL of conc. H_2SO_4 along the sides of the test tube. Appearance of blue ring at the junction of two layers confirms the presence of oxalic acid.

2. Test for phenolic functional group:

(a) **Neutral FeCl₃ test** (*Functional group test*): Dissolve the given organic compound in water or alcohol and to this a drop or two of neutral FeCl₃ solution. Appearance of red/green/pink/blue-violet colours confirms the presence of phenolic functional group.

Compound	Colour with FeCl ₃ solution
Phenol, o-cresol	Violet
p-cresol, quinol	Blue
m-cresol,naphthol (alcoholic)	Blue – violet
Resorcinol	Violet – blue
α-naphthol	Pink
β-naphthol	Green

******Preparation of neutral FeCl₃ solution:** Take the solution of FeCl₃ in a test tube and add NaOH solution till a small amount of precipitate is observed. Then add a drop or two of FeCl₃ solution to dissolve the precipitate.

(b) **Phthalein test**- The phenols having a *free para position* respond to this test. In a dry test tube, gently heat a small amount of given organic compound with an equal amount of phthalic anhydride (or phthalic acid) and conc. sulphuric acid (2-3 drops), for 1-2 minutes. Cool and pour the mixture into a beaker containing dilute sodium hydroxide

solution. Appearance of pink, blue, green, red colouration indicates the presence of a phenol with free para position.

Compound	Colour
Phenol, o-Cresol	Red
m-Cresol	Bluish purple
Catechol	Blue
Resorcinol	Red solution with green fluorescence
1-Naphthol	Green
2-Naphthol	Very faint green with slight fluorescence

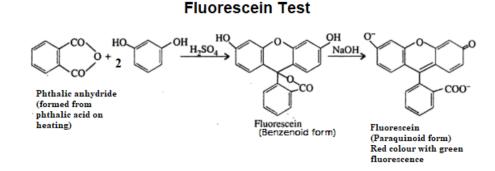
3. Test for alcoholic functional group:

(a) **Ceric ammonium nitrate test** (*Functional group test*): Dissolve a small amount of given organic compound in minimum amount of water or dioxane (*for water insoluble compounds*) and add freshly prepared ceric ammonium nitrate solution (few drops. Appearance of red colour shows the presence of alcoholic group.

(b) **Iodoform test:** Iodoform test is given by alcohols which contain CH_3CHOHR group and oxidize to CH_3COR group during the reaction to give a positive iodoform test (same as described for carbonyl compounds).

When a compound containing CH_3CO - group or the group $CH_3CH(OH)$ - (which can be easily oxidized to CH_3CO group), is treated with a solution of iodine in basic medium, iodoform, a yellow solid separates out.

Procedure-Dissolve a small amount of given organic compound in minimum amount of water and add sodium hydroxide (~1 mL, 10%). Add to this a saturated solution of iodine-potassium iodide in water with stirring until a dark colour of iodine persists. Heat the solution in water bath and maintain the temperature at 80°C for few minutes. Remove the colour of excess iodine by adding a few drops of sodium hydroxide solution. A yellow precipitate of iodoform indicates the presence of CH₃CO group in the compound.

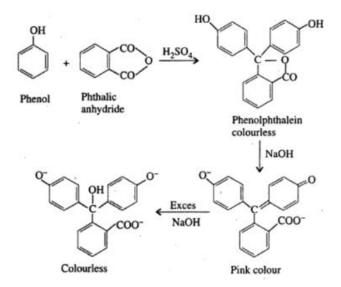

Chemistry of tests:

1. Test for carboxylic acid group

Sodium bicarbonate test:

RCOOH + NaHCO₃ \longrightarrow RCOONa + CO₂ + H₂O

Fluorescein Test:

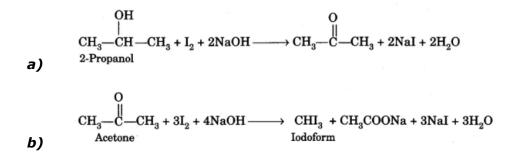


2. Test for Phenolic functional group

Ferric chloride test: (Taking phenol as an example)

 $6C_6H_5OH + FeCl_3 \longrightarrow H_3[Fe(OC_6H_5)_6] + 3HCl$ (purple)

Phthalein test: (Taking example of phenol)



3. Test for alcoholic functional group

Ceric ammonium nitrate test:

 $\begin{array}{rcl} 2R & - OH & + & (NH_4)_2 Ce(NO_3)_6 \longrightarrow [(ROH)_2 Ce(NO_3)_4] & + & 2NH_4 NO_3 \\ Alcohol & Ceric ammonium & Pink \ or \ red \\ & nitrate & complex \end{array}$

Iodoform test (Taking example of isopropanol):

