CONCEPT OF PRESENT VALUE

PV of Future Sum

How much should be invested at 6% so that after 4 years the amount will be Rs. 2500 when the interest is compounded (i) annually (ii) quarterly (iii) monthly?.

Present value	PV(r/m,m*t,0,FV,0)	-₹1,967.75	PV(RATE,NPER,PMT,[FV],[TYPE])
	Using Excel Formula		
Present value using formula	A*(1+r/m)^(-m*t)	₹1,967.75	2500*(1+0.06/12)^(-4*12)
		12	
year (m)		12	
No. of times compounding in a			
Time in years (t)		4	
Rate of Interest (r)		6%	
Future Value(FV) or amount (A)	₹2,500.00	

PV of series of Equal Annual cash flows

Chirag has just one million rupees, the prize is awarded in 10 annual payments of Rs. 1,00,000 each. Annual payments are received at the end of each year. He has option of receiving a single lump-sum payment of Rs. 6,00,000 instead of million rupees annuity. Find out which option is more in today's rupees. Money is worth 10% compounded annually.

Periodic Payment/Annuity (PM	-)	₹100,000.00			
Rate of Interest (r)		10%			
Time in years (n)		10			
No. of times compounding in a					
year (m)		1			
Present value using formula	Periodic payments*PVAF	₹614.500.00	1000000*6.145	PVAF for 0.1 and 10 years	6.145
	Using Excel Formula			, ,	0.2.0
Present value	PV(r/m,m*t,PMT,0,0)	-₹614,456.71	PV(RATE,NPER,PMT	,[FV],[TYPE])	

Option of 10 annual payments of Rs. 1,00,000 each is better than single lump-sum payment of Rs. 6,00,000.

PV of an Annuity Due

A purchases a house from B and agrees to pay B twenty annual instalments of Rs. 20000 each, the first is to be paid immediately. If money is worth 8% effective, what is the equivalent cash price of the house?

Periodic Payment/Annuity (PM	IT)	₹20,000.00			
Rate of Interest (r)		8%			
Time in years (n)		20			
No. of times compounding in a					
year (m)		1	-		
	Periodic		20000*9.81814741*	(
Present value using formula	payments*PVAF*(1+r/m)	₹212,071.98	1+8%/1)	PVAF for 0.08 and 20 years	9.81814741
	Using Excel Formula				
Present value	PV(r/m,m*t,PMT,0,1)	-₹212,071.98	PV(RATE,NPER,PMT,[F	PV],[TYPE])	

PV of Perpetuity

A bank makes an offer to deposit with it sum of Rs. 16000 and then receive a return of Rs. 1800 p.a. perpetually. Should the offer be accepted by an investor whose opportunity rate of return is 12 %? Will the decision change if the rate of return is 10%?

Current Deposit		₹16,000.00	
Annual Return (perpetuity)		1800	
Opportunity cost (i)		0.12	
Opportunity cost (ii)		0.1	
	(i) @12%	(ii) @10%	
			ANNUAL
Present value of Cash flows			RETURN/RATE OF
(perpetuity)	₹15,000.00	₹18,000.00	INTEREST

So, the bank offer can be accepted at opportunity rate of return of 10% but not at 12%

PV of Series of Unequal future cash flows

X sells goods for which he offers following option of payment: (i) Pay Rs. 2500 now, or (ii) Pay Rs. 800, 900, and 1000 at the end of first, second and third year from now. The customer has opportunity cost of 10% so which option will he choose ?

YEAR	CASH FLOWS	OPPORTUNITY COST
1	800	
2	900	
3	1000	
NPV	₹2,222.39	NPV(rate, Value1, Value2)

10%

CIASSMAte Date Page PRESENT VALUE PV -(mxt) Ξ FV + h PV = Present value shore Fν = Future Value n = rate of interest times compounding in a year period in years m =NO. of time FV & PVF (M/m 1/1, mxt) PV = on Nummit an Annuity Present Value of (i.e. a series of Equal future Cash flows) Dodinary Annuit PV el an 3 n-1 0 2 1 R R R R 112 R(1+i) $R(1+i)^{-2}$ Justig R(1+i)⁻ⁿ4 $= R(1+\lambda)^{-1}$ = $R(1+\lambda')^{-2}$ first payment second payment PV of 1 PV of nth payment = R(1+i)-n

Scanned by CamScanner

classmate Thus, $PV = R(1+i)^{-1} + R(1+i)^{-2} - - + R(1+i)^{-n}$ Geometric deries of n terms with first term $R(1+1)^{-1}$ and common ratio $(1+1)^{-1}$. Hence its sum given by $\frac{PV = R(1+i)^{-1} \left[\frac{1 - (1+i)^{-m}}{1 - (1+i)^{-1}} \right] = R \left[\frac{1 - (1+i)^{-m}}{1 - (1+i)^{-1}} \right]$ As PV = RX PVAF (i/.,m) where PV = Present Value R = periodic amount PVAF = Present Value Annualy Factor $i = \frac{x}{m}$, $\eta = mxt$. Present Value of Annuity Due = $R \times PVAF_{(i',n)} \times (1+i)$ PERPETUITY :- is an armuity whole payments continue forever PV of perpetuity = R where R= periodic payment/ je effective vate or 8 m. (+ 11) & is training & the part &

Scanned by CamScanner

CONCEPT OF PMT

ABC Ltd. raised a loan of Rs. 3,00,000 from a bank at an interest rate of 8% for 5 years. The loan is to be repaid in five equal installments. Calculate the size of installment.

LOAN	300000	
INTEREST RATE	8%	
YEARS	5	
INSTALLMENT	(\$75,136.94)	PMT(rate, nper,pv,[fv],[type])
	PMT(B6,B7,B5)	

XYZ Ltd. requires Rs. 3,00,000 at the end of 10 years. The company wants to establish a fund and invest it at 10% p.a.. Calculate the annual investment to be made

FV	300000	
INTEREST RATE	10%	
YEARS	10	
ANNUAL INVESTMENT	(\$18,823.62)	PMT(rate, nper,pv,[fv],[type])
	PMT(B15,B16,0,B14)	