

APPLICATIONS OF THERMODYNAMIC RELATIONS

CLAUSIUS – CLAPEYRON EQUATION

 $\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial F}{\partial T}\right)_{V}$ $T\left(\frac{\partial S}{\partial V}\right)_{T} = T\left(\frac{\partial P}{\partial T}\right)_{V}$ $= \left(\frac{\partial Q}{\partial V}\right)_{T} = T\left(\frac{\partial P}{\partial T}\right)_{V} - (1)$ $\partial V = V_2 - V_1$ $\partial Q = L$

 $\frac{L}{V_2 - V_1} = T\left(\frac{\partial F}{\partial T}\right)_{V_2}$ $\Rightarrow \frac{\Delta P}{\partial T} = \frac{L}{T(v_2 - v_1)} .$ Clausins 's Latent heat Egn Clapeption's Latent heat Egn

TDS EQUATIONS $ds = \left(\frac{\partial s}{\partial T}\right)_{V} dT + \left(\frac{\partial s}{\partial V}\right)_{T} dV$ TLY $TdS = T\left(\frac{\partial S}{\partial T}\right)_{V}dT + T\left(\frac{\partial S}{\partial V}\right)_{V}dV$ $T(\frac{35}{3T}) = C_V \text{ for normalle isochric process}$ Maxmill's (25) = (31) Hirdlahm 3VV = (37) $\Rightarrow \left[TdS = C_{V}dT + T\left(\frac{\partial P}{\partial T}\right)_{V}dV \right]$

 $dS = \left(\frac{\partial S}{\partial T}\right)_{p} dT + \left(\frac{\partial S}{\partial P}\right)_{T} dP$ $=)TdS = T\left(\frac{2s}{3T}\right)dT + T\left(\frac{2s}{3T}\right)_{P}dP$ But $T\left(\frac{\partial s}{\partial T}\right)_p = C_p$ $\left(\frac{25}{2P}\right)_{T} = -\left(\frac{2V}{2T}\right)_{P}$ yth $= \int TdS = CpdT - T\left(\frac{\partial V}{\partial T}\right)pdP - Q$

THE ENERGY EQUATIONS

du= Tds-PdV

 $\frac{du}{dv} = T \frac{ds}{dv} - P$

 $\left(\begin{array}{c} \frac{\partial u}{\partial v}\right)_{T} = T\left(\begin{array}{c} \frac{\partial s}{\partial v}\right)_{T} - P$ $\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$ First every h $= \left(\frac{\Im u}{\Im v}\right)_{T} = T\left(\frac{\Im P}{\Im T}\right)_{V} - P - (1)$

du= Tas-PdV $\frac{du}{dP} = T \frac{ds}{dP} - P \frac{dv}{dP}$ $\left(\frac{\partial u}{\partial P}\right)_{T} = T\left(\frac{\partial s}{\partial P}\right)_{T} - P\left(\frac{\partial v}{\partial P}\right)_{T}$ 4th lation $\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P$ $= \left(\left(\frac{\partial u}{\partial P} \right) = -T \left(\frac{\partial v}{\partial T} \right) - P \left(\frac{\partial v}{\partial P} \right)_{T} - 2 \right)$ Egn 2nd Energy

For a perfect gas $\left(\alpha \right)$ PV = RT $=) \frac{\partial P}{\partial T} = \frac{R}{V}$ $\left(\frac{\partial u}{\partial v}\right)_T = \frac{TR}{V} - P$ $= \frac{RT}{V} - \frac{RT}{V}$ Jul Jul

 $\left(P+\frac{a}{V^{2}}\right)\left(V-b\right)=RT$ $(P + \frac{\alpha}{V^2}) = \frac{RT}{V-b}$ $P = \frac{RT}{V-b} - \frac{\alpha}{V^2}$ $= \left(\frac{\partial f}{\partial T}\right)_{V} = \frac{R}{V-b}$ \Rightarrow 24 1/2

