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Mg, 1.6, Addition of veetors, each representing simple harmonic motion along x-axis at angular
Jrequeney o to give a resulling SHM displacement

A% = (a, + ay cos ¢)* + (ay sin @)’
or A = af + ag' +2a,a, cos 0.

which fs same as obtained analytically (eqn. 1.36) .
The fotal phase of resultant motion is given by |PON and let this is equal to (ax + J) where ois

\ (he phase conbtant of the regultant motion. From Fig. (1.6b), we have
6 = ﬂ . (Z,
[ _ fan J +tana,
tan 6= tan (f+¢y) = 7=~ f tanq
an = a, sina (where 0= 0 — )
a +ay cosa '

for tan /3 in the above equation and simplifying, we get
3 a sinay +a, sinay

tan 6 =
al Cosal + az coS az

éunc as eqn. (1.37) obtained analytically.

4 & SUPERPOSITION OF TWO SIMPLE HARMONIC OSCILLATIONS OF
DIFFERENT FREQUENCIES: BEATS

ffering frequencies (e.g., from two tuning forks of

simple harmonic waves of slightly di req from
: raight line in the same direction, then the resultant

encies) travel along the same st
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atensity of sound, which s proportionaf

nately maximum and minimum, Thus the intens i R o

. amplitude, rises and falls {technically known as \mxmgl?ndd :..u: [,,0 né i ni
" Phenomenan of waxi vanine of sound is called beats. s

I waxing and waning ne second is called the frequency

uencies of the sound waves,

Wam g : _ =
T COnstittes one beat, The number of waxing and waning In 0
rposition of two

APItRT i< alier
W the square of
with time.

;:::l:;“l:l: fl::':ﬂl:cnci. of bents is equal to the diﬂ'crenc:z ir‘t the l1:';:!1:35 e P
SouNd waves of :‘i“"‘ I((‘»_l‘.n[.lllicnl). The phenamenon of beats occt
along the gh tmj .: "_)'hdiﬁ.crcn'l I"rcquenclcslr-avcl!mg
Consider ﬂ'm sagt ll!u: in the.samc direction.
: Ata particular instant (Fig. 1.7), the two
Waves meetin the same phase ata particular point. They
remtoree to produce maximum sound intensity. After
this instant, they get further and further out of phase as
their frequencies are slightly different. Afier ashorttime
(at time 1,) the two waves arrive at the point in the
opposite phase. This happens when one wave gains half
a vibration on the other. Now they produce minimum
sound intensity. Again after some time i.e., at instant 15
one wave gains one full vibration on the other and the
two waves are again in phase and produce maximum

sound intensity, and so on. One maximum and one Fig, 1.7 (a) Two harmonic oscillations of
slightly different frequencies.

Displacement

Displacement
-
-
=
(
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(b)

minimum constitute onc beat. T!lc numbcr'of beats Y it sacilation. due: t0
per sec. is equal to the difference in frequencies of the superposition.
sources.

Now we shall explain the production of beats by considering the case of two tuning forks of
frequencies 256 and 254, Let the two forks start vibrating together in the same phase. After 1/4 second,
he first fork completes its 64 vibrations while the second one has completed its 63% vibrations. The
esare now in opposite phase and produce minimum intensity. After 1/2 second, the two waves
n phase (phase difference is equal to A) and produce maximum intensity. After 3/4 second,
completes 192 vibrations while the second one completes 190% vibrations. There is
of 30/2 i.e., the two waves are in opposite phase and produce minimum intensity. After
1 of one second, they are again in phase and produce maximum sound intensity. During one
a and two minima are recorded i.e., two beats are heard in one sec. Hence the number
to the difference in the frequencies of the two sources.
analysis. Consider the case of two waves having same amplitude a with slightly
it ncies n and n, traveling simultaneously in medium. If y, and y, be the displacements

any instant £, then
n=asin2mnt (140

y,=asin2mny ! (1.41)

‘_uperposition, the resultant displacement y at any instant ¢ is given by,
e y=ytym=asin2rnt+asin2 wnyt

J t= [2:: coS 211;("' ;"2 )t]ksin ZE(m)!
2

n+n
( 'T 2)’ (1.42)
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frose attipli=

where A =2 a cos zx( L2 )r. Equation (1.42) represehls a simple harmonio ittolion w

tude is A4 and average frequency = (n) +ny)/2,

Now for A to be maximum, cos 27 (MJ (=4 |

; - _
W 21 ('—"lJ t =k where k=0, 1,2, .
or - k
(= ny)
when k= 0, = First maxima
= tj = ———I-—— Second maxima
(= ny)
k= 2, L= -~ - Third maxima '
(m = ")
_ n .
k= n, B ——— nth maxima
(m -n)

- . * . 1
Thus the time interval between two successive maxima = E—-—-—')‘ seconds.
n ="y

Frequency of maxima = (n) —ny).
Similarly, the amplitude is minimum, when

cos 27 ["‘ ;"1) t= 0

2 (f:_"_z) t= @k+1)m2, wherek=0,1,2,3,.
== .

or

(2k+1)
2(m =)

= =

2(n —my)

------------------

ncy of minima = (11, — 1,).
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16 WAVEG AND OFTICE

This shows that the fr equency of minfma i the same as thal of maxima, Betveen any two maxim,
motlon, resulting from Superpoition

there is aininimum, The pertodic vartation of the amplitude of the :
of SHM's of slightly di{fcrcnl f'rc(Tucncie;,, )::;l knuwfn as t}m{)h(mamﬂﬂﬁﬁ of beats. One MazIMUM of
am plil‘udc followed by a minimum is technically called beat. In one 56¢. the intensity 15 maximum (,
~my) time and minimum also (n, - n,) times, Hence (ny = 1) beats will be heard in one sct.:c;,nc'!_. 'chce
the beat frequency is equal to the difference between the frequencics of the componen! gl it

~ Figure 1.7 shows graphically the result of superposing WO harmonic oscillations of slightly
different frequencies, It may be noticed that two oscillations in Fig 1.7(a) are harmonic while their

superposition shown in Fig, 1.7(b) is perlodic but nol harmonle. )
There are number of application of beats, Phenomenon of beats can be usc'd to determine t'hc smal]
difference between frequencies of two sources of sound. Musicians often use this phenomenon in tuning
their instruments, Sometimes beats are deliberately produced in2 parlicularscction of an or'chcstra to give
a pleasing tone to the resulting sound. The phenomenon of beats is also used to transmita signal from one
place to another. The beats called wave groups or wavce packets propagatc in spacc.

1.6 SUPERPOSITION OF N HARMONIC OSCILLATIONS

In previous sections we have discussed the superposition of two harmonic oscillations and the method
can be extended to any large number of oscillations in which the frequencies, amplitudes and initial

phases of the component oscillations are all different. We shall discuss the following two cascs:
(i) Superposition of n harmonic oscillations, all having same frequency and amplitude but with equal

successive initial phase differences.
(ii) Superposition of n harmonic oscill
but with equal successive frequency differences.

n Harmonic Oscillations with Equal Phase Differences

ations, all having same amplitude and initial phase difference

1.6.1 Superposition of

/0] U erposition of n harmonic oscillations cach of amplitude a, angular frequency
differing from its neighbouring oscillation by an angle 6. The first these
be described by the equation

X, =dcos wl

§ given by
: X, =acos (w+ 0)

Xy =acos (w +20)

---------------------------------------

--------------------------------------

x, =acos {a+(n- 1)}

iple, the resultant motion can be given as

Bacos(w + 0)+acos (Wt +28)+ - +acos {wr+(n-1)8  (1.43)
jbtained by the following graphical method.

sentation of the expression (1,43) is shown in Fig. (1.8).
present the first, second ... and the nth harmonic oscillation.
length R is the resultant amplitude, The combining
ny regular polygon can be inscribed in a circle
comers A, Ay, 4y ... 4, lie on the circle and
41, I1s equal to the angle & between adjacent
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WRTE AF {4 e angle between roaxis amd AA, (nof shown i f'/" i
o o e + g 1 " % ¢ ":“.’ ¥ 4
 Figy and R is the amplitude of the resultant, given a3 4 \s f,--’q:; iT

\ r. 1 b '3
o !?-'.3 (:ﬁ r.‘g;z I’ 'y .-‘t‘ }ﬁ
R= dran— = g v/ s %3
2 snd/2 \ ’__r" ;

- . i \/ :
and its phase with respect to the first contribution is given "‘l: s a4 R
l pe / U~ - S

s =] ‘

wr- Ry Y ook,
= - o 1
a=(n-~1)62 g bé;,.lﬂa:'f-‘g
where o is | i i fi . & A
where o is its phase difference with respect to the first A
component g Cos ox. Fig. 1.8 Su arposition of n
~ . latiors O
Geometrically we see that each length harmonic "’""‘idi_“ ons of
. equal amplitude a
. 0
a = 2rsin—
2

where 7 is the radius of the circle enclosing the (incomplete) polygon. From the isosceles triangle 24C

the magnitude of the resultant
. nd mnd/2
R=2r s:n.'io-:as ,
2 sind/2

and its phase angle is seen to be
a= LOAA, - LOAA,

n the isosceles triangle 044,

LOAA, = 90° - 2;_5_
he isosceles triangle OA4, -
é

AOJ"A] = 90:3 = 2

[o-Eor-5)

alf the phase difference between the first and the last contributions. Hence the resultant
sl /2 1
SIP L cos mz+(n—1)E
sind /2 2
ent let us examine the behavior of the magnitude of the resultant
_ o Sinnoi2 sinnd {2
sind/2

ut depends on the value of 8. When n is very large & is very small and the
f the circle centre O, of length na =/ with R as the chord. Then

r=Rcos(wx+x)=a
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Fig 1.9. {o) Groph of | sn a/a versus a, showing the ma
- ::-;HE fd}a-mmhdre)aﬁjx’l

e first and last contributions are out of phase (?.a=_ n) and t.hc afc [ has become
. diameter is the resultant R Fig. 1.9(c). A further increas in 6mcrea.ses cand
. -.-l into the circumference of a circle (@ = 7) with 2 zer0 resultant, F{ g. l.9(d?.
) the length [ is now 3/2 times the circumference of a circle whose diameter is

B8t minimum.

eegaitant of the 5 vector is the straight line of length /, Fig. 1.9(b). As Sincreases / becomes the arc ofa

of n Harmonic Oscillations with Equal Frequency

s different harmonic oscillations having equal amplitudes a, equal phase
9 zeroj and angular frequencies distributed uniformly between the lowest
ghest frequency, ;. The component oscillations can be described by the

 x =acos oy

W A e e A e e e

{ant + (n~1)8ax} = a cos w,r
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SUPERPOSITION OF HARMONIC OSCILLATIONS 19

According to superposition principle, the resultant motion can be obtained as
X = acos oyl + acos(w, + dw)t + a cos(wy - +26w)t ¥ - Hacos {o,
where S is the frequency spacing between (he neighbouring componcnts i.c.
w,—w _ B0
n—1 n-=1

(4 (n— 1)dt) (1.44)

e (1.45)
where Ao = , - @, is called the bandwidth. The superposition (1.44) is the real part of the complex

function f{r) where
JORL.| O . GO0 (1 +200)0 +ef(m.r+fn-1)5mﬂ]

= g [1 + o+ P+ - +a'

=ae'?S
where o=e '
and S=1+a+cd+ - +a'” (1.46)
Multiply by o gives oS=q+od+ o+ - + o+ o (1.47)
Subtracting eqn. (1.46) from (1.47), we get
-NS=a"-1
a -1
or 3=
o - 1
_ ein&ax -1
- efﬁﬂ‘.'.‘f ""l
L ( gmietl2 _ g indwt/2
= idwi2 k Jowil2 _ gidall2
i(n=1) }sin(nﬁmt/Z)
A =" w!
| °"p[ sin(6wt/2)
, n—1 sin(nbéwt/2)
' )= !+ )]
en by A =expi [ I 2 ] sin(0wt/2)

,.45), we gct

oy ¥ o (n—l)é‘w ot = (a), W)= -(a),+co2) w,
rage of the two extreme frequenc1es Thus we have

' Y sin(nowt/2)

Ay=ae sin(éwt/2)

cineqn (l A44)'is the real part of f{7), thus x is given by

= sm(m‘)'wHZ) S
sin(6w/2) (1.48)

| x = ay, 05 0 (1.49)
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what o, 1he tisdulation amplitusde, 15 given by
sin{ndwt 1)

a ™ Ho Ty (| 1
a7 ging i 2) (.30

illation is not harmonic though perindic. This rewg

i oy, I limedependent fhe resuliing nse \
m of pmp.q:atinn of wave groups or packety

b similar G that of beats. The concept is used in prable

1.7 SUPERPOSITION OF TWO PERPENDICULAR HARMONIC
OSCILLATIONS

1 physies thero are imany Instances in which two linear simple har
are combined, The resulting mation is the sum of two independent ascillations. [t was demonstrated by
Pissafous in 1887 that when a particle is acted upon simultaneausty by twa simple hdf‘f?lfm!'c maotions
al right angles to each other, the resultant path iraced out hy the particle is a curve. The curves thus
ohtained are called Lissajons figures.

Ihe nature of the figures depends upon the
frequencies of the two waves and (fii) the phase difte
Analytical method: We shall discuss the analytical treatment of these fig
ascillations having different values of phase difference and their frequencie

21 1 respectively,

1.7.1 Two Simple Harmonic Oscillations Perpendicular to Each Other with
Same Frequency but Different Amplitudes

| et us consider two simple harmonic motions having the same frequency (or time period), one acting

along the x-nxis and the other along the y-nxis, Let the two vibrations be represented by

X = (1 COS (¥ ik 1 1)

y = b cos (an + @) wel{1.52)

the umplitudes of x and y vibrations respectively. The y motion is ahead of the y

e ¢ i.e, the phase difference between two vibrations is ¢. The equation of resultant

biained By eliminating 7 between equations (1.50) and (1.51), so that we are left an
ying only x, y and the constant ¢. From eqn. (1.51), we have

monic oscillations at right angles

following factors: (i) amplitude of the waves, (ji)
rence between the [wo Waves.

ures for two perpendicular
s in the ratio of 1 ; 1 'and

L = cos ar
(I !
A sin v = VI-cos? tfofm\(l--.ﬁ:z/‘a2 \
(1.52), we pet \
: Y o \
1 } =908 ¥ cos ¢~ sin @ sin ¢ -
Viblyes f)f cos a and sin @, we gci \ \
L “ﬁcnw sind =2 /a?
T eospsingI - a?

=gingfl = x* fa*
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ST hoth shles, we gol

. | ]
Yoowd= ] = gindel 12
[ﬂmw h) §i1) lﬂ(l ”3]

A 1
i A WU A1 | v
o Sooot el 25 - S oosd = sintg - 2 sin’ 4
f,'] Pob g = B89 =siny 7 i f
1
X i . ¥ Ay ,
oF =5 (R0a” -t s M) =——005¢ =g 1
{ hooah # =sin "
! 3
¥yt Ay 1
o Srt ey = ==cos = sin’ .53
A hoab p=sin (1.52)

This is the general equalion of an oblique ellipse whose axes are inclined to the co-ordinate axes,
Thuy the path followed hy the particle, which is subjected to two perpendicular simple harmonic
motions of equil fiequencies, is an ellipse, Here we consider some important cases,

(1) When ¢ = 0 (nwa vibrations are in phase) n this case sin =0 and cos =

a2 ] 2',
A -|'J—'_._r']_=[)

The eqn, (1.53) becomes — 5
aqn. { ! ' (,3 h ab
] v 3)
Al e Bl e o ‘;L: L & o —'0
o (a h 00; a -h
or Ly=k —x (1.54)

{1
This rapresents two coincident straight lines passing through the origin and inclined to x-axis at the

angle 0, given by |
0= sin”" (bla)

The resultant motion Is rectilinear and takes place along a diagonal of a rectangle of sides 2a and
~ 2f such thatx and p always have the same sign, both positive or both negative (Fig. 1.10a). From eqns.

(1,51) and (1,52), by selting ¢ = 0, we get
Rt X = acos of
. y =bcos of
b
e ;I,

Lofithe straight line of slope b/a, Al time 1 = 0, we have, x = a, y = b, so that the particle

1,100), As the time passes the cosincs begin to decrease until x and y (in eqns. 1.51

16 zero when @r = /2. The particle moves from I’ to 0. After this time, x and y become
ine when @ = 1, we have x =—aand y =~ b, the particle moves from O to P, After

races its path, The particle continues to vibrate along the straight line POP”. In

nearly polarized vibrations.

, we have,

sin ¢ = :}; and cos ¢ = %2
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y b =y ' l ] (1.53) wll ot TN |8
Wb ah \yy ! | ESLU A ¥ By
l 4 LY i\ " 1 = 4 . f : | .
hE Lepteseits an abligue ellipee, ne shown e bt ; it
Lt 110 () () (s
L IR @ 32w lave, y S A L. (L R A
" / :1l % / I R B/ 1_,{! §
st L advos - 0 ¥ N Wy |
™ i (LA l x| &/ ¥ 4; »
\-\ \'\\ i l Lt ’( .‘.‘\i ‘ —ho - ! o
\ wud : | m o) )
Sl _
v |y = | (L56) g 110 J,l:q'.-nuuna‘/?mn@, ihet (e
a b pm{;r-mm'u }u- altipile listsnilo
. ) iotis of the atiine [ egieiie
Uhe resultant patly b an ellipse whose major ::'r‘}'d""f,"?l:,{ ‘L Dhitde rlf/'m:fm ol
and inor axds cotnetde with the co-ordingte axes siper posd, -

cshawn i P L0 ed The patlicle moved In
e elliptival pathe Pron equs (1S 1) dnnd (1.52), 0
he partivle s atpolat ¢l this e (F L 10e), A the e £ [
doctensing o its maximunt positive vatlue a and v beglng (o go negative, Al
Oand v b The particle moves frow 1" 1o O durtig this e, The subsequent motion of the purticle
s indicated by terows i the diagran (Fig 1.10¢). The purtlels trueer out un ellipse In the clock wise
divection. I optics it s catled right handed elliptieally polurized vibratlons, 10a= by then x4y =’
the tesultant path of the particle is clrele of radiuy a as shown in Fig, [ 10(d).
Thus. v darmontic oscillations, at right angle 10 each other, of equal amplitudes ane equal
sivqtiencics but with phase difference of W2, ave equi valent to a uniform elreudar motlon, the radlus of

being equal (o the amplitude of cither oscillation.

e £ 0 and @ = w2, wo getx = d dnd y =0 ad
pli (0 fncrende fron zeio, x SIENE
(e when o = 2, 5=

the cirele

|
&id, we have, sin ¢ = Ty and cos ¢ = = Ti
canies 2
- N .’.’..\‘v( | ] l )
= -—*_;HILL—;- st | v bnowmn | 62 we ...(],5/)
Gy ab \ 2/ 2

e cllipse as shown in Fig. 1.10 (¢).
sin ¢ = 0and cos =~ |

A w

AN

b 22 ()
ab

: % 5 4 e
| "'"+:_‘ = 0 Or ;L (o-- -l< :..-] - (}
b (a b T a b

o ':_ i :l: }’ s ‘.L o .1‘
b a

(1.58)

"_n_t straight lines passing through the origin and inclined to X-UXIS

e -
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