Ex. 15. Find the numerical solution of

 $\frac{dy}{dx} = x + y$, from x = 0 to 0.2 by Euler's method and Modified Euler's method, with the initial condition $x_0 = 0$, $y_0 = 1$.

Solution: (i) By Euler's Method

$$y_{n+1} = y_n + hf(x_n, y_n), n = 0, 1, 2,$$

Taking h = 0.05, the approximate value of y_1 is

$$y_1 = y_0 + hf(x_0, y_0) = y_0 + h(x_0 + y_0)$$

= 1 + 0.05 (0 + 1)
= 1.0500

The approximate value of y_2 is $y_2 = y_1 + hf(x_1, y_1) = y_1 + hf(x_1 + y_1)$. where $x_1 = x_0 + h = 0 + 0.05 = 0.05$.

.. Substituting values

$$y_2 = 1.05 + 0.05 (0.05 + 1.05)$$

= 1.1050

Similarly,

$$y_3 = y_2 + hf(x_2, y_2)$$
 with $x_2 = x_0 + 2h$
= 1.105 + 0.05 (0.10 + 1.105)
= 1.16525
 $y_4 = y_3 + hf(x_3, y_3)$ with $x_3 = x_0 + 3h$
= 1.16525 + 0.05 (0.15 + 1.16525)
= 1.2310

and

These results are shown in the following table:

n	x_n	y _n hodest e's	$\frac{dy}{dx} = f(x, y) = x + y$
0	0.00	$y_0 = 1.0000$	1.0000
1	0.05	$y_1 = 1.0500$	1.1000
2	0.10	$y_2 = 1.1050$	1.2050
3	0.15	$y_3 = 1.1652$	1.3153
4	2.0	$y_4 = 1.2310$	1.4310

(ii) Modified Euler's method: According to this approximation

$$y_{n+1}^{(r+1)} = y_n + \frac{1}{2}h\left[f(x_0, y_0) + f(x_n, y_n^{(r)})\right] \qquad \dots (1)$$

The value of r for a given n is repeated until no significant change occurs in y $_{n+1}^{(r+1)}$

For First Interval

Taking h = 0.05, we have

$$y_1^{(1)} = y_0 + hf(x_0, y_0) = 1 + 0.05(0 + 1) = 1.05$$

The second approximation to y_1 is given by

$$y_1^{(2)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(1)})] = 1 + \frac{0.05}{2} [1 + 0.05 + 1.05] = 1.0525$$

The third approximation to y₁ is given by

$$y_1^{(3)} = y_0 + \frac{h}{2} \left[f\left(x_0, y_0\right) + f(x_1, y_1^{(2)}) \right] = 1 + \frac{0.05}{2} \left[1 + 0.05 + 1.0525 \right] = 1.05256$$

The fourth approximation to y_1 is

$$y_1^{(4)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(3)})] = 1 + \frac{0.05}{2} [1 + 0.05 + 1.05256] = 1.05256$$

Clearly $y_1^{(4)} = y_1^{(3)}$, therefore $y_1 = 1.05256$

For Second Interval:
$$f(x_1, y_1) = x_1 + y_1 = 0.05 + 1.0526 = 1.1026$$

We have
$$y_2^{(1)} = y_1 + hf(x_1, y_1) = 1.0526 + 0.05 \times 1.1026 = 1.1077$$

The second approximate value of y2 is

$$y_2^{(2)} = y_1 + \frac{h}{2} [f(x_1, y_1) + f(x_2, y_2^{(1)})] = 1.0526 + \frac{0.05}{2} [1.1026 + 0.1 + 1.1077]$$

= 1.1104

The third approximate value of y2 is

$$y_2^{(3)} = y_1 + \frac{h}{2} [f(x_1, y_1) + f(x_2, y_2^{(2)})]$$

$$= 1.0526 + \frac{0.05}{2} [1.1026 + 0.1 + 1.1104] = 1.1104$$

Clearly $y_2^{(3)} = y_2^{(2)}$. Hence we take

$$y_2 = 1.1104$$

For third Interval : $f(x_2, y_2) = x_2 + y_2 = 2 \times 0.05 + 1.1104 = 1.2104$

The first approximation to y₃ is

$$y_3^{(1)} = y_2 + hf(x_2, y_2) = 1.1104 + 0.05 [1.2104] = 1.1709$$

The second approximation to y_3 is

$$y_3^{(2)} = y_2 + \frac{h}{2} [f(x_2, y_2) + f(x_3, y_3^{(1)})]$$

$$\approx 1.1104 + \frac{0.05}{2} [1.2104 + 3 \times 0.05 + 1.1709]$$

$$\approx 1.1737$$

The third approximation to y_3 is

As $y_3^{(3)} = y_2^{(2)} \Rightarrow y_3 = 1.1737$

$$y_3^{(3)} = y_2 + \frac{h}{2} [f(x_2, y_2) + f(x_3, y_3^{(2)})]$$

$$= 1.1104 + \frac{0.05}{2} [1.2104 + (3 \times 0.05 + 1.1737)]$$

$$\approx 1.1737$$

...(2)

For fourth Interval: $[f(x_3, y_3) = 3 \times 0.05 + 1.1737 = 1.3237]$

The first approximation to y₄ is

$$y_4^{(1)} = y_3 + hf(x_3, y_3) = 1.1737 + 0.05 \times 1.3237 = 1.2399$$

The second approximation to y4 is

$$y_4^{(2)} = y_3 + \frac{h}{2} [f(x_3, y_3) + f(x_4, y_4^{(1)})]$$

$$= 1.1737 + \frac{0.05}{2} [1.3237 + 4 \times 0.05 + 1.2399]$$

$$= 1.2428$$

The third approximation to y4 is

$$y_4^{(3)} = y_3 + \frac{h}{2} [f(x_3, y_3) + f(x_4, y_4^{(2)})]$$

$$= 1.1737 + \frac{0.05}{2} [1.3237 + 4 \times 0.05 + 1.2428]$$

$$= 1.2428$$

Clearly
$$y_4^{(3)} = y_4^{(2)} \Rightarrow y_4 = 1.2428$$

The results deduced are tabulated as

n	x_n	y_n	dy/dx = (x+y)
n = 0	0.00	1.0000	1.0000
n = 0	0.05	1.0526	1.1026
2	4011 0.10 40114	1.1104	assaul = 1.2104
3	0.15	1.1737	1-3237
4	0.20	1.2428	1.4428

(c) Taylor-Series Method: Consider the first order differential equation

$$\frac{dy}{dx} = f(x, y) \text{ with } y = y_0, x = x_0$$

This may be expressed as 1 = 14015 11 200 + 401111 = 184 840 144 444 44

$$dy = f(x,y) dx$$

Integrating,
$$y = \int f(x, y) dx = F(x)$$

Expanding F(x) in the neighbourhood of x_0 by Taylor's expansion, we get

$$y = F(x) = f[x_0 + (x - x_0)]$$

$$= F(x_0) + (x - x_0) F'(x_0) + \frac{(x - x_0)^2}{2!} F''(x_0) + \dots$$

$$= y_0 + (x - x_0) y_0' + \frac{(x - x_0)^2}{2!} y_0'' + \dots$$

$$= y_0 + hy_0' + \frac{h^2}{2!} y_0'' + \dots$$
...(4)

where $x = x_0 + h$

Equation (4) is convergent in x for $x_0 \le x \le x_n$ where $x_n = x_0 + nh$, hence y_0'' , y_0''' etc. may be computed from (1) as

...(1)

Ex. 18. Use Runge-Kutta method to solve the equation

$$\frac{dy}{dx} = x + y \text{ with initial conditions } x_0 = 0, y_0 = 1$$

from x = 0 to x = 0.4 with interval h = 0.1.

Solution: Given equation is $\frac{dy}{dx} = x + y$ with $x_0 = 0$, $y_0 = 1$

i.e. y'(x) = f(x) where f(x) = x + y

We have for the first interval $(x_0 = 0)$

$$A_0 = hf(x_0, y_0) = 0.1 (x_0 + y_0) = 0.1 (0 + 1) = 0.1$$

$$B_0 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{A_0}{2}\right) = 0.1 \left[0 + 0.05 + 1 + \frac{0.1}{2}\right] = 0.11$$

$$C_0 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{B_0}{2}\right) = 0.1 \left[0 + 0.05 + 1 + \frac{0.11}{2}\right] = 0.1105$$

$$D_0 = hf(x_0 + h, y_0 + C_0) = 0.1 [0 + 0.1 + 1 + 0.1105] = 0.12105$$

$$y_1 = y_0 + \frac{1}{6} [A_0 + 2B_0 + 2C_0 + D_0]$$

$$= 1 + \frac{1}{6} [0.1 + 2 \times 0.11 + 2 \times 0.1105 + 0.12105] = 1.11034$$

For the second interval $(x_1 = x_0 + h = 0 + 0.1 = 0.1)$

$$A_1 = hf(x_1, y_1) = 0.1 (x_1 + y_1) = 0.1 (0.1 + 1.11034) = 0.121034$$

$$B_1 = hf\left(x_1 + \frac{h}{2}, y_1 + \frac{A_1}{2}\right) = 0.1\left[0.1 + \frac{0.1}{2} + 1.11034 + \frac{0.120134}{2}\right] = 0.13208$$

$$C_1 = hf\left[x_1 + \frac{h}{2}, y_1 + \frac{B_1}{2}\right] = 0.1\left[0.1 + \frac{0.1}{2} + 1.11034 + \frac{0.13208}{2}\right] = 0.13263$$

$$D_1 = hf(x_1 + h, y_1 + C_1) = 0.1 [0.1 + 0.1 + 1.11034 + 0.13263] = 0.14429$$

$$y_2 = y_1 + \frac{1}{6} [A_1 + 2B_1 + 2C_1 + D_1]$$

$$= 1.11034 + \frac{1}{6} \left[0.121034 + 2 \times 0.13208 + 2 \times 0.13263 + 0.14429 \right] = 1.2428$$

For the third interval $(x_3 = x_0 + 2h = 0 + 2 \times 0.1 = 0.2)$

$$A_2 = hf(x_2, y_2) = 0.1 [0.2 + 1.2428] = 0.14428$$

$$B_2 = hf\left(x_2 + \frac{h}{2}, y_2 + \frac{A_2}{2}\right) = 0.1 \left[0.2 + \frac{0.1}{2} + 1.2428 + \frac{0.14428}{2}\right] = 0.15649$$

$$C_2 = hf \left[x_2 + \frac{h}{2}, y_2 + \frac{B_2}{2} \right] = 0.1 \left[0.2 + \frac{0.1}{2} + 1.2428 + \frac{0.15649}{2} \right] = 0.15710$$

$$D_2 = hf(x_2 + h, y_2 + C_2) = 0.1 [0.2 + 0.1 + 1.2428 + 0.15710] = 0.16999$$

$$y_3 = y_2 + \frac{1}{6} [A_2 + 2B_2 + 2C_2 + D_2]$$

$$=1.2428 + \frac{1}{6} \left[0.14428 + 2 \times 0.15649 + 2 \times 0.15710 + 0.16999 \right] = 1.3997$$

For the Fourth interval
$$x_3 = x_0 + 3h = 0 + 3 \times 0.1 = 0.3$$
)
 $A_3 = hf(x_3, y_3) = 0.1 (0.3 + 1.3997) = 0.16997$)
 $B_3 = hf\left(x_3 + \frac{h}{2}, y_3 + \frac{A_3}{2}\right) = 0.1 \left(0.3 + \frac{0.1}{2} + 1.3997 + \frac{0.16997}{2}\right) = 0.18347$
 $C_3 = hf\left(x_3 + \frac{h}{2}, y_3 + \frac{B_3}{2}\right) = 0.1 \left[0.3 + \frac{0.1}{2} + 1.3997 + \frac{0.18347}{2}\right] = 0.18414$
 $D_3 = hf(x_3 + h, y_3 + C_3) = 0.1 \left[0.3 + 0.1 + 1.3997 + 0.18414\right] = 0.19838$
 $\therefore y_4 = y_3 + \frac{1}{6} (A_3 + 2B_3 + 2C_3 + D_3)$
 $= 1.3997 + \frac{1}{6} \left[0.16997 + 2 \times 0.18347 + 2 \times 0.18414 + 0.19838\right] = 1.5836$

Ex. 19. Use Runge-Kutta method to find by (0.2) for the equation

$$\frac{dy}{dx} = \frac{y - x}{y + x}, \quad y(0) = 1, \text{ take } h = 0.2.$$

Solution. Given equation is

$$\frac{dy}{dx} = \frac{y - x}{y + x}$$

Here
$$x_0 = 0$$
, $y_0 = 1$, $h = 0.2$

$$f(x, y) = \frac{y - x}{y + x}$$

$$f(x_0, y_0) = \frac{y_0 - x_0}{y_0 + x_0} = \frac{1 - 0}{1 + 0} = 1$$

Hence

$$A_0 = hf(x_0, y_0) = 0.2 \times 1 = 0.2$$

$$B_0 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{A_0}{2}\right) = 0.2 f\left(0 + \frac{0.2}{2}, 1 + \frac{0.2}{2}\right)$$

$$\int_{0}^{2} -iy \left(x_{0} + \frac{1}{2}, y_{0} + \frac{1}{2}\right) = 0.2 \left[\frac{1 \cdot 1 - 0 \cdot 1}{2}\right]$$

$$= 0.2 f(0.1, 1.1) = 0.2 \left[\frac{1 \cdot 1 - 0.1}{1 \cdot 1 + 0.1} \right]$$

$$= 0.2 \times \left(\frac{1.0}{1.2}\right) = 0.1667$$

$$C_0 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{B_0}{2}\right) = 0.2f\left(0 + \frac{0.2}{2}, 1 + \frac{0.1667}{2}\right)$$

$$= 0.2f(0.1, 1.0834)$$

$$= 0.2 \left[\frac{1.0834 - 0.1}{1.0834 + 0.1} \right] = (0.2 \times \left(\frac{0.9834}{1.1834} \right) = 0.1662$$

$$D_0 = hf(x_0 + h, y_0 + C_0)$$

$$= 0.2f(0 + 0.2, 1 + 0.1662)$$

$$= 0.2f(0.2, 1.1662) = 0.2 \times \left[\frac{1.1662 - 0.2}{1.1662 + 0.2}\right]$$

$$= 0.2 \times \left(\frac{0.9662}{1.3662}\right) = 1.4144$$

$$\Delta y = \frac{1}{6} (A_0 + 2B_0 + 2C_0 + D_0)$$

$$= \frac{1}{6} [0.2 + 2 \times (0.1667) + 2 \times (0.1662) + 1.4144]$$

$$= \frac{1}{6} [0.2 + 0.3334 + 0.3324 + 1.4144]$$

$$= \frac{1}{6} (2.2802) = 0.3800$$

:. Value of $y(0.2) = y + \Delta y = 1 + 0.3800 = 1.3800$

14.7. Approximate Solution of Algebraic and Transcendental Equations

(a) Newton-Raphson Method: This provides the method of finding the roots of an equation.

Let given equation be f(x) = 0 ...(1)

Let its approximate solution be x_0 and exact solution $(x_0 + h)$ where h is very small quantity. Then we have $f(x_0 + h) = 0$.

Expanding this by Taylor's series about x_0 , we find

$$f(x_0 + h) = f(x_0) + \frac{h}{1!}f'(x_0) + \frac{h^2}{2!}f''(x_0) \dots + = 0$$
 ...(3)

As h is very small quantity therefore the terms containing h^2 and higher powers of h may be neglected. Then (3) becomes

$$f(x_0 + h) = f(x_0) + hf'(x_0) = 0$$

This gives $h = -\frac{f(x_0)}{f'(x_0)}$, provided x_0 exists. Denoting h by h_1 , we have

$$h_1 = -\frac{f(x_0)}{f'(x_0)} \tag{4}$$

This equation gives a value of h, which when added to x_0 would give better approximation to the root. Let this root be x_1 . Then

$$x_1 = x_0 + h_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
 ...(5)

Now using x_1 in place of x_0 and h_2 the new value of h, (in analogy with (3))

$$h_2 = -\frac{f(x_1)}{f'(x_1)} \qquad ...(6)$$

we get the new value of root x_2 (say) to the second approximation, so that

$$x_2 = x_1 + h_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$
 ...(7)

Continuing the process, we get successive values of h as

$$h_3 = -\frac{f(x_2)}{f'(x_2)}, h_4 = -\frac{f(x_3)}{f'(x_3)}, \dots, h_n = \frac{f(x_{n-1})}{f'(x_{n-1})}$$

and the higher order approximated roots being

$$x_3 = x_2 + h_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$