À rorcyctiz group of alder q.
cysic goul of aldee it.

$$
(123 \alpha) \rightarrow 1 / \rightarrow=
$$

$$
\mu_{1}<\langle(1234)\rangle=\left\{\begin{array}{l}
(1234) *(13)(24), \\
(143 \cdot 2), \varepsilon
\end{array}\right\}
$$

Nornsctic gubgrap of eater 4 .

$$
\begin{aligned}
& \mu_{2}=\{\varepsilon,(12),(34),(12)(34)\} \begin{array}{l}
\text { Enite } \\
\text { subgoul } \\
\text { tost }
\end{array} \\
& (12)(12)(34)=(34) \\
& (174)(12)(14)=(12)(34)^{2}=(12) \begin{array}{l}
\text { tas) }(12)(12)(34)(39)=\varepsilon \\
(12)(34)(12)(34)=(12)
\end{array}
\end{aligned}
$$

 β^{i}

So/f β is a lo-cycle.

$$
|\beta|=10 .
$$

β^{i} is a lo-cyde iff $\left|p^{i}\right|=10$

$$
\begin{array}{r}
|\beta|=\left|\beta^{i}\right|=10 \quad i+f \operatorname{gc\alpha }(i, 10)=1 \\
\rightarrow \quad i=1,3,7,9
\end{array}
$$

\therefore Statues of i between 2 and 10 are 3,7 and 9
Q(48) Show that in the equation $\frac{x^{2}-(1234)}{}$)
equation x
$x^{3}=(1234)$ hes at rest two $5 i^{n}$

Son 5

$$
(1234)=(14)(13)(12)
$$

\rightarrow (1234) is on odd-leemutation.
Put in S_{7} fer every permutation α, α^{2} is ar even leemutation.

$$
\begin{aligned}
& \because \cos +\operatorname{ton}=e_{v e n} \\
& e_{v e n}+e_{n e n}=e_{e n} .
\end{aligned}
$$

$$
\begin{aligned}
& \therefore r^{2}=(1274) \text { he no } 56^{n} . \\
& 5_{5}^{5} x^{3}=(127,4) \quad|(1230)|=4 . \\
& \left(x^{3}\right)=4 \Rightarrow\left(x^{3}\right)^{4}=\varepsilon \Rightarrow x^{2}=\varepsilon
\end{aligned}
$$

$x|x|$ can be le 2 oe 4 or 6 ar 3 al 2.

$$
\begin{aligned}
& x^{2}=(12341+2 \text {-shift } \\
& x^{3}=(1234)+3 \text {-shift } \Rightarrow x=\left(\begin{array}{lll}
143
\end{array}\right) \\
& (1432)^{3}=2 \\
& (1432)^{2}=(13)(24) \\
& (1432)^{3}=(13)(24)(1432)=(1234) \\
& \therefore x=(1432) i 5 \text { a } \sin ^{2} 8 f \quad x^{3}=(1238) .
\end{aligned}
$$

I257, $x=(1932)(567)$ is also a sin of

$$
x^{3}=(1234)
$$

$\cos \alpha_{x}=(1432)(578)$ if also as o
of $x^{3}=(1234)$$\left[\because(567)^{3}=\varepsilon\right]$
there are at least there sons. of $e^{n} x^{3}=(12]$? .
$78,39,90,41,42,43,45,51$ to 55, 57 to 61,
Chaptee-10
Q. 1 to $10,12,14$ to 16,18 to $31,33,35,36,37$, 39,40 to $44,46,49,50$ to 56,58 to 60,62 to s.

