A nor cy the group of order 9. 13 November 2020 Cyptic grow of ceder 9. (1239) Norder 4. $Y = \langle (1234) \rangle = \langle (1234), (13)(24$ Non volvie subsoul of order I. $M_2 = \{ \mathcal{E}, (12), (34), (12)(34) \}$ (12)(14134) = (34) $(14)(14)(14)=(12)(14)^2=(12)$

(12) (34) (11) (34) = (12) (12) (34) (34) = 8

Suppose that is a 10-cycle. For which integers i between 2 and 10 is In also a 10-cycle?

50) Pit a 10-4de, |P|=10.

pi 15 a 10-cycle itt /pi/=10

|p|= |pi|=10 i++ gcd(i,10)=1 7 i= 1, 3, 7, 9 i stalues of i between 2 and 3, 7 and 9. Show that in $\frac{1}{2}$, the equation $\frac{1}{\sqrt{2}}$ (1234) has no solutions but the 108 n'= (1234) has at least two SA's 565: (1279) = (14)(17)(12)- (12) 4) is an odd-feernatation.

Put m st for every premutation & & is an even feemutation.

a 7 a 12.

· 1= (1274) has no 56.

Crenteren= aren St 73 = (127,4) A /(127 8/1 = 4. (x)=4 + (x)+= E + x = E

there are at least there surs. of ear n=(12)e)

Chapter -6. After 37

78, 39, 40, 41, 42,43, 45, 514055, 57 to 61, Chapter-10

Q. 1 to 10, 12, 14 to 16, 18 to 31, 33, 35, 36, 37, 39, 40 to 44, 46, 49, 50 to 56, 58 to 60, 62 to 65.