Green Chemistry

DSE-8, SLIDE-6

Catalysis and Green Chemistry

CONSIDER THE GIVEN REACTION

 $N_2 + 3H_2 \rightleftharpoons 2NH_3 \quad \Delta H = -92 \text{ kJ}$

AT ROOM TEMPERATURE THE REACTION DOES NOT TAKE PLACE.

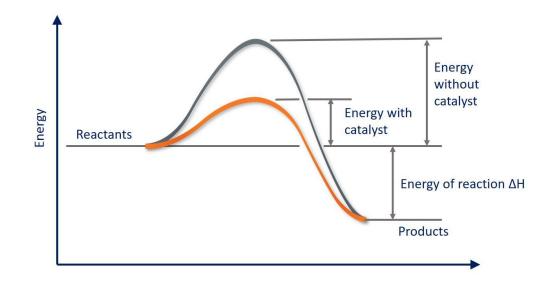
UNDER WHAT CONDITIONS OF TEMPERATURE AND PRESSURE WILL THE PRODUCT FORMATION BE FAVOURED?

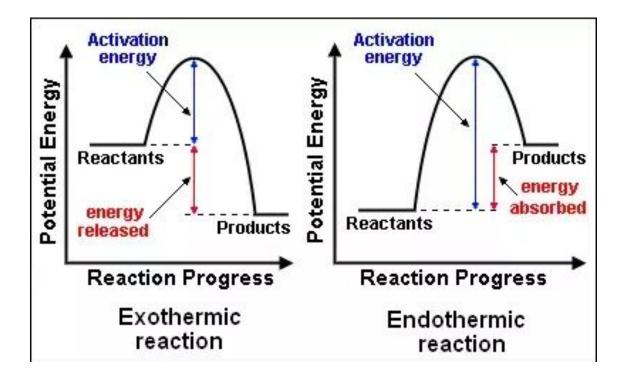
According to Le Chatelier's principle the equilibrium will be shifted to the

right-hand side by high pressures and, since the reaction is exothermic, by

low temperatures.

TEMPERATURE PRESSURE AMMONIA AT EQUILIBRIUM


200^oC 300 atm 90%


700^oC 300 atm 05%

But to overcome energy barrier, 1000^oC temperature is required. Which can only be done if a catalyst is employed.

Definition

catalyst is commonly defined as: A material which changes (usually increases) the rate of attainment of chemical equilibrium without itself being changed or consumed in the process.

There are three important parameters that impact on both the commercial viability and the inherent greenness of a particular catalyst:

1. **Selectivity** – the amount of substrate converted to the desired product as a percentage of total consumed substrate (a catalyst will be of limited benefit if it also enhances the rate of by-product formation).

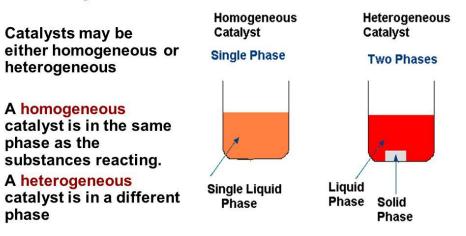
2. **Turnover frequency** – the number of moles of product produced per mole of catalyst per second (low turnover frequencies will mean large amounts of catalyst are required, resulting in higher cost and potentially more waste).

3. **Turnover number** – the amount of product per mole of catalyst (this is related to catalyst lifetime and hence to cost and waste).

Entry	Substrate	Product(s)	Medium	Time (h)	Conv.b (%)	TOF ^c (h ⁻¹)
1	1-hexene	hexane	None	0.2	99	3300
2	1-hexene	hexane	BMI.BF ₄	3.0	98	218
3	1-hexene	hexane	BMI.PF	1.2	>99	556
4	cyclohexene	cyclohexane	None	0.4	>99	1668
5	cyclohexene	cyclohexane	BMI.PF	3.0	>99	222
6	1-methyl-1-cyclohexene	methylcyclohexane	None	1.8	>99	370
7	1-methyl-1-cyclohexene	methylcyclohexane	BMI.PF ₆	5.4	97	120
8	2,3-dimethyl-2-butene	2,3-dimethylbutane	None	0.5	>99	1334
9	2,3-dimethyl-2-butene	2,3-dimethylbutane	BMI.PF	20.0	89	30
10	benzene	cyclohexane	None	2.5	>99	267
11	benzene	cyclohexane	BMI.BF	24.0	3	<1
12	benzene	cyclohexane	BMI.PF6	15.0	97	43
13	toluene	methylcyclohexane	None	13.0	98	50
14	p-xylene	1,4-dimethylcyclohexaned	None	17.0	64	25

Table 1. Hydrogenation^a of olefins and arenes by RuO, nanoparticles pre-catalyst

^aConditions: catalyst/substrate ratio = 1/667, temperature = 75 °C, hydrogen pressure = 4 atm; ^bMeasured by GC; ^oCatalytic turnover frequency: moles of substrate transformed per mole of catalyst per hour. ^dcis/trans=2.1.


Types of catalysts

HETEROGENEOUS AND HOMOGENEOUS

- Heterogeneous catalysts, sometimes referred to as surface catalysts or contact catalysts owing to their mode of action, are in a different phase to the reaction medium.
- Heterogeneous catalysts are widely used industrially.
- In most cases the catalyst is a solid with the reactants being in the gaseous phase.
- The actual reaction takes place on the surface of the catalyst, which may be the external surface or, more effectively, a surface within internal pores of the solid.

Homogeneous catalysts are in the same phase as the substrate and are uniformly distributed. In almost all cases the reaction takes place within the liquid phase, the catalyst being dissolved in the reaction medium.

Catalysts

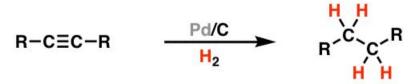
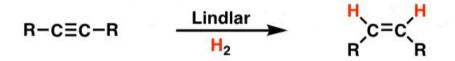

Heterogeneous	Homogeneous		
Usually distinct solid phase	Same phase as reaction medium		
Readily separated	Often difficult to separate		
Readily regenerated and recycled	Expensive/difficult to recycle		
Rates not usually as fast as homogeneous	Often very high rates		
May be diffusion limited	Not diffusion controlled		
Quite sensitive to poisons	Usually robust to poisons		
Lower selectivity	High selectivity		
Long service life	Short service life		
Often high-energy process	Often takes place under mild conditions		
Poor mechanistic understanding	Often mechanism well understood		

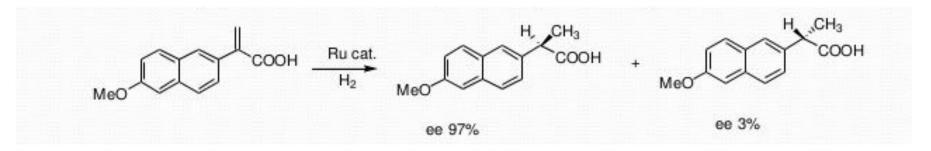
Table 4.1 Comparison of heterogeneous and homogeneous catalysts

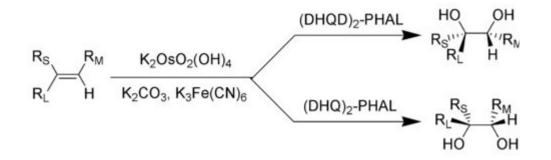


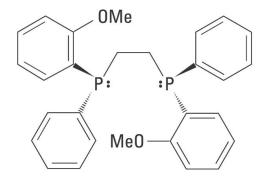
The "Concerted Pathway for Alkynes" - What Works?

1. Hydrogenation (although Pd/C / H₂ adds twice to alkynes)

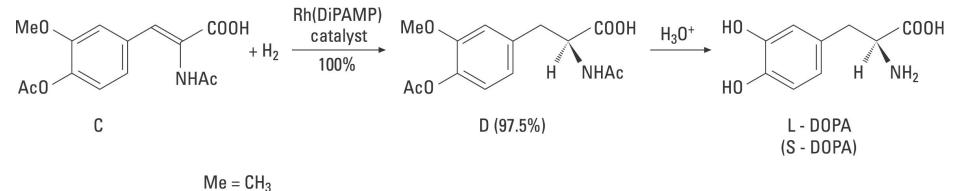
Note: partial hydrogenation can be achieved using Lindlar's catalyst or nickel boride to give syn hydrogenation

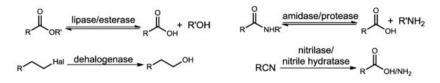

The anti product can be formed using Na/NH $_3$ (although this is not a concerted reaction)


Other types (relevant as per green chemistry)

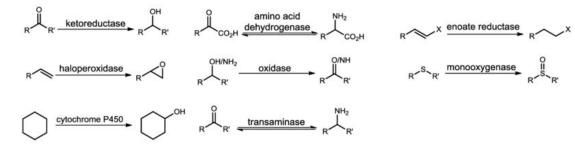

Asymmetric catalysts:

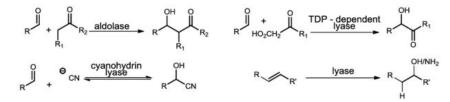
Asymmetric catalysis is a type of catalysis in which a chiral catalyst directs the formation of a chiral compound such that formation of one particular stereoisomer is favoured. These are still relatively rare in industrial processes but they are playing an increasingly important role in the development of pharmaceuticals. This is because they offer one of the most efficient, low-waste methods for producing enantiomerically pure compounds.

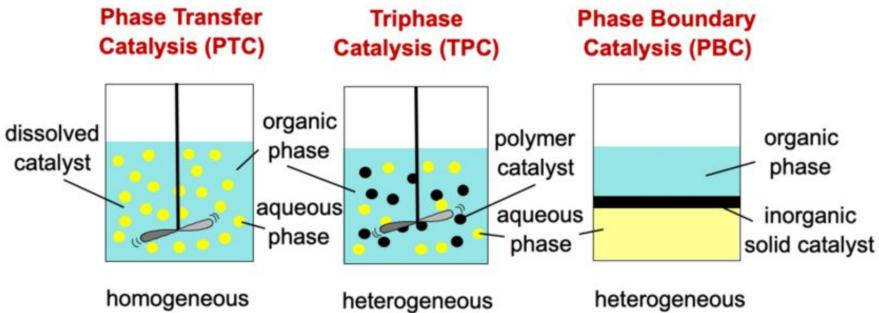



 $Ac = CH_3CO$

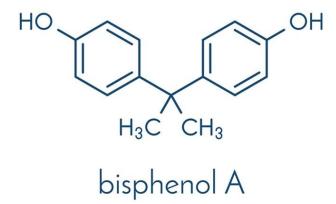
Biocatalysts:

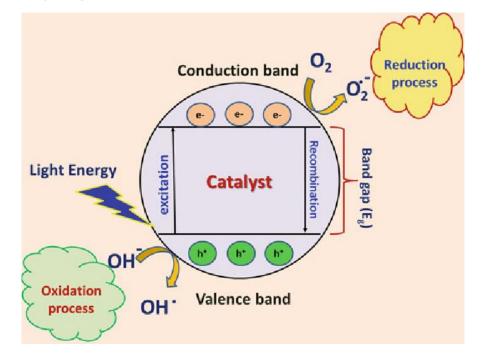

These are essential for life and play a vital role in most processes occurring within the body as well as in plants. In the laboratory biocatalysts are usually natural enzymes or enzymes produced in situ from whole cells. They offer the possibility of carrying out many difficult transformations under mild conditions and are especially valuable for producing enantiomerically pure materials. Their huge potential is currently largely untapped, partially due to the time and expense of isolating and screening enzymes.

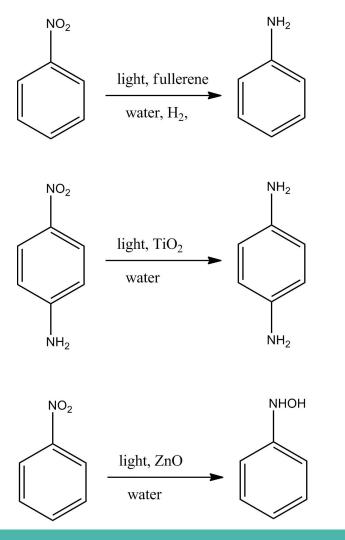

Hydrolysis/Reverse Hydrolysis


Oxidation/reduction

C-C and C-X Bond Forming


Phase transfer catalysts: These have been around for about 40 years and were developed as a means of increasing the rates and yields of reactions in which the reactants are in two separate phases. In these cases poor mass transport often limits the reaction. Phase transfer catalysts act by transporting the reactants from one phase into another, thus overcoming mass-transport limitations.


catalysis under stirring condition heterogeneous catalysis under stirring condition heterogeneous catalysis under static condition


EXAMPLES

- 1. Polyesters are prepared from acyl chlorides and bisphenol-A.
- 2. One of the more complex applications of PTC involves asymmetric alkylations, which are catalyzed by chiral quaternary ammonium salts derived from cinchona alkaloids.

Photocatalysts: These harness energy from the sun to carry out chemical transformations. These energy-efficient catalysts are proving especially beneficial in destroying harmful waste and for water clean-up.

THANK YOU