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Markov Chains

The preceding chapter focused on decision making in the face of uncertainty about one
future event (learning the true state of nature). However, some decisions need to take into
account uncertainty about many future events. We now begin laying the groundwork for
decision making in this broader context.

In particular, this chapter presents probability models for processes that evolve over
time in a probabilistic manner. Such processes are called stochastic processes. After briefly
introducing general stochastic processes in the first section, the remainder of the chapter
focuses on a special kind called a Markov chain. Markov chains have the special prop-
erty that probabilities involving how the process will evolve in the future depend only on
the present state of the process, and so are independent of events in the past. Many
processes fit this description, so Markov chains provide an especially important kind of
probability model.

A stochastic process is defined to be an indexed collection of random variables {Xt},
where the index t runs through a given set T. Often T is taken to be the set of non-
negative integers, and Xt represents a measurable characteristic of interest at time t.
For example, Xt might represent the inventory level of a particular product at the end
of week t.

Stochastic processes are of interest for describing the behavior of a system operating
over some period of time. A stochastic process often has the following structure.

The current status of the system can fall into any one of M � 1 mutually exclusive cate-
gories called states. For notational convenience, these states are labeled 0, 1, . . . , M. The
random variable Xt represents the state of the system at time t, so its only possible values
are 0, 1, . . . , M. The system is observed at particular points of time, labeled 
t � 0, 1, 2, . . . . Thus, the stochastic process {Xt} � {X0, X1, X2, . . .} provides a math-
ematical representation of how the status of the physical system evolves over time.

This kind of process is referred to as being a discrete time stochastic process with a finite
state space. Except for Sec. 16.8, this will be the only kind of stochastic process consid-
ered in this chapter. (Section 16.8 describes a certain continuous time stochastic process.)

16.1 STOCHASTIC PROCESSES



An Inventory Example

Consider the following inventory problem. A camera store stocks a particular model cam-
era that can be ordered weekly. Let D1, D2, . . . represent the demand for this camera (the
number of units that would be sold if the inventory is not depleted) during the first week,
second week, . . . , respectively. It is assumed that the Di are independent and identically
distributed random variables having a Poisson distribution with a mean of 1. Let X0 rep-
resent the number of cameras on hand at the outset, X1 the number of cameras on hand
at the end of week 1, X2 the number of cameras on hand at the end of week 2, and so on.
Assume that X0 � 3. On Saturday night the store places an order that is delivered in time
for the next opening of the store on Monday. The store uses the following order policy:
If there are no cameras in stock, the store orders 3 cameras. However, if there are any
cameras in stock, no order is placed. Sales are lost when demand exceeds the inventory
on hand. Thus, {Xt} for t � 0, 1, . . . is a stochastic process of the form just described.
The possible states of the process are the integers 0, 1, 2, 3, representing the possible num-
ber of cameras on hand at the end of the week. The random variables Xt are dependent
and may be evaluated iteratively by the expression

Xt�1 � �
for t � 0, 1, 2, . . . .

This example is used for illustrative purposes throughout many of the following sec-
tions. Section 16.2 further defines the particular type of stochastic process considered in
this chapter.

if Xt � 0
if Xt � 1,

max{3 � Dt�1, 0}
max{Xt � Dt�1, 0}
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Assumptions regarding the joint distribution of X0, X1, . . . are necessary to obtain ana-
lytical results. One assumption that leads to analytical tractability is that the stochastic
process is a Markov chain, which has the following key property:

A stochastic process {Xt} is said to have the Markovian property if P{Xt�1 � jX0 �
k0, X1 � k1, . . . , Xt�1 � kt�1, Xt � i} � P{Xt�1 � jXt � i}, for t � 0, 1, . . . and every
sequence i, j, k0, k1, . . . , kt�1.

In words, this Markovian property says that the conditional probability of any future
“event,” given any past “event” and the present state Xt � i, is independent of the past
event and depends only upon the present state.

A stochastic process {Xt} (t � 0, 1, . . .) is a Markov chain if it has the Markovian
property.

The conditional probabilities P{Xt�1 � jXt � i} for a Markov chain are called (one-
step) transition probabilities. If, for each i and j,

P{Xt�1 � jXt � i} � P{X1 � jX0 � i}, for all t � 1, 2, . . . ,

then the (one-step) transition probabilities are said to be stationary. Thus, having sta-
tionary transition probabilities implies that the transition probabilities do not change
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over time. The existence of stationary (one-step) transition probabilities also implies that,
for each i, j, and n (n � 0, 1, 2, . . .),

P{Xt�n � jXt � i} � P{Xn � jX0 � i}

for all t � 0, 1, . . . . These conditional probabilities are called n-step transition proba-
bilities.

To simplify notation with stationary transition probabilities, let

pij � P{Xt�1 � jXt � i},

pij
(n) � P{Xt�n � jXt � i}.

Thus, the n-step transition probability pij
(n) is just the conditional probability that the sys-

tem will be in state j after exactly n steps (time units), given that it starts in state i at any
time t. When n � 1, note that pij

(1) � pij.
1

Because the pij
(n) are conditional probabilities, they must be nonnegative, and since

the process must make a transition into some state, they must satisfy the properties

pij
(n) � 0, for all i and j; n � 0, 1, 2, . . . ,

and

�
M

j�0
pij

(n) � 1 for all i; n � 0, 1, 2, . . . .

A convenient way of showing all the n-step transition probabilities is the matrix form
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State 0 1 … M

0 p00
(n) p01

(n) … p(n)
0M

1 p10
(n) p11

(n) … p(n)
1M

P(n) � � , for n � 0, 1, 2, . . .

M p(n)
M0 p(n)

M1 … p(n)
MM

…………………………

or, equivalently, the n-step transition matrix

State 0 1 … M

P(n) �

Note that the transition probability in a particular row and column is for the transition
from the row state to the column state. When n � 1, we drop the superscript n and sim-
ply refer to this as the transition matrix.








p(n)
0M

p(n)
1M

…
p(n)

MM

…
…
…
…

p01
(n)

p11
(n)

…
p(n)

M1

p00
(n)

p10
(n)

…
p(n)

M0








0

1

�

M

1For n � 0, pij
(0) is just P{X0 � jX0 � i} and hence is 1 when i � j and is 0 when i � j.



The Markov chains to be considered in this chapter have the following properties:

1. A finite number of states.
2. Stationary transition probabilities.

We also will assume that we know the initial probabilities P{X0 � i} for all i.

Formulating the Inventory Example as a Markov Chain

Returning to the inventory example developed in the preceding section, recall that Xt is
the number of cameras in stock at the end of week t (before ordering any more), where
Xt represents the state of the system at time t. Given that the current state is Xt � i, the
expression at the end of Sec. 16.1 indicates that Xt�1 depends only on Dt�1 (the demand
in week t � 1) and Xt. Since Xt�1 is independent of any past history of the inventory sys-
tem, the stochastic process {Xt} (t � 0, 1, . . .) has the Markovian property and so is a
Markov chain.

Now consider how to obtain the (one-step) transition probabilities, i.e., the elements
of the (one-step) transition matrix

P �

given that Dt�1 has a Poisson distribution with a mean of 1. Thus,

P{Dt�1 � n} � �
(1)

n

ne
!

�1

�, for n � 0, 1, . . . ,

so

P{Dt�1 � 0} � e�1 � 0.368,
P{Dt�1 � 1} � e�1 � 0.368,

P{Dt�1 � 2} � �
1
2

�e�1 � 0.184,

P{Dt�1 � 3} � 1 � P{Dt�1 � 2} � 1 � (0.368 � 0.368 � 0.184) � 0.080.

For the first row of P, we are dealing with a transition from state Xt � 0 to some state
Xt�1. As indicated at the end of Sec. 16.1,

Xt�1 � max{3 � Dt�1, 0} if Xt � 0.

Therefore, for the transition to Xt�1 � 3 or Xt�1 � 2 or Xt�1 � 1,

p03 � P{Dt�1 � 0} � 0.368,
p02 � P{Dt�1 � 1} � 0.368,
p01 � P{Dt�1 � 2} � 0.184.








3

p03

p13

p23

p33

2

p02

p12

p22

p32

1

p01

p11

p21

p31

0

p00

p10

p20

p30








State

0

1

2

3
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A transition from Xt � 0 to Xt�1 � 0 implies that the demand for cameras in week t � 1
is 3 or more after 3 cameras are added to the depleted inventory at the beginning of the
week, so

p00 � P{Dt�1 � 3} � 0.080.

For the other rows of P, the formula at the end of Sec. 16.1 for the next state is

Xt�1 � max {Xt � Dt�1, 0} if Xt�1 � 1.

This implies that Xt�1 � Xt, so p12 � 0, p13 � 0, and p23 � 0. For the other transitions,

p11 � P{Dt�1 � 0} � 0.368,
p10 � P{Dt�1 � 1) � 1 � P{Dt�1 � 0} � 0.632,
p22 � P{Dt�1 � 0} � 0.368,
p21 � P{Dt�1 � 1} � 0.368,
p20 � P{Dt�1 � 2} � 1 � P{Dt�1 � 1} � 1 � (0.368 � 0.368) � 0.264.

For the last row of P, week t � 1 begins with 3 cameras in inventory, so the calculations
for the transition probabilities are exactly the same as for the first row. Consequently, the
complete transition matrix is

P �

The information given by this transition matrix can also be depicted graphically with
the state transition diagram in Fig. 16.1. The four possible states for the number of cameras
on hand at the end of a week are represented by the four nodes (circles) in the diagram. The








3

0.368

0

0

0.368

2

0.368

0

0.368

0.368

1

0.184

0.368

0.368

0.184

0

0.080

0.632

0.264

0.080








State

0

1

2

3
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FIGURE 16.1
State transition diagram for
the inventory example for a
camera store.



arrows show the possible transitions from one state to another, or sometimes from a state
back to itself, when the camera store goes from the end of one week to the end of the next
week. The number next to each arrow gives the probability of that particular transition oc-
curring next when the camera store is in the state at the base of the arrow.

Additional Examples of Markov Chains

A Stock Example. Consider the following model for the value of a stock. At the end
of a given day, the price is recorded. If the stock has gone up, the probability that it will
go up tomorrow is 0.7. If the stock has gone down, the probability that it will go up to-
morrow is only 0.5. This is a Markov chain, where state 0 represents the stock’s going up
and state 1 represents the stock’s going down. The transition matrix is given by

P � � �
A Second Stock Example. Suppose now that the stock market model is changed so
that the stock’s going up tomorrow depends upon whether it increased today and yester-
day. In particular, if the stock has increased for the past two days, it will increase tomor-
row with probability 0.9. If the stock increased today but decreased yesterday, then it will
increase tomorrow with probability 0.6. If the stock decreased today but increased yes-
terday, then it will increase tomorrow with probability 0.5. Finally, if the stock decreased
for the past two days, then it will increase tomorrow with probability 0.3. If we define
the state as representing whether the stock goes up or down today, the system is no longer
a Markov chain. However, we can transform the system to a Markov chain by defining
the states as follows:1

State 0: The stock increased both today and yesterday.
State 1: The stock increased today and decreased yesterday.
State 2: The stock decreased today and increased yesterday.
State 3: The stock decreased both today and yesterday.

This leads to a four-state Markov chain with the following transition matrix:

P �

A Gambling Example. Another example involves gambling. Suppose that a player
has $1 and with each play of the game wins $1 with probability p 	 0 or loses $1 with
probability 1 � p. The game ends when the player either accumulates $3 or goes broke.








3

0

0

0.5

0.7

2

0.1

0.4

0

0

1

0

0

0.5

0.3

0

0.9

0.6

0

0








State

0

1

2

3

1

0.3

0.5

0

0.7

0.5

State

0

1
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1This example demonstrates that Markov chains are able to incorporate arbitrary amounts of history, but at the
cost of significantly increasing the number of states.



This game is a Markov chain with the states representing the player’s current holding of
money, that is, 0, $1, $2, or $3, and with the transition matrix given by

P �

Note that in both the inventory and gambling examples, the numeric labeling of the
states that the process reaches coincides with the physical expression of the system—i.e.,
actual inventory levels and the player’s holding of money, respectively—whereas the nu-
meric labeling of the states in the stock examples has no physical significance.








3

0

0

p

1

2

0

p

0

0

1

0

0

1 � p

0

0

1

1 � p

0

0








State

0

1

2

3
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1These equations also hold in a trivial sense when m � 0 or m � n, but m � 1, 2, . . . , n � 1 are the only in-
teresting cases.

Section 16.2 introduced the n-step transition probability pij
(n). The following Chapman-

Kolmogorov equations provide a method for computing these n-step transition probabilities:

pij
(n) � �

M

k�0
pik

(m)pkj
(n�m), for all i � 0, 1, . . . , M,

j � 0, 1, . . . , M,
and any m � 1, 2, . . . , n � 1,

n � m � 1, m � 2, . . . .1

These equations point out that in going from state i to state j in n steps, the process
will be in some state k after exactly m (less than n) states. Thus, pik

(m) pkj
(n�m) is just the

conditional probability that, given a starting point of state i, the process goes to state k af-
ter m steps and then to state j in n � m steps. Therefore, summing these conditional prob-
abilities over all possible k must yield pij

(n). The special cases of m � 1 and m � n � 1
lead to the expressions

pij
(n) � �

M

k�0
pikpkj

(n�1)

and

pij
(n) � �

M

k�0
pik

(n�1)pkj,

for all states i and j. These expressions enable the n-step transition probabilities to be ob-
tained from the one-step transition probabilities recursively. This recursive relationship is
best explained in matrix notation (see Appendix 4). For n � 2, these expressions become

pij
(2) � �

M

k�0
pikpkj, for all states i and j,
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where the pij
(2) are the elements of a matrix P(2). Also note that these elements are obtained

by multiplying the matrix of one-step transition probabilities by itself; i.e.,

P(2) � P � P � P2.

In the same manner, the above expressions for pij
(n) when m � 1 and m � n � 1 indicate

that the matrix of n-step transition probabilities is

P(n) � PP(n�1) � P(n�1)P
� PPn�1 � Pn�1P
� Pn.

Thus, the n-step transition probability matrix Pn can be obtained by computing the nth
power of the one-step transition matrix P.

n-Step Transition Matrices for the Inventory Example

Returning to the inventory example, its one-step transition matrix P obtained in Sec. 16.2
can now be used to calculate the two-step transition matrix P(2) as follows:

P(2) � P2 �

� .

For example, given that there is one camera left in stock at the end of a week, the proba-
bility is 0.283 that there will be no cameras in stock 2 weeks later, that is, p10

(2) � 0.283.
Similarly, given that there are two cameras left in stock at the end of a week, the proba-
bility is 0.097 that there will be three cameras in stock 2 weeks later, that is, p23

(2) � 0.097.
The four-step transition matrix can also be obtained as follows:

P(4) � P4 � P(2) 
 P(2)

�

� .

For example, given that there is one camera left in stock at the end of a week, the prob-
ability is 0.282 that there will be no cameras in stock 4 weeks later, that is, p10

(4) � 0.282.








0.164

0.166

0.171

0.164

0.261

0.268

0.263

0.261

0.286

0.285

0.283

0.286

0.289

0.282

0.284

0.289















0.165

0.233

0.097

0.165

0.300

0.233

0.233

0.300

0.286

0.252

0.319

0.286

0.249

0.283

0.351

0.249















0.165

0.233

0.097

0.165

0.300

0.233

0.233

0.300

0.286

0.252

0.319

0.286

0.249

0.283

0.351

0.249















0.165

0.233

0.097

0.165

0.300

0.233

0.233

0.300

0.286

0.252

0.319

0.286

0.249

0.283

0.351

0.249















0.368

0

0

0.368

0.368

0

0.368

0.368

0.184

0.368

0.368

0.184

0.080

0.632

0.264

0.080















0.368

0

0

0.368

0.368

0

0.368

0.368

0.184

0.368

0.368

0.184

0.080

0.632

0.264

0.080







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Similarly, given that there are two cameras left in stock at the end of a week, the proba-
bility is 0.171 there will be three cameras in stock 4 weeks later, that is, p23

(4) � 0.171.
Your OR Courseware includes a routine for calculating P(n) � Pn for any positive in-

teger n � 99.

Unconditional State Probabilities

Recall that one- or n-step transition probabilities are conditional probabilities; for exam-
ple, P{Xn � jX0 � i} � pij

(n). If the unconditional probability P{Xn � j} is desired, it is
necessary to specify the probability distribution of the initial state, namely, P{X0 � i} for
i � 0, 1, . . . , M. Then

P{Xn � j} � P{X0 � 0} p0j
(n) � P{X0 � 1}p1j

(n) � 


 � P{X0 � M}pMj
(n).

In the inventory example, it was assumed that initially there were 3 units in stock,
that is, X0 � 3. Thus, P{X0 � 0} � P{X0 � 1} � P{X0 � 2} � 0 and P{X0 � 3} � 1.
Hence, the (unconditional) probability that there will be three cameras in stock 2 weeks
after the inventory system began is P{X2 � 3} � (1)p33

(2) � 0.165.
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It is evident that the transition probabilities associated with the states play an important
role in the study of Markov chains. To further describe the properties of Markov chains,
it is necessary to present some concepts and definitions concerning these states.

State j is said to be accessible from state i if pij
(n) 	 0 for some n � 0. (Recall that

pij
(n) is just the conditional probability of being in state j after n steps, starting in state i.)

Thus, state j being accessible from state i means that it is possible for the system to en-
ter state j eventually when it starts from state i. In the inventory example, pij

(2) 	 0 for all
i and j, so every state is accessible from every other state. In general, a sufficient condi-
tion for all states to be accessible is that there exists a value of n for which pij

(n) 	 0 for
all i and j.

In the gambling example given at the end of Sec. 16.2, state 2 is not accessible
from state 3. This can be deduced from the context of the game (once the player reaches
state 3, the player never leaves this state), which implies that p32

(n) � 0 for all n � 0.
However, even though state 2 is not accessible from state 3, state 3 is accessible from
state 2 since, for n � 1, the transition matrix given at the end of Sec. 16.2 indicates that
p23 � p 	 0.

If state j is accessible from state i and state i is accessible from state j, then states i
and j are said to communicate. In the inventory example, all states communicate. In the
gambling example, states 2 and 3 do not. In general,

1. Any state communicates with itself (because pii
(0) � P{X0 � iX0 � i} � 1).

2. If state i communicates with state j, then state j communicates with state i.
3. If state i communicates with state j and state j communicates with state k, then state i

communicates with state k.

Properties 1 and 2 follow from the definition of states communicating, whereas property
3 follows from the Chapman-Kolmogorov equations.

16.4 CLASSIFICATION OF STATES OF A MARKOV CHAIN



As a result of these three properties of communication, the states may be partitioned
into one or more separate classes such that those states that communicate with each other
are in the same class. (A class may consist of a single state). If there is only one class,
i.e., all the states communicate, the Markov chain is said to be irreducible. In the inven-
tory example, the Markov chain is irreducible. In the first stock example in Sec. 16.2, the
Markov chain is irreducible. The gambling example contains three classes. State 0 forms
a class, state 3 forms a class, and states 1 and 2 form a class.

Recurrent States and Transient States

It is often useful to talk about whether a process entering a state will ever return to this
state. Here is one possibility.

A state is said to be a transient state if, upon entering this state, the process may never
return to this state again. Therefore, state i is transient if and only if there exists a state j
( j � i) that is accessible from state i but not vice versa, that is, state i is not accessible
from state j.

Thus, if state i is transient and the process visits this state, there is a positive probability
(perhaps even a probability of 1) that the process will later move to state j and so will
never return to state i. Consequently, a transient state will be visited only a finite number
of times.

When starting in state i, another possibility is that the process definitely will return
to this state.

A state is said to be a recurrent state if, upon entering this state, the process definitely will
return to this state again. Therefore, a state is recurrent if and only if it is not transient.

Since a recurrent state definitely will be revisited after each visit, it will be visited infi-
nitely often if the process continues forever.

If the process enters a certain state and then stays in this state at the next step, this
is considered a return to this state. Hence, the following kind of state is a special type of
recurrent state.

A state is said to be an absorbing state if, upon entering this state, the process never will
leave this state again. Therefore, state i is an absorbing state if and only if pii � 1.

We will discuss absorbing states further in Sec. 16.7.
Recurrence is a class property. That is, all states in a class are either recurrent or tran-

sient. Furthermore, in a finite-state Markov chain, not all states can be transient. There-
fore, all states in an irreducible finite-state Markov chain are recurrent. Indeed, one can
identify an irreducible finite-state Markov chain (and therefore conclude that all states are
recurrent) by showing that all states of the process communicate. It has already been
pointed out that a sufficient condition for all states to be accessible (and therefore com-
municate with each other) is that there exists a value of n for which pij

(n) 	 0 for all i and
j. Thus, all states in the inventory example are recurrent, since pij

(2) is positive for all i and
j. Similarly, the first stock example contains only recurrent states, since pij is positive for
all i and j. By calculating pij

(2) for all i and j in the second stock example in Sec. 16.2, it
follows that all states are recurrent since pij

(2) 	 0.
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As another example, suppose that a Markov chain has the following transition matrix:

P �

Note that state 2 is an absorbing state (and hence a recurrent state) because if the process
enters state 2 (row 3 of the matrix), it will never leave. State 3 is a transient state because
if the process is in state 3, there is a positive probability that it will never return. The prob-
ability is �

1
3

� that the process will go from state 3 to state 2 on the first step. Once the process
is in state 2, it remains in state 2. State 4 also is a transient state because if the process
starts in state 4, it immediately leaves and can never return. States 0 and 1 are recurrent
states. To see this, observe from P that if the process starts in either of these states, it can
never leave these two states. Furthermore, whenever the process moves from one of these
states to the other one, it always will return to the original state eventually.

Periodicity Properties

Another useful property of Markov chains is periodicities. The period of state i is defined
to be the integer t (t 	 1) such that pii

(n) � 0 for all values of n other than t, 2t, 3t, . . . and
t is the largest integer with this property. In the gambling example (end of Section 16.2),
starting in state 1, it is possible for the process to enter state 1 only at times 2, 4, . . . , so
state 1 has period 2. The reason is that the player can break even (be neither winning nor
losing) only at times 2, 4, . . . , which can be verified by calculating p11

(n) for all n and not-
ing that p11

(n) � 0 for n odd.
If there are two consecutive numbers s and s � 1 such that the process can be in state

i at times s and s � 1, the state is said to have period 1 and is called an aperiodic state.
Just as recurrence is a class property, it can be shown that periodicity is a class prop-

erty. That is, if state i in a class has period t, the all states in that class have period t. In
the gambling example, state 2 also has period 2 because it is in the same class as state 1
and we noted above that state 1 has period 2.

In a finite-state Markov chain, recurrent states that are aperiodic are called ergodic
states. A Markov chain is said to be ergodic if all its states are ergodic states.
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Steady-State Probabilities

In Sec. 16.3 the four-step transition matrix for the inventory example was obtained. It will
now be instructive to examine the eight-step transition probabilities given by the matrix

P(8) � P8 � P4 
 P4 � .


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




3

0.166

0.166

0.166

0.166

2
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0.264

0.264

0.264

1
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0.285

0.285

0.285

0
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0.286

0.286

0.286
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Notice the rather remarkable fact that each of the four rows has identical entries. This im-
plies that the probability of being in state j after 8 weeks is essentially independent of the ini-
tial level of inventory. In other words, it appears that there is a limiting probability that the
system will be in each state j after a large number of transitions, and that this probability is
independent of the initial state. These properties of the long-run behavior of finite-state Markov
chains do, in fact, hold under relatively general conditions, as summarized below.

For any irreducible ergodic Markov chain, lim
n→�

pij
(n) exists and is independent of i. 

Furthermore,

lim
n→�

pij
(n) � �j 	 0,

where the �j uniquely satisfy the following steady-state equations

�j � �
M

i�0
�ipij, for j � 0, 1, . . . , M,

�
M

j�0
�j � 1.

The �j are called the steady-state probabilities of the Markov chain. The term steady-
state probability means that the probability of finding the process in a certain state, say j,
after a large number of transitions tends to the value �j, independent of the probability
distribution of the initial state. It is important to note that the steady-state probability does
not imply that the process settles down into one state. On the contrary, the process con-
tinues to make transitions from state to state, and at any step n the transition probability
from state i to state j is still pij.

The �j can also be interpreted as stationary probabilities (not to be confused with sta-
tionary transition probabilities) in the following sense. If the initial probability of being in
state j is given by �j (that is, P{X0 � j} � �j) for all j, then the probability of finding the
process in state j at time n � 1, 2, . . . is also given by �j (that is, P{Xn � j} � �j).

Note that the steady-state equations consist of M � 2 equations in M � 1 unknowns.
Because it has a unique solution, at least one equation must be redundant and can, there-
fore, be deleted. It cannot be the equation

�
M

j�0
�j � 1,

because �j � 0 for all j will satisfy the other M � 1 equations. Furthermore, the solutions
to the other M � 1 steady-state equations have a unique solution up to a multiplicative con-
stant, and it is the final equation that forces the solution to be a probability distribution.

Returning to the inventory example, we see that the steady-state equations can be ex-
pressed as

�0 � �0p00 � �1p10 � �2p20 � �3p30,
�1 � �0p01 � �1p11 � �2p21 � �3p31,
�2 � �0p02 � �1p12 � �2p22 � �3p32,
�3 � �0p03 � �1p13 � �2p23 � �3p33,

1 � �0 � �1 � �2 � �3.
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Substituting values for pij into these equations leads to the equations

�0 � 0.080�0 � 0.632�1 � 0.264�2 � 0.080�3,
�1 � 0.184�0 � 0.368�1 � 0.368�2 � 0.184�3,
�2 � 0.368�0 � 0.368�2 � 0.368�3,
�3 � 0.368�0 � 0.368�3,

1 � �0 � �1 � �2 � �3.

Solving the last four equations simultaneously provides the solution

�0 � 0.286, �1 � 0.285, �2 � 0.263, �3 � 0.166,

which is essentially the result that appears in matrix P(8). Thus, after many weeks the
probability of finding zero, one, two, and three cameras in stock tends to 0.286, 0.285,
0.263, and 0.166, respectively.

Your OR Courseware includes a routine for solving the steady-state equations to ob-
tain the steady-state probabilities.

There are other important results concerning steady-state probabilities. In particular,
if i and j are recurrent states belonging to different classes, then

pij
(n) � 0, for all n.

This result follows from the definition of a class.
Similarly, if j is a transient state, then

lim
n→�

pij
(n) � 0, for all i.

Thus, the probability of finding the process in a transient state after a large number of
transitions tends to zero.

Expected Average Cost per Unit Time

The preceding subsection dealt with finite-state Markov chains whose states were ergodic
(recurrent and aperiodic). If the requirement that the states be aperiodic is relaxed, then
the limit

lim
n→�

pij
(n)

may not exist. To illustrate this point, consider the two-state transition matrix

P � � �.

If the process starts in state 0 at time 0, it will be in state 0 at times 2, 4, 6, . . . and in
state 1 at times 1, 3, 5, . . . . Thus, p00

(n) � 1 if n is even and p00
(n) � 0 if n is odd, so that

lim
n→�

p00
(n)

1

1

0

0

0

1

State

0

1
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does not exist. However, the following limit always exists for an irreducible (finite-state)
Markov chain:

lim
n→� ��

1
n

� �
n

k�1
pij

(k)� � �j,

where the �j satisfy the steady-state equations given in the preceding subsection.
This result is important in computing the long-run average cost per unit time associated

with a Markov chain. Suppose that a cost (or other penalty function) C(Xt) is incurred when
the process is in state Xt at time t, for t � 0, 1, 2, . . . . Note that C(Xt) is a random variable
that takes on any one of the values C(0), C(1), . . . , C(M) and that the function C(�) is in-
dependent of t. The expected average cost incurred over the first n periods is given by

E��
1
n

� �
n

t�1
C(Xt)�.

By using the result that

lim
n→���

1
n

� �
n

k�1
pij

(k)� � �j,

it can be shown that the (long-run) expected average cost per unit time is given by

lim
n→�

E��
1
n

� �
n

t�1
C(Xt)� � �

M

j�0
�jC( j).

To illustrate, consider the inventory example introduced in Sec. 16.1, where the so-
lution for the �j was obtained in the preceding subsection. Suppose the camera store finds
that a storage charge is being allocated for each camera remaining on the shelf at the end
of the week. The cost is charged as follows:

C(xt) �

The long-run expected average storage cost per week can then be obtained from the pre-
ceding equation, i.e.,

lim
n→�

E��
1
n

� �
n

t�1
C(Xt)� � 0.286(0) � 0.285(2) � 0.263(8) � 0.166(18) � 5.662.

Note that an alternative measure to the (long-run) expected average cost per unit time
is the (long-run) actual average cost per unit time. It can be shown that this latter mea-
sure is given by

lim
n→� ��

1
n

� �
n

t�1
C(Xt)� � �

M

j�0
�jC( j)

xt � 0

xt � 1

xt � 2

xt � 3

if

if

if

if
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for essentially all paths of the process. Thus, either measure leads to the same result. These
results can also be used to interpret the meaning of the �j. To do so, let

C(Xt) � �
The (long-run) expected fraction of times the system is in state j is then given by

lim
n→�

E��
1
n

� �
n

t�1
C(Xt)� � lim

n→�
E(fraction of times system is in state j) � �j.

Similarly, �j can also be interpreted as the (long-run) actual fraction of times that the sys-
tem is in state j.

Expected Average Cost per Unit Time for Complex Cost Functions

In the preceding subsection, the cost function was based solely on the state that the process
is in at time t. In many important problems encountered in practice, the cost may also de-
pend upon some other random variable.

For example, in the inventory example of Sec. 16.1, suppose that the costs to be con-
sidered are the ordering cost and the penalty cost for unsatisfied demand (storage costs
are so small they will be ignored). It is reasonable to assume that the number of cameras
ordered to arrive at the beginning of week t depends only upon the state of the process
Xt�1 (the number of cameras in stock) when the order is placed at the end of week 
t � 1. However, the cost of unsatisfied demand in week t will also depend upon the de-
mand Dt. Therefore, the total cost (ordering cost plus cost of unsatisfied demand) for week
t is a function of Xt�1 and Dt, that is, C(Xt�1, Dt).

Under the assumptions of this example, it can be shown that the (long-run) expected
average cost per unit time is given by

lim
n→�

E��
1
n

� �
n

t�1
C(Xt�1, Dt)� � �

M

j�0
k( j) �j,

where

k( j) � E[C( j, Dt)],

and where this latter (conditional) expectation is taken with respect to the probability dis-
tribution of the random variable Dt, given the state j. Similarly, the (long-run) actual av-
erage cost per unit time is given by

lim
n→� ��

1
n

� �
n

t�1
C(Xt�1, Dt)� � �

M

j�0
k( j)�j.

Now let us assign numerical values to the two components of C(Xt�1, Dt) in this ex-
ample, namely, the ordering cost and the penalty cost for unsatisfied demand. If z 	 0
cameras are ordered, the cost incurred is (10 � 25z) dollars. If no cameras are ordered,
no ordering cost is incurred. For each unit of unsatisfied demand (lost sales), there is a

if Xt � j
if Xt � j.

1
0
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penalty of $50. Therefore, given the ordering policy described in Sec. 16.1, the cost in
week t is given by

C(Xt�1, Dt) � �
for t � 1, 2, . . . . Hence,

C(0, Dt) � 85 � 50 max{Dt � 3, 0},

so that

k(0) � E[C(0, Dt)] � 85 � 50E(max{Dt � 3, 0})
� 85 � 50[PD(4) � 2PD(5) � 3PD(6) � 


],

where PD(i) is the probability that the demand equals i, as given by a Poisson distribu-
tion with a mean of 1, so that PD(i) becomes negligible for i larger than about 6. Since
PD(4) � 0.015, PD(5) � 0.003, and PD(6) � 0.001, we obtain k(0) � 86.2. Also using
PD(2) � 0.184 and PD(3) � 0.061, similar calculations lead to the results

k(1) � E[C(1, Dt)] � 50E(max{Dt � 1, 0})
� 50[PD(2) � 2PD(3) � 3PD(4) � 


]
� 18.4,

k(2) � E[C(2, Dt)] � 50E(max{Dt � 2, 0})
� 50[PD(3) � 2PD(4) � 3PD(5) � 


]
� 5.2,

and

k(3) � E[C(3, Dt)] � 50E(max{Dt � 3, 0})
� 50[PD(4) � 2PD(5) � 3PD(6) � 


]
� 1.2.

Thus, the (long-run) expected average cost per week is given by

�
3

j�0
k( j)�j � 86.2(0.286) � 18.4(0.285) � 5.2(0.263) � 1.2(0.166) � $31.46.

This is the cost associated with the particular ordering policy described in Sec. 16.1.
The cost of other ordering policies can be evaluated in a similar way to identify the pol-
icy that minimizes the expected average cost per week.

The results of this subsection were presented only in terms of the inventory example.
However, the (nonnumerical) results still hold for other problems as long as the follow-
ing conditions are satisfied:

1. {Xt} is an irreducible (finite-state) Markov chain.
2. Associated with this Markov chain is a sequence of random variables {Dt} which are

independent and identically distributed.
3. For a fixed m � 0, �1, �2, . . . , a cost C(Xt, Dt�m) is incurred at time t, for t � 0, 1,

2, . . . .
4. The sequence X0, X1, X2, . . . , Xt must be independent of Dt�m.

if Xt�1 � 0
if Xt�1 � 1,

10 � (25)(3) � 50 max{Dt � 3, 0}
50 max {Dt � Xt�1, 0}
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In particular, if these conditions are satisfied, then

lim
n→�

E��
1
n

� �
n

t�1
C(Xt, Dt�m)� � �

M

j�0
k( j)�j,

where

k( j) � E[C( j, Dt�m)],

and where this latter conditional expectation is taken with respect to the probability dis-
tribution of the random variable Dt, given the state j. Furthermore,

lim
n→� ��

1
n

� �
n

t�1
C(Xt, Dt�m)� � �

M

j�0
k( j)�j

for essentially all paths of the process.
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Section 16.3 dealt with finding n-step transition probabilities from state i to state j. It is
often desirable to also make probability statements about the number of transitions made
by the process in going from state i to state j for the first time. This length of time is called
the first passage time in going from state i to state j. When j � i, this first passage time
is just the number of transitions until the process returns to the initial state i. In this case,
the first passage time is called the recurrence time for state i.

To illustrate these definitions, reconsider the inventory example introduced in Sec.
16.1, where Xt is the number of cameras on hand at the end of week t, where we start
with X0 � 3. Suppose that it turns out that

X0 � 3, X1 � 2, X2 � 1, X3 � 0, X4 � 3, X5 � 1.

In this case, the first passage time in going from state 3 to state 1 is 2 weeks, the first
passage time in going from state 3 to state 0 is 3 weeks, and the recurrence time for state
3 is 4 weeks.

In general, the first passage times are random variables. The probability distributions
associated with them depend upon the transition probabilities of the process. In particu-
lar, let f ij

(n) denote the probability that the first passage time from state i to j is equal to n.
For n 	 1, this first passage time is n if the first transition is from state i to some state 
k (k � j) and then the first passage time from state k to state j is n � 1. Therefore, these
probabilities satisfy the following recursive relationships:

f ij
(1) � pij

(1) � pij,

f ij
(2) � �

k�j

pik f kj
(1),

f ij
(n) � �

k�j

pik f kj
(n�1).

Thus, the probability of a first passage time from state i to state j in n steps can be com-
puted recursively from the one-step transition probabilities.
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In the inventory example, the probability distribution of the first passage time in go-
ing from state 3 to state 0 is obtained from these recursive relationships as follows:

f 30
(1) � p30 � 0.080,

f 30
(2) � p31 f 10

(1) � p32 f 20
(1) � p33 f 30

(1)

� 0.184(0.632) � 0.368(0.264) � 0.368(0.080) � 0.243,
�

where the p3k and f k0
(1) � pk0 are obtained from the (one-step) transition matrix given in

Sec. 16.2.
For fixed i and j, the f ij

(n) are nonnegative numbers such that

�
�

n�1
f ij

(n) � 1.

Unfortunately, this sum may be strictly less than 1, which implies that a process initially
in state i may never reach state j. When the sum does equal 1, f ij

(n) (for n � 1, 2, . . .) can
be considered as a probability distribution for the random variable, the first passage time.

Although obtaining f ij
(n) for all n may be tedious, it is relatively simple to obtain the

expected first passage time from state i to state j. Denote this expectation by 
ij, which
is defined by

� if �
�

n�1
f ij

(n) � 1


ij �

�
�

n�1
nf ij

(n) if �
�

n�1
f ij

(n) � 1.

Whenever

�
�

n�1
f ij

(n) � 1,


ij uniquely satisfies the equation


ij � 1 � �
k�j

pik
kj.

This equation recognizes that the first transition from state i can be to either state j or to
some other state k. If it is to state j, the first passage time is 1. Given that the first tran-
sition is to some state k (k � j) instead, which occurs with probability pik, the conditional
expected first passage time from state i to state j is 1 � 
kj. Combining these facts, and
summing over all the possibilities for the first transition, leads directly to this equation.

For the inventory example, these equations for the 
ij can be used to compute the ex-
pected time until the cameras are out of stock, given that the process is started when three
cameras are available. This expected time is just the expected first passage time 
30. Since
all the states are recurrent, the system of equations leads to the expressions


30 � 1 � p31
10 � p32
20 � p33
30,

20 � 1 � p21
10 � p22
20 � p23
30,

10 � 1 � p11
10 � p12
20 � p13
30,

16.6 FIRST PASSAGE TIMES 819











or


30 � 1 � 0.184
10 � 0.368
20 � 0.368
30,

20 � 1 � 0.368
10 � 0.368
20,

10 � 1 � 0.368
10.

The simultaneous solution to this system of equations is


10 � 1.58 weeks,

20 � 2.51 weeks,

30 � 3.50 weeks,

so that the expected time until the cameras are out of stock is 3.50 weeks. Thus, in mak-
ing these calculations for 
30, we also obtain 
20 and 
10.

For the case of 
ij where j � i, 
ii is the expected number of transitions until the
process returns to the initial state i, and so is called the expected recurrence time for
state i. After obtaining the steady-state probabilities (�0, �1, . . . , �M) as described in the
preceding section, these expected recurrence times can be calculated immediately as


ii � �
�
1

i
�, for i � 0, 1, . . . , M.

Thus, for the inventory example, where �0 � 0.286, �1 � 0.285, �2 � 0.263, and �3 �
0.166, the corresponding expected recurrence times are


00 � �
�
1

0
� � 3.50 weeks, 
22 � �

�
1

2
� � 3.80 weeks,


11 � �
�
1

1
� � 3.51 weeks, 
33 � �

�
1

3
� � 6.02 weeks.
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It was pointed out in Sec. 16.4 that a state k is called an absorbing state if pkk � 1, so that
once the chain visits k it remains there forever. If k is an absorbing state, and the process
starts in state i, the probability of ever going to state k is called the probability of absorp-
tion into state k, given that the system started in state i. This probability is denoted by fik.

When there are two or more absorbing states in a Markov chain, and it is evident that
the process will be absorbed into one of these states, it is desirable to find these probabilities
of absorption. These probabilities can be obtained by solving a system of linear equations
that considers all the possibilities for the first transition and then, given the first transition,
considers the conditional probability of absorption into state k. In particular, if the state k is
an absorbing state, then the set of absorption probabilities fik satisfies the system of equations

fik � �
M

j�0
pij fjk, for i � 0, 1, . . . , M,

subject to the conditions

fkk � 1,
fik � 0, if state i is recurrent and i � k.
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Absorption probabilities are important in random walks. A random walk is a Markov
chain with the property that if the system is in a state i, then in a single transition the sys-
tem either remains at i or moves to one of the two states immediately adjacent to i. For
example, a random walk often is used as a model for situations involving gambling.

To illustrate, consider a gambling example similar to that presented in Sec. 16.2. How-
ever, suppose now that two players (A and B), each having $2, agree to keep playing the
game and betting $1 at a time until one player is broke. The probability of A winning a
single bet is �

1
3

�, so B wins the bet with probability �
2
3

�. The number of dollars that player A
has before each bet (0, 1, 2, 3, or 4) provides the states of a Markov chain with transition
matrix

P � .

Starting from state 2, the probability of absorption into state 0 (A losing all her money)
can be obtained from the preceding system of equations as f20 � �

1
5

�, and the probability of
A winning $4 (B going broke) is given by f24 � �

4
5

�.
There are many other situations where absorbing states play an important role. Consider

a department store that classifies the balance of a customer’s bill as fully paid (state 0), 1 to
30 days in arrears (state 1), 31 to 60 days in arrears (state 2), or bad debt (state 3). The ac-
counts are checked monthly to determine the state of each customer. In general, credit is not
extended and customers are expected to pay their bills within 30 days. Occasionally, cus-
tomers pay only portions of their bill. If this occurs when the balance is within 30 days in
arrears (state 1), the store views the customer as remaining in state 1. If this occurs when the
balance is between 31 and 60 days in arrears, the store views the customer as moving to state
1 (1 to 30 days in arrears). Customers that are more than 60 days in arrears are put into the
bad-debt category (state 3), and then bills are sent to a collection agency. After examining
data over the past several years on the month by month progression of individual customers
from state to state, the store has developed the following transition matrix:1
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State 1: 1 to 30 Days 2: 31 to 60 Days
State 0: Fully Paid in Arrears in Arrears 3: Bad Debt

0: fully paid 1 0 0 0
1: 1 to 30 days 0.7 0.2 0.1 0
in arrears

2: 31 to 60 days 0.5 0.1 0.2 0.2
in arrears

3: bad debt 0 0 0 1

1Customers who are fully paid (in state 0) and then subsequently fall into arrears on new purchases are viewed
as “new” customers who start in state 1.



Although each customer ends up in state 0 or 3, the store is interested in determining the
probability that a customer will end up as a bad debt given that the account belongs to
the 1 to 30 days in arrears state, and similarly, given that the account belongs to the 31
to 60 days in arrears state.

To obtain this information, the set of equations presented at the beginning of this section
must be solved to obtain f13 and f23. By substituting, the following two equations are obtained:

f13 � p10 f03 � p11 f13 � p12 f23 � p13 f33,
f23 � p20 f03 � p21 f13 � p22 f23 � p23 f33.

Noting that f03 � 0 and f33 � 1, we now have two equations in two unknowns, namely,

(1 � p11) f13 � p13 � p12 f23,
(1 � p22) f23 � p23 � p21 f13.

Substituting the values from the transition matrix leads to

0.8f13 � 0.1 f23,
0.8f23 � 0.2 � 0.1 f13,

and the solution is

f13 � 0.032,
f23 � 0.254.

Thus, approximately 3 percent of the customers whose accounts are 1 to 30 days in ar-
rears end up as bad debts, whereas about 25 percent of the customers whose accounts are
31 to 60 days in arrears end up as bad debts.
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In all the previous sections, we assumed that the time parameter t was discrete (that is,
t � 0, 1, 2, . . .). Such an assumption is suitable for many problems, but there are certain
cases (such as for some queueing models considered in the next chapter) where a con-
tinuous time parameter (call it t�) is required, because the evolution of the process is be-
ing observed continuously over time. The definition of a Markov chain given in Sec. 16.2
also extends to such continuous processes. This section focuses on describing these “con-
tinuous time Markov chains” and their properties.

Formulation

As before, we label the possible states of the system as 0, 1, . . . , M. Starting at time 0
and letting the time parameter t� run continuously for t� � 0, we let the random variable
X(t�) be the state of the system at time t�. Thus, X(t�) will take on one of its possible 
(M � 1) values over some interval, 0 � t� � t1, then will jump to another value over the
next interval, t1 � t� � t2, etc., where these transit points (t1, t2, . . .) are random points
in time (not necessarily integer).

Now consider the three points in time (1) t� � r (where r � 0), (2) t� � s (where 
s 	 r), and (3) t� � s � t (where t 	 0), interpreted as follows:

t� � r is a past time,
t� � s is the current time,
t� � s � t is t time units into the future.
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Therefore, the state of the system now has been observed at times t� � s and t� � r. La-
bel these states as

X(s) � i and X(r) � x(r).

Given this information, it now would be natural to seek the probability distribution of the
state of the system at time t� � s � t. In other words, what is

P{X(s � t) � jX(s) � i and X(r) � x(r)}, for j � 0, 1, . . . , M?

Deriving this conditional probability often is very difficult. However, this task is con-
siderably simplified if the stochastic process involved possesses the following key property.

A continuous time stochastic process {X(t�); t� � 0} has the Markovian property if

P{X(t � s) � jX(s) � i and X(r) � x(r)} � P{X(t � s) � jX(s) � i},

for all i, j � 0, 1, . . . , M and for all r � 0, s 	 r, and t 	 0.

Note that P{X(t � s) � jX(s) � i} is a transition probability, just like the transi-
tion probabilities for discrete time Markov chains considered in the preceding sections,
where the only difference is that t now need not be an integer.

If the transition probabilities are independent of s, so that

P{X(t � s) � jX(s) � i} � P{X(t) � jX(0) � i}

for all s 	 0, they are called stationary transition probabilities.

To simplify notation, we shall denote these stationary transition probabilities by

pij(t) � P{X(t) � jX(0) � i},

where pij(t) is referred to as the continuous time transition probability function. We
assume that

lim
t→0

pij(t) � �
Now we are ready to define the continuous time Markov chains to be considered in

this section.

A continuous time stochastic process {X(t�); t� � 0} is a continuous time Markov chain
if it has the Markovian property.

We shall restrict our consideration to continuous time Markov chains with the following
properties:

1. A finite number of states.
2. Stationary transition probabilities.

Some Key Random Variables

In the analysis of continuous time Markov chains, one key set of random variables is the
following.

Each time the process enters state i, the amount of time it spends in that state before mov-
ing to a different state is a random variable Ti, where i � 0, 1, . . . , M.

if i � j
if i � j.

1
0
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Suppose that the process enters state i at time t� � s. Then, for any fixed amount of time
t 	 0, note that Ti 	 t if and only if X(t�) � i for all t� over the interval s � t� � s � t.
Therefore, the Markovian property (with stationary transition probabilities) implies that

P{Ti 	 t � sTi 	 s} � P{Ti 	 t}.

This is a rather unusual property for a probability distribution to possess. It says that the
probability distribution of the remaining time until the process transits out of a given state
always is the same, regardless of how much time the process has already spent in that
state. In effect, the random variable is memoryless; the process forgets its history. There
is only one (continuous) probability distribution that possesses this property—the expo-
nential distribution. The exponential distribution has a single parameter, call it q, where
the mean is 1/q and the cumulative distribution function is

P{Ti � t} � 1 � e�qt, for t � 0.

(We shall describe the properties of the exponential distribution in detail in Sec. 17.4.)
This result leads to an equivalent way of describing a continuous time Markov chain:

1. The random variable Ti has an exponential distribution with a mean of 1/qi.
2. When leaving state i, the process moves to a state j with probability pij, where the pij

satisfy the conditions

pij � 0 for all i,

and

�
M

j�0
pij � 1 for all i.

3. The next state visited after state i is independent of the time spent in state i.

Just as the one-step transition probabilities played a major role in describing discrete
time Markov chains, the analogous role for a continuous time Markov chain is played by
the transition intensities.

The transition intensities are

qi � ��
d
d
t
�pii(0) � lim

t→0
�
1 �

t
pii(t)�, for i � 0, 1, 2, . . . , M,

and

qij � �
d
d
t
�pij(0) � lim

t→0
�
pij

t
(t)
� � qipij, for all j � i,

where pij(t) is the continuous time transition probability function introduced at the be-
ginning of the section and pij is the probability described in property 2 of the preceding
paragraph. Furthermore, qi as defined here turns out to still be the parameter of the ex-
ponential distribution for Ti as well (see property 1 of the preceding paragraph).

The intuitive interpretation of the qi and qij is that they are transition rates. In par-
ticular, qi is the transition rate out of state i in the sense that qi is the expected number
of times that the process leaves state i per unit of time spent in state i. (Thus, qi is the
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reciprocal of the expected time that the process spends in state i per visit to state i; that
is, qi � 1/E[Ti].) Similarly, qij is the transition rate from state i to state j in the sense that
qij is the expected number of times that the process transits from state i to state j per unit
of time spent in state i. Thus,

qi � �
j�i

qij.

Just as qi is the parameter of the exponential distribution for Ti, each qij is the param-
eter of an exponential distribution for a related random variable described below.

Each time the process enters state i, the amount of time it will spend in state i before a
transition to state j occurs (if a transition to some other state does not occur first) is a ran-
dom variable Tij, where i, j � 0, 1, . . . , M and j � i. The Tij are independent random
variables, where each Tij has an exponential distribution with parameter qij, so E[Tij] �
1/qij. The time spent in state i until a transition occurs (Ti) is the minimum (over j � i) of
the Tij. When the transition occurs, the probability that it is to state j is pij � qij/qi.

Steady-State Probabilities

Just as the transition probabilities for a discrete time Markov chain satisfy the Chapman-
Kolmogorov equations, the continuous time transition probability function also satisfies these
equations. Therefore, for any states i and j and nonnegative numbers t and s (0 � s � t),

pij(t) � �
M

k�1
pik(s)pkj(t � s).

A pair of states i and j are said to communicate if there are times t1 and t2 such that
pij(t1) 	 0 and pji(t2) 	 0. All states that communicate are said to form a class. If all
states form a single class, i.e., if the Markov chain is irreducible (hereafter assumed), then

pij(t) 	 0, for all t 	 0 and all states i and j.

Furthermore,

lim
t→�

pij(t) � �j

always exists and is independent of the initial state of the Markov chain, for j � 0, 1, . . . ,
M. These limiting probabilities are commonly referred to as the steady-state probabilities
(or stationary probabilities) of the Markov chain.

The �j satisfy the equations

�j � �
M

i�0
�ipij(t), for j � 0, 1, . . . , M and every t � 0.

However, the following steady-state equations provide a more useful system of equa-
tions for solving for the steady-state probabilities:

�jqj � �
i�j

�iqij, for j � 0, 1, . . . , M.
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and

�
M

j�0
�j � 1.

The steady-state equation for state j has an intuitive interpretation. The left-hand side
(�jqj) is the rate at which the process leaves state j, since �j is the (steady-state) proba-
bility that the process is in state j and qj is the transition rate out of state j given that the
process is in state j. Similarly, each term on the right-hand side (�iqij) is the rate at which
the process enters state j from state i, since qij is the transition rate from state i to state j
given that the process is in state i. By summing over all i � j, the entire right-hand side
then gives the rate at which the process enters state j from any other state. The overall
equation thereby states that the rate at which the process leaves state j must equal the rate
at which the process enters state j. Thus, this equation is analogous to the conservation of
flow equations encountered in many engineering and science courses.

Because each of the first M � 1 steady-state equations requires that two rates be in
balance (equal), these equations sometimes are called the balance equations.

Example. A certain shop has two identical machines that are operated continuously ex-
cept when they are broken down. Because they break down fairly frequently, the top-
priority assignment for a full-time maintenance person is to repair them whenever needed.

The time required to repair a machine has an exponential distribution with a mean of
�
1
2

� day. Once the repair of a machine is completed, the time until the next breakdown of
that machine has an exponential distribution with a mean of 1 day. These distributions are
independent.

Define the random variable X(t�) as

X(t�) � number of machines broken down at time t�,

so the possible values of X(t�) are 0, 1, 2. Therefore, by letting the time parameter t� run
continuously from time 0, the continuous time stochastic process {X(t�); t� � 0} gives the
evolution of the number of machines broken down.

Because both the repair time and the time until a breakdown have exponential distri-
butions, {X(t�); t� � 0} is a continuous time Markov chain1 with states 0, 1, 2. Conse-
quently, we can use the steady-state equations given in the preceding subsection to find
the steady-state probability distribution of the number of machines broken down. To do
this, we need to determine all the transition rates, i.e., the qi and qij for i, j � 0, 1, 2.

The state (number of machines broken down) increases by 1 when a breakdown oc-
curs and decreases by 1 when a repair occurs. Since both breakdowns and repairs occur
one at a time, q02 � 0 and q20 � 0. The expected repair time is �

1
2

� day, so the rate at which
repairs are completed (when any machines are broken down) is 2 per day, which implies
that q21 � 2 and q10 � 2. Similarly, the expected time until a particular operational ma-
chine breaks down is 1 day, so the rate at which it breaks down (when operational) is 1
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per day, which implies that q12 � 1. During times when both machines are operational,
breakdowns occur at the rate of 1 � 1 � 2 per day, so q01 � 2.

These transition rates are summarized in the rate diagram shown in Fig. 16.2. These
rates now can be used to calculate the total transition rate out of each state.

q0 � q01 � 2.
q1 � q10 � q12 � 3.
q2 � q21 � 2.

Plugging all the rates into the steady-state equations given in the preceding subsection
then yields

Balance equation for state 0: 2�0 � 2�1

Balance equation for state 1: 3�1 � 2�0 � 2�2

Balance equation for state 2: 2�2 � �1

Probabilities sum to 1: �0 � �1 � �2 � 1

Any one of the balance equations (say, the second) can be deleted as redundant, and the
simultaneous solution of the remaining equations gives the steady-state distribution as

(�0, �1, �2) � ��
2
5

�, �
2
5

�, �
1
5

��.

Thus, in the long run, both machines will be broken down simultaneously 20 percent of
the time, and one machine will be broken down another 40 percent of the time.

The next chapter (on queueing theory) features many more examples of continuous
time Markov chains. In fact, most of the basic models of queueing theory fall into this
category. The current example actually fits one of these models (the finite calling popu-
lation variation of the M/M/s model included in Sec. 17.6).
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Automatic Routines in OR Courseware:

Enter Transition Matrix
Chapman-Kolmogorov Equations
Steady-State Probabilities

See Appendix 1 for documentation of the software.

LEARNING AIDS FOR THIS CHAPTER IN YOUR OR COURSEWARE

The symbol to the left of some of the problems (or their parts) has
the following meaning.

C: Use the computer with the corresponding automatic routines
listed above (or other equivalent routines) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

16.2-1. Assume that the probability of rain tomorrow is 0.5 if it is
raining today, and assume that the probability of its being clear (no
rain) tomorrow is 0.9 if it is clear today. Also assume that these
probabilities do not change if information is also provided about
the weather before today.
(a) Explain why the stated assumptions imply that the Markovian

property holds for the evolution of the weather.
(b) Formulate the evolution of the weather as a Markov chain by

defining its states and giving its (one-step) transition matrix.

16.2-2. Consider the second version of the stock market model
presented as an example in Sec. 16.2. Whether the stock goes up
tomorrow depends upon whether it increased today and yesterday.
If the stock increased today and yesterday, it will increase tomor-
row with probability �1. If the stock increased today and decreased
yesterday, it will increase tomorrow with probability �2. If the stock
decreased today and increased yesterday, it will increase tomorrow
with probability �3. Finally, if the stock decreased today and yes-
terday, it will increase tomorrow with probability �4.
(a) Construct the (one-step) transition matrix of the Markov chain.

PROBLEMS

(b) Explain why the states used for this Markov chain cause the
mathematical definition of the Markovian property to hold even
though what happens in the future (tomorrow) depends upon
what happened in the past (yesterday) as well as the present
(today).

16.2-3. Reconsider Prob. 16.2-2. Suppose now that whether or not
the stock goes up tomorrow depends upon whether it increased to-
day, yesterday, and the day before yesterday. Can this problem be
formulated as a Markov chain? If so, what are the possible states?
Explain why these states give the process the Markovian property
whereas the states in Prob. 16.2-2 do not.

16.3-1. Reconsider Prob. 16.2-1.
C (a) Use the routine Chapman-Kolmogorov Equations in your

OR Courseware to find the n-step transition matrix P(n) for
n � 2, 5, 10, 20.

(b) The probability that it will rain today is 0.5. Use the results
from part (a) to determine the probability that it will rain n
days from now, for n � 2, 5, 10, 20.

C (c) Use the routine Steady-State Probabilities in your OR
Courseware to determine the steady-state probabilities of the
state of the weather. Describe how the probabilities in the
n-step transition matrices obtained in part (a) compare to
these steady-state probabilities as n grows large.

16.3-2. Suppose that a communications network transmits binary
digits, 0 or 1, where each digit is transmitted 10 times in succes-
sion. During each transmission, the probability is 0.99 that the digit



16.4-2. Given each of the following (one-step) transition matrices
of a Markov chain, determine the classes of the Markov chain and
whether they are recurrent.

(a) P �

(b) P �

16.4-3. Given the following (one-step) transition matrix of a
Markov chain, determine the classes of the Markov chain and
whether they are recurrent.

P �

16.4-4. Determine the period of each of the states in the Markov
chain that has the following (one-step) transition matrix.

P �

16.4-5. Consider the Markov chain that has the following (one-
step) transition matrix.

P �

(a) Determine the classes of this Markov chain and, for each class,
determine whether it is recurrent or transient.
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entered will be transmitted accurately. In other words, the proba-
bility is 0.01 that the digit being transmitted will be recorded with
the opposite value at the end of the transmission. For each trans-
mission after the first one, the digit entered for transmission is the
one that was recorded at the end of the preceding transmission. If
X0 denotes the binary digit entering the system, X1 the binary digit
recorded after the first transmission, X2 the binary digit recorded
after the second transmission, . . . , then {Xn} is a Markov chain.
(a) Construct the (one-step) transition matrix.
C (b) Use your OR Courseware to find the 10-step transition ma-

trix P(10). Use this result to identify the probability that a
digit entering the network will be recorded accurately after
the last transmission.

C (c) Suppose that the network is redesigned to improve the prob-
ability that a single transmission will be accurate from 0.99
to 0.999. Repeat part (b) to find the new probability that a
digit entering the network will be recorded accurately after
the last transmission.

16.3-3.* A particle moves on a circle through points that have been
marked 0, 1, 2, 3, 4 (in a clockwise order). The particle starts at
point 0. At each step it has probability 0.5 of moving one point
clockwise (0 follows 4) and 0.5 of moving one point counter-
clockwise. Let Xn (n � 0) denote its location on the circle after
step n. {Xn} is a Markov chain.
(a) Construct the (one-step) transition matrix.
C (b) Use your OR Courseware to determine the n-step transition

matrix P(n) for n � 5, 10, 20, 40, 80.
C (c) Use your OR Courseware to determine the steady-state prob-

abilities of the state of the Markov chain. Describe how the
probabilities in the n-step transition matrices obtained in part
(b) compare to these steady-state probabilities as n grows
large.

16.4-1.* Given the following (one-step) transition matrices of a
Markov chain, determine the classes of the Markov chain and
whether they are recurrent.
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ies. The hospital proposes a policy of receiving 1 pint at each de-
livery and using the oldest blood first. If more blood is required than
is on hand, an expensive emergency delivery is made. Blood is dis-
carded if it is still on the shelf after 21 days. Denote the state of the
system as the number of pints on hand just after a delivery. Thus,
because of the discarding policy, the largest possible state is 7.
(a) Construct the (one-step) transition matrix for this Markov

chain.
C (b) Find the steady-state probabilities of the state of the Markov

chain.
(c) Use the results from part (b) to find the steady-state probabil-

ity that a pint of blood will need to be discarded during a 3-
day period. (Hint: Because the oldest blood is used first, a pint
reaches 21 days only if the state was 7 and then D � 0.)

(d) Use the results from part (b) to find the steady-state probabil-
ity that an emergency delivery will be needed during the 3-day
period between regular deliveries.

16.5-6. A soap company specializes in a luxury type of bath soap.
The sales of this soap fluctuate between two levels—“Low” and
“High”—depending upon two factors: (1) whether they advertise,
and (2) the advertising and marketing of new products being done
by competitors. The second factor is out of the company’s control,
but it is trying to determine what its own advertising policy should
be. For example, the marketing manager’s proposal is to advertise
when sales are low but not to advertise when sales are high. Ad-
vertising in any quarter of a year has its primary impact on sales
in the following quarter. Therefore, at the beginning of each quar-
ter, the needed information is available to forecast accurately
whether sales will be low or high that quarter and to decide whether
to advertise that quarter.

The cost of advertising is $1 million for each quarter of a year
in which it is done. When advertising is done during a quarter, the
probability of having high sales the next quarter is �

1
2

� or �
3
4

�, depend-
ing upon whether the current quarter’s sales are low or high. These
probabilities go down to �

1
4

� or �
1
2

� when advertising is not done during
the current quarter. The company’s quarterly profits (excluding ad-
vertising costs) are $4 million when sales are high but only $2 mil-
lion when sales are low. (Hereafter, use units of millions of dollars.)
(a) Construct the (one-step) transition matrix for each of the fol-

lowing advertising strategies: (i) never advertise, (ii) always
advertise, (iii) follow the marketing manager’s proposal.

(b) Determine the steady-state probabilities manually for each of
the three cases in part (a).

(c) Find the long-run expected average profit (including a deduc-
tion for advertising costs) per quarter for each of the three ad-
vertising strategies in part (a). Which of these strategies is best
according to this measure of performance?

C 16.5-7. In the last subsection of Sec. 16.5, the (long-run) ex-
pected average cost per week (based on just ordering costs and un-

(b) For each of the classes identified in part (b), determine the pe-
riod of the states in that class.

16.5-1. Reconsider Prob. 16.2-1. Suppose now that the given prob-
abilities, 0.5 and 0.9, are replaced by arbitrary values, � and �, re-
spectively. Solve for the steady-state probabilities of the state of
the weather in terms of � and �.

16.5-2. A transition matrix P is said to be doubly stochastic if the
sum over each column equals 1; that is,

�
M

i�0
pij � 1, for all j.

If such a chain is irreducible, aperiodic, and consists of M � 1
states, show that

�j � �
M

1
� 1
�, for j � 0, 1, . . . , M.

16.5-3. Reconsider Prob. 16.3-3. Use the results given in Prob.
16.5-2 to find the steady-state probabilities for this Markov chain.
Then find what happens to these steady-state probabilities if, at
each step, the probability of moving one point clockwise changes
to 0.9 and the probability of moving one point counterclockwise
changes to 0.1.

C 16.5-4. The leading brewery on the West Coast (labeled A) has
hired an OR analyst to analyze its market position. It is particu-
larly concerned about its major competitor (labeled B). The ana-
lyst believes that brand switching can be modeled as a Markov
chain using three states, with states A and B representing customers
drinking beer produced from the aforementioned breweries and
state C representing all other brands. Data are taken monthly, and
the analyst has constructed the following (one-step) transition ma-
trix from past data.
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A B C

A 0.7 0.2 0.1
B 0.2 0.75 0.05
C 0.1 0.1 0.8

What are the steady-state market shares for the two major breweries?

16.5-5. Consider the following blood inventory problem facing a
hospital. There is need for a rare blood type, namely, type AB, Rh
negative blood. The demand D (in pints) over any 3-day period is
given by

P{D � 0} � 0.4, P{D � 1} � 0.3,
P{D � 2} � 0.2, and P{D � 3} � 0.1.

Note that the expected demand is 1 pint, since E(D) � 0.3(1) �
0.2(2) � 0.1(3) � 1. Suppose that there are 3 days between deliver-



16.5-10. An important unit consists of two components placed in
parallel. The unit performs satisfactorily if one of the two compo-
nents is operating. Therefore, only one component is operated at a
time, but both components are kept operational (capable of being
operated) as often as possible by repairing them as needed. An op-
erating component breaks down in a given period with probability
0.2. When this occurs, the parallel component takes over, if it is
operational, at the beginning of the next period. Only one compo-
nent can be repaired at a time. The repair of a component starts at
the beginning of the first available period and is completed at the
end of the next period. Let Xt be a vector consisting of two ele-
ments U and V, where U represents the number of components that
are operational at the end of period t and V represents the number
of periods of repair that have been completed on components that
are not yet operational. Thus, V � 0 if U � 2 or if U � 1 and the
repair of the nonoperational component is just getting under way.
Because a repair takes two periods, V � 1 if U � 0 (since then one
nonoperational component is waiting to begin repair while the other
one is entering its second period of repair) or if U � 1 and the non-
operational component is entering its second period of repair.
Therefore, the state space consists of the four states (2, 0), (1, 0),
(0, 1), and (1, 1). Denote these four states by 0, 1, 2, 3, respec-
tively. {Xt} (t � 0, 1, . . .) is a Markov chain (assume that X0 � 0)
with the (one-step) transition matrix

P � .

C (a) What is the probability that the unit will be inoperable (be-
cause both components are down) after n periods, for n �
2, 5, 10, 20?

C (b) What are the steady-state probabilities of the state of this
Markov chain?

(c) If it costs $30,000 per period when the unit is inoperable (both
components down) and zero otherwise, what is the (long-run)
expected average cost per period?

16.6-1. A computer is inspected at the end of every hour. It is
found to be either working (up) or failed (down). If the computer
is found to be up, the probability of its remaining up for the next
hour is 0.90. If it is down, the computer is repaired, which may re-
quire more than 1 hour. Whenever the computer is down (regard-
less of how long it has been down), the probability of its still be-
ing down 1 hour later is 0.35.
(a) Construct the (one-step) transition matrix for this Markov

chain.
(b) Use the approach described in Sec. 16.6 to find the 
ij (the ex-

pected first passage time from state i to state j) for all i and j.








3

0

0.8

0

0

2

0

0.2

0

0

1

0.2

0

1

0.2

0

0.8

0

0

0.8





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

State

0

1

2

3

satisfied demand costs) is calculated for the inventory example of
Sec. 16.1. Suppose now that the ordering policy is changed to the
following. Whenever the number of cameras on hand at the end of
the week is 0 or 1, an order is placed that will bring this number
up to 3. Otherwise, no order is placed.

Recalculate the (long-run) expected average cost per week un-
der this new inventory policy.

16.5-8.* Consider the inventory example introduced in Sec. 16.1,
but with the following change in the ordering policy. If the num-
ber of cameras on hand at the end of each week is 0 or 1, two ad-
ditional cameras will be ordered. Otherwise, no ordering will take
place. Assume that the storage costs are the same as given in the
second subsection of Sec. 16.5.
C (a) Find the steady-state probabilities of the state of this Markov

chain.
(b) Find the long-run expected average storage cost per week.

16.5-9. Consider the following inventory policy for a certain prod-
uct. If the demand during a period exceeds the number of items
available, this unsatisfied demand is backlogged; i.e., it is filled
when the next order is received. Let Zn (n � 0, 1, . . . ) denote the
amount of inventory on hand minus the number of units backlogged
before ordering at the end of period n (Z0 � 0). If Zn is zero or
positive, no orders are backlogged. If Zn is negative, then �Zn rep-
resents the number of backlogged units and no inventory is on hand.
At the end of period n, if Zn � 1, an order is placed for 2m units,
where m is the smallest integer such that Zn � 2m � 1. Orders are
filled immediately.

Let D1, D2, . . . , be the demand for a product in periods 1,
2, . . . , respectively. Assume that the Dn are independent and iden-
tically distributed random variables taking on the values, 0, 1, 2,
3, 4, each with probability �

1
5

�. Let Xn denote the amount of stock on
hand after ordering at the end of period n (where X0 � 2), so that

Xn � � (n � 1, 2, . . .),

when {Xn} (n � 0, 1, . . . ) is a Markov chain. It has only two
states, 1 and 2, because the only time that ordering will take place
is when Zn � 0, �1, �2, or �3, in which case 2, 2, 4, and 4 units
are ordered, respectively, leaving Xn � 2, 1, 2, 1, respectively.
(a) Construct the (one-step) transition matrix.
(b) Use the steady-state equations to solve manually for the steady-

state probabilities.
(c) Now use the result given in Prob. 16.5-2 to find the steady-

state probabilities.
(d) Suppose that the ordering cost is given by (2 � 2m) if an or-

der is placed and zero otherwise. The holding cost per period
is Zn if Zn � 0 and zero otherwise. The shortage cost per pe-
riod is �4Zn if Zn � 0 and zero otherwise. Find the (long-run)
expected average cost per unit time.

if Xn�1 � Dn � 1
if Xn�1 � Dn � 1

Xn�1 � Dn � 2m
Xn�1 � Dn
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C (d) Find the steady-state probabilities of the state of this Markov
chain.

(e) Assuming that the store pays a storage cost for each camera
remaining on the shelf at the end of the week according to the
function C(0) � 0, C(1) � $2, and C(2) � $8, find the long-
run expected average storage cost per week.

16.6-5. A production process contains a machine that deteriorates
rapidly in both quality and output under heavy usage, so that it is
inspected at the end of each day. Immediately after inspection, the
condition of the machine is noted and classified into one of four
possible states:

16.6-2. A manufacturer has a machine that, when operational at
the beginning of a day, has a probability of 0.1 of breaking down
sometime during the day. When this happens, the repair is done
the next day and completed at the end of that day.
(a) Formulate the evolution of the status of the machine as a Markov

chain by identifying three possible states at the end of each day,
and then constructing the (one-step) transition matrix.

(b) Use the approach described in Sec. 16.6 to find the 
ij (the ex-
pected first passage time from state i to state j) for all i and j.
Use these results to identify the expected number of full days
that the machine will remain operational before the next break-
down after a repair is completed.

(c) Now suppose that the machine already has gone 20 full days
without a breakdown since the last repair was completed. How
does the expected number of full days hereafter that the ma-
chine will remain operational before the next breakdown com-
pare with the corresponding result from part (b) when the re-
pair had just been completed? Explain.

16.6-3. Reconsider Prob. 16.6-2. Now suppose that the manufac-
turer keeps a spare machine that only is used when the primary
machine is being repaired. During a repair day, the spare machine
has a probability of 0.1 of breaking down, in which case it is re-
paired the next day. Denote the state of the system by (x, y), where
x and y, respectively, take on the values 1 or 0 depending upon
whether the primary machine (x) and the spare machine (y) are op-
erational (value of 1) or not operational (value of 0) at the end of
the day. [Hint: Note that (0, 0) is not a possible state.]
(a) Construct the (one-step) transition matrix for this Markov

chain.
(b) Find the expected recurrence time for the state (1, 0).

16.6-4. Consider the inventory example presented in Sec. 16.1 ex-
cept that demand now has the following probability distribution:

P{D � 0} � �
1
4

�, P{D � 2} � �
1
4

�,

P{D � 1} � �
1
2

�, P{D � 3) � 0.

The ordering policy now is changed to ordering just 2 cameras at
the end of the week if none are in stock. As before, no order is
placed if there are any cameras in stock. Assume that there is one
camera in stock at the time (the end of a week) the policy is in-
stituted.
(a) Construct the (one-step) transition matrix.
C (b) Find the probability distribution of the state of this Markov

chain n weeks after the new inventory policy is instituted,
for n � 2, 5, 10.

(c) Find the 
ij (the expected first passage time from state i to
state j) for all i and j.
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State Condition

0 Good as new
1 Operable—minimum deterioration
2 Operable—major deterioration
3 Inoperable and replaced by a good-as-new machine

The process can be modeled as a Markov chain with its (one-step)
transition matrix P given by

C (a) Find the steady-state probabilities.
(b) If the costs of being in states 0, 1, 2, 3, are 0, $1,000, $3,000,

and $6,000, respectively, what is the long-run expected aver-
age cost per day?

(c) Find the expected recurrence time for state 0 (i.e., the expected
length of time a machine can be used before it must be re-
placed).

16.7-1. Consider the following gambler’s ruin problem. A gam-
bler bets $1 on each play of a game. Each time, he has a proba-
bility p of winning and probability q � 1 � p of losing the dollar
bet. He will continue to play until he goes broke or nets a fortune
of T dollars. Let Xn denote the number of dollars possessed by the
gambler after the nth play of the game. Then

Xn�1 � �
Xn�1 � Xn,

for 0 � Xn � T,
with probability pXn � 1

Xn � 1

State 0 1 2 3

0 0 �
7
8

� �
1
1
6
� �

1
1
6
�

1 0 �
3
4

� �
1
8

� �
1
8

�

2 0 0 �
1
2

� �
1
2

�

3 1 0 0 0

for Xn � 0 or T.

with probability q � 1 � p



16.8-1. Reconsider the example presented at the end of Sec. 16.8.
Suppose now that a third machine, identical to the first two, has
been added to the shop. The one maintenance person still must
maintain all the machines.
(a) Develop the rate diagram for this Markov chain.
(b) Construct the steady-state equations.
(c) Solve these equations for the steady-state probabilities.

16.8-2. The state of a particular continuous time Markov chain is
defined as the number of jobs currently at a certain work center,
where a maximum of three jobs are allowed. Jobs arrive individu-
ally. Whenever fewer than three jobs are present, the time until the
next arrival has an exponential distribution with a mean of �

1
2

� day.
Jobs are processed at the work center one at a time and then leave
immediately. Processing times have an exponential distribution
with a mean of �

1
4

� day.
(a) Construct the rate diagram for this Markov chain.
(b) Write the steady-state equations.
(c) Solve these equations for the steady-state probabilities.

{Xn} is a Markov chain. The gambler starts with X0 dollars, where
X0 is a positive integer less than T.
(a) Construct the (one-step) transition matrix of the Markov chain.
(b) Find the classes of the Markov chain.
(c) Let T � 3 and p � 0.3. Using the notation of Sec. 16.7, find

f10, f1T, f20, f2T.
(d) Let T � 3 and p � 0.7. Find f10, f1T, f20, f2T.

16.7-2. A video cassette recorder manufacturer is so certain of its
quality control that it is offering a complete replacement warranty
if a recorder fails within 2 years. Based upon compiled data, the
company has noted that only 1 percent of its recorders fail during
the first year, whereas 5 percent of the recorders that survive the
first year will fail during the second year. The warranty does not
cover replacement recorders.
(a) Formulate the evolution of the status of a recorder as a Markov

chain whose states include two absorption states that involve
needing to honor the warranty or having the recorder survive
the warranty period. Then construct the (one-step) transition
matrix.

(b) Use the approach described in Sec. 16.7 to find the probabil-
ity that the manufacturer will have to honor the warranty.
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