Gaseous State

1.1 THE THREE STATES OF MATTER
Introduction :
h‘:ﬁﬂiﬂiﬁaﬁl’:feﬂ?lne ex.pcnmcma]iy th prc:tpcnies of sul—.}stanc-;:s, we deal with
greg S0l molecules as they occur in nature. It is the aggregations of
mulec‘uler. which come within the scope of human experience that constitute
whalt is l?n_ﬁwn as matter. The various kinds of substances that make up matier
can be divided roughly into three categories, namely, gases, liquids and solids.
These are called the three states of matter. These states can be considered to arise
as a result of competition between two opposing molecular forces, namely, the
forces of attraction which tend to hold the molecules together, and the disruptive
forces due to the thermal energy of molecules.

Gaseous State If the thermal energy is much greater than the forces of atwraction. then we
have matter in its gaseous state. Molecules in the gascous state move with very
large speeds and the forces of attraction amongst them are not sufficient to bind
the molecules at one place, with the result that the molecules move practically
independent of one another. Because of this feature, gases are characterized by
marked sensitivity of volume change with change in lemperature and pressure.
There exists no boundary surface and. therefore, gases tend to fill completely
any available space, resulting in no fixed volume to the gaseous siaie.

Liquid State If the forces of attraction are greater than the thermal energy, we have matier
in the liquid state. Molecules in the liquid state too have kinetic energy but
they cannot go very far away because of the larger forces of attraction amongst
them. Due to this feature; liquids have definite volume, but no definite shape.
They take the shape of the vessel in which they are placed. In general. liquids
are more dense and Jess compressible than gases.

Solid State If the forces of attraction between molecules are much greater than the t.hcnnful
energy, the positions of the molecules remain fixed and we have matier in
the solid state. The molecules in the solid state, therefore, do nol possess any
nal energy, but have only vibrational energy sincé they can vibrate
eir mean positions. Extremely large forces of attraction exist amongsl
¢ is why solids differ markedly from liquids and gases in respect of
Jume. Solids, in general, have definite size, shape and volume.

of molecular aggregation, only the gaseous state allows
guantitative description, We are generally concerned
four properties, namely, mass, pressure. volume and
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i is in a definite state (or condition) when all the prope

y v i specify each ang ,

of the ite v [t is not necessary to specif B, .&s
of the system have definite values. : _ ‘

Pmtpert}' ;i' (he matter as these are interrelated. Ihe relationship which coppe,

the above four variables is known a8 the eqrmﬁu: of ?:t;niht;t ::::e “"“h:‘“
; . epecified to desen state, the fo,
ases, only three of these must be specified . : i
Eummalica);iy has a fixed value and can be calculated ﬁ-:m:n the equation of g,
established from the experimental behaviour of the system.

temperature. A Syst€

e o J 7

1.2 EXPERIMENTALLY DERIVED GASEOUS LAWS

Boyle's Law At constani temperature, the volume of a definit
proportional 1o its pressure, that is,

¢ mass of a gas is inversel,

vel je V=—, o pV=k (121
2

where K is a constant whose value depends upon (i) nature of the gas, (i)

temperature of the gas, and (iii) mass of the gas. For a given mass of a gas al

constant temperature, Boyle's law gives

= |

Vi =nY, (1.22)
where V, and V, are volumes at pressures p, and p,, respectively.

Graphical Equation (1.2.1) can be represented araphically by plotting pressures as ordinates
Representation and the corresponding volumes as abscissae (Fig. 1.2.1). The nature of the curve
is a rectangular hyperbola. The general term isothermal or isotherm (meaning

at constant temperature) is used to describe these plots.

.
p

p—

of }he volume of a fixed mass of a gas at variows
ition of constant pressure and found that the
at constant pressure is a linear function ©
an be expressed as

: (1,2.3]

d b are constants,
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is a and it is he i
G ual to Vv, , e intercept on the verti i
derivative cqual to Vi, the volume at 0 °C. The. slope of the piéi‘l::;i

i
ot J,

17
| ik
Graphical Heuntio 16 Giteoiis Skt -3 ;
Repl_'ﬁﬂl'ltﬁﬂon i on (1 '2-3) has bﬂBﬂ,plUﬁEd in Flg 1:2.2. T
s
o

.Vr >

slope = (9%,/e1),

i ¥, (271315
= & 7!

o 0

h—

ve Form of  Experimental data shows that for each Celsius degree rise in temperature, the
volume of a gas expands 1/273.15 of its volume at 0 °C. If V, is the volume

of a gas at 0 °C, then b is given by

- - VGQTB.].ﬁ}
b= -
{2 ot

With this, Eq. (1.2.3) becomes

VI‘ = Vu +_. T°C 1
T el TR 2'_;3-.-15“.!“(:) o
3 H SR i - =_V — {1.....)
o Yi 'V“.(_.” 2_731.15) °-( 273.15
: e b (17K) (T is kelvin tempmmm‘}*
ot =M 20 13

absolute temperature scale on which temperatures are measured
his seale is obtained by adding 273.15 to the Celsius value.

scale is denoted by T. Thus
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ELR v
. et 1
i.e V‘r = [27:1.15 KJ

Since V,, the volume of the gas at 0 Sl
' Intion can be CXpresse

o has a constant value ar given

pressure, the above 1¢
¥
Vim ﬁzT
where K, is a constant whose value depends

of the gas. _ e ;
Equation (1.2,5) is an alternative form of €

the volume of a given mass of a gas at constant press
to its kelvin temperature.

‘Graphical A typical variation of volume of a gas with change in its kelvin temperature iy
‘Representation shown in Fig. 1.2.3, The general term isobar, which means al constant pressue.
is assigned to these plots.

(1 2.5)

upon the nature, mass and presgye,

harles law according (o whjey
re is directly Proportion|

g ——lge

ent on Zero Since volume is directly proportional to kelvin
shcfuld: theoretically be zero at kelvin zero,
sohdxfy l;efnrc this low temperature is reached. In fact, no substance exists s
d gas at a temperature near kelvin zero, though the straight-line plots can be

extrapolated to zero volume. The temperat
is =273.15 °C. femperature that corresponds o zero volume

lemperature, the volume of a gas
However, gases liquefy and then

ssac’s Law:

Pressure of a given mass of a gas
S lemperature,
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CXperimentg) i |
. ly and 5 found 10 pe (pof273.15

°C). Thus, Eq. (1.2.6) modifies
P, =p, + (Ji'l__]{mcy

273,15
Therefore P, =p, (M] - Pa
273.15 273.15K
S R (127
that is, the Pressire af [ ' .
1 of a given i (5 di j
Soporenil o s e £ mass of a gas at constant volume is directly

temperature.

Equations (1.2.6) and (1.2.7) are shown graphically in Figs. 1.2.4 and 125,

respectively, The general term isochor (meaning at constant volume) is given to
the plots of Fig. 1.2.5.

slope = (Zp /o)y
i _ p273
°C

7 —

The phenomenon of diffusion may be described as the tander!cy fl'..}l’ any substance
to spread uniformly throughout the space available to it. Diffusion through fine
ores is called effusion. T 7
3 According to Graham’s law of diffusion, the rate of diffusion (or effusion)
of a gas is inversely proportional to the square root of its densiry or molar mass.
If r and r, are the rates of diffusion of two gases under identical -T‘ondmans.
whc:se densities under the given conditions are p, and p,, respectively, then
from Graham's law,

i= f}_ = .’l_ .Aiz.. (1.2.8)
£F Py R ¥

here M, and M, arc the respective molar masses of (he two gases.
W'.-u..- i --. 4—:-‘:'.' -ij.l:..:
y =

£ i

aws of Boyle and Charles can be combined into an
epre nts the relationship between pressure, x!c.}lumt‘: and
mass of & gas; such an expression is described as an
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al state with volume Vi, pressure P; g
state of the gas to a volume Vv, Preﬁum
ge in two steps.

keeping the temperatyr 7
e's law is !

Suppose the gas is in the initi
temperature 7;. We then change the s
P and temperature T;. Let us carry out this chan

(i) First we change the pressure from p, 10 pl.I
constant. The resultant volume V, as given by Boy

(i) Next, temperature is changed from 7 to T, lfeeping the pressure P
constant. The final volume V, as given by Charles law is

L O A VT, (pWip)T
ek SO = T
T 1 i 1
V.
or LA L (131
T I, '

It follows that no matter how we change the state of the given amount of
a gas, the ratio pV/T always remains constant, i.e.

PY _ o
T
Universal Gas The value of K depends on the amount of gas in the system. Since V is an
Constant extensive property (which is mass dependent), its value at constant p and T is

proportional to the amount of the gas present in the system. Then K must also
be proportional to the amount of gas because p and T are intensive properties
(which have no mass dependence). We can express this by writing K = R, in
which n is the amount of gas in a given volume of gas and R is independent
of all variables and is, therefore, a universal constant. We thus have the general

gas law
pV = IIRT (1.3.2}
Physical The universal gas constant as given by Eq. (1.3.2) is R = pVinT. Thus, it has the
Significance of units of (pressure x volume) divided by (amount of gas x temperature). Now the
Gas Constant R dimensions of pressure and volume are,

Pressure = (force/area) = (force/length®) = force x length™

Volume = length?

(force x length™) (length®) (force x length)

mount of gas) (kelvin) ~ (amount of gas) (kelvin)
Or energy)

of gas) (kelvin)

L R 3_“-‘ energy per mole per kelvin and hence it
OF energy) that can be obtained from one mole
raised by one kelvin,
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Concept of an |geq F EQuATiON oF STATE Gaseous State 3
ea
- S0 far, we haye assumed 1,
af tﬁmpe‘rmum and at all Bases oh

Characteristics of
an ldeal Gas

Value of Gas

@O REDMI NOTE 9

CO Al QUAD CAMERA

laws under all conditions

his is not true, Reai gases

low pressures and high

G5 cati b R lose 1o the conditions at
- Thus Boyle's law, Charles law
Wo laws may be regarded as

ASCS | . i
and are expected 1o he applicable only at relatively

rately high te :

10 postulate a by . 0 BN lemperatures. 1t is, nevertheless,

Boyle and Chﬂl]'llgomcgc?] ltl_cal gas defined as a gas to which t‘;ﬂ;al::f:i_
and pressures. It is 'fzjrft;?m" applicable under all conditions of temperatures
ideal gas equ reason that Eq. (1.3.2) is commonly referred 1o as the

ation. Real gases attain ideal hehavi
e " chaviour only at very low pressures

.Smce Eq. (1'3'2]_ is not applicable 10 real Eases, the evaluation of the universal
t,5,:‘:1[:l constant R cannot be done dimcﬂ__y by utilizing the pressure, volume, and
, peratlma_data of real gases. Equation (1.3.2) is strictly applicable onlv for
ideal gases and thus if the pressure and volume of one mole of an ideal gas were
known at a definite temperature, it would be a simple matter to evaluate R from
Eq. (1.3.2). However, as no gas behaves ideally, this procedurs would appear to
be ruled out. But we know from experiments that gases approach ideal behaviour
as the pressure is decreased. Hence, the extrapolation method (p — 0) on the
data of real gases can be utilized to determine the corresponding properties of
an ideal gas. The data obtained in this manner, after extrapolation. should be
independent of the characteristics of the actual gas employed for the experiment.
By measuring the volumes of one mole of a real gas at different pressores
and constant temperature, a graph between pV and p can be drawn. On
extrapn]aﬁng this graph to zero pressure to correct for departure from ideal
behaviour it is possible to determine the value of pV which is expecied © be
applicable to one mole of an ideal gas. Since this value of pV is expected to
be independent of the nature of the gas, the same value of (pV), ., would be
obtained irrespective of the gas employed for this purpose. In other words, the
graphs of pV versus p of different gases must yield the same value of (V)
In fact, it is found to be so, as is evident from Fig. 1.4.1. The value of (pV),
ot 27315 K is found to be 22711 dm® bar, Thus if p = 1 bar, then V =
92711 dm’, that is, the volume occupied by one mole of an ideal gas at standard

temperature (273.15 K) and pressure (1 bar) is 22.711 dm’.

Thrah'@mc:of R in SI units can be¢ worked out as follows.

] A
(1'bar) (22711 dn ) _ 0.083 14 bar dm’ K™ mol™
(1 mol) (273.15 K)

‘ s =
the value of R expressed in kPa dm® K U mol™ will be

e

s

I,

o TSI T
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T 27315 K
—-E /
| Ei /
,‘ :‘r ....................
\\\ "\
| Ny
| Fig. 1.4.1 Plots of pV 02
| versus p of a few gases plhar —+
R = 0.083 14 (10> kPa) dm® K~ mol™"
— 8314 kPa dm® K™ mol”! = 8.314 MPa cm’ K™' mol™
= 8314Pam’ K mol”' = 8314JK ' mol™
II Example 1.4.1 Determine the value of gas constant R when pressure is expressed in Torr and volume
. ki
[ in dm,
Solution By definition, 1.013 25 bar = 760 Torr. Hence
o4 {(1 bm'](—-—! e )}(nmm )
T (1mol)(273.15 K)
=62.36 Torr dm® K~' mol™!
Example 1.4.2 Derive the value of R when (a) pressure is 'cxprassbd.in atmospheres, volume in cm’ and
(b) p in dyn m™ and ¥ in mm’.
Solution Since pV = 22.711dm’ bar, the volume of an ideal gas at 1atm (= 1.01325 bar) will be
] 3
e AV LLONEDRE, _ 5 1y o)
1.01325 bar
(a) p in atm and V in em’
PV _ (lam)(22414cm?)
R= = 06 3 el -1
AE (e G R e mm e K mal
yn o> and V' in mm®
=lam = 1.0132x10° dynem™ = 1,0132x10" dynm™
2414 em’ = 22414 %10" mm’
(10132x10" dyn m?) (22 414 x 10° mm?)
_ (1 mol) (273,15 Ky
0" (dynm %) (m;u?’")__[(“l mol™!
i .
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ident b %\%'s law

fact that ﬁ;\mgﬁdm“ Lo 3
' - . SUTO S law s applicable to real
and high temperatures indicates that the volume “EPM! e

having the ccupied by different gases

j S prts'summli!: ‘:::2;5&1‘ of molecules under identical conditions of temperature
8. oo mtewlege::ﬁ:;; of the nature of the gascous molecules. Thus,
- I i avy (&, Bry) or light (e.g. H,), gases with equal
“mf‘ifei;ﬁf molecules would occupy the same volume. This leads to ane of the
portant features of gases that the distance between molecules is much

larger than the actual dimensions of 3 ¢
i s - : molecules, since otherwise, A |
would not have been e 1 0 1se; Avogadro's law

°gadro Constant The facts that the behaviour of a real gas approaches that of an ideal gas as

P — 0 and the volume occupied by one mole of an ideal gas at the specified
temperature (273.15 K) and pressure (101.325 kPa) has a fixed value
(22.414dm’) indicate that the number of molecules contained in one mole of
any real gas should be a constant quantity. This physical quantity has a value of
6.022 x 10 mol™' and is known as Avogadro constant,

tion of State in The amount of gas containing N number of molecules is given by

s of Numbers "

Molecules n=——

A

With this. Eq. (1.3.2) becomes

: N
} =nRT = — RT (14.1)
pV =nk N,

Avogadro’s law follows directly from the Eq. (1.4.1). We have

BT HE
P o N
[PNA)

For a fixed condition of pressure and temperature,
volume for a fixed number of gaseous molecules.

—

a gas will have fixed

<« qumber of gascous molecules left in & volume of Lmm' if it is pumped out
- aum of 10 mmHg at 298 K.

Ak — R ‘!.3.
Wl = 107 dm’ i \
: i L 760 mmHg

Yol X 2

‘I‘L:"
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pv _ (1.333X 10~ kPa) (10 dm’)
Amount of the g8, 1= Frr= (g 374 kpa dm® K mol 1) (298 K)

=538 %107 mol

Hence, number of molecules

= | =
k N = n N, = (538 x 1077 mol) (6.022 % 102 mol ') = 3.240 x 107

—

Equation of State in For a gas of mass m, the amount of gas is given by

Terms of Mass of a o
Gas i

M :
where M is the molar mass of the gas. With this,

pV =nRT = (:E-]RT (142

Eq. (1.3.2) becomes

Example 1.4.4 ‘When 2 g of gaseous substance A is introduced into an initially evacuated flask kept

at 25 °C, the pressure is found to be 101.325kPa. The flask is evacuated and 3 g of B
is introduced. The pressure is found to be 50.662 5 kPa at 25 °C. Calculate the ratio

Solution From the ideal gas equation, we have
RT
pv=nﬂr=(ﬂ)nr or M=m—
M Y
RT
Hence i, =2g)————— and M, =(3
My =G 8 61305 %Py v 8 =00 o sk v
Thus, Eﬁ_:ZXI}.S:l
M, 3 3
i
Example 1.4.5 A certain mixture of helium and argon weighing 5.0 g occupies a volume of 10 dm’ at
. 259 and 101.325 kPa. What is the composition of the mixture in mass percentage’
! Solution Given that m, = 50g V=10dm* T=25°C=298.15K; p=101325kPa

Let the mass of He be x. Therefore

KmonntofHe= e 2
M (40gmol™)

e e el
M (3995gmol™)

- Total amount of gases = 2 - Lo bom) (L i)
ks i RT (8314 kPadm’ K™ mol™) (298.15K)

= 0.409 mol
i [ 50g-x

39.95 g mol "

Jebenen
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Gaveous State i1
: Misss Per centof e . 1262 B 100
| 50 "% O 35 94

e = Mass per cong al’ Ar =)
- A flask of o dm? ¢
reduced (g (), 10 P

rollowing:

(1) What will be '

+_ the volunie of ich i

(ii) What amount of 0, ﬂndcl:: L:eﬁgmmwhgeh i

. In the flagky 3 :

i (i) If now 2gaf N, is introduced, what will
lutio Given that Vi=2dm?

We have the Tollowing regu

00 -2524 = 1476

PACItY containg ()

il
by Ataching (he ﬂz I

ik

i
.
11

’101.32.‘5 kPa and 300 K, The Bad presstire is
0.8 pump, Ausuming ideal hehavinr, answer

niamber of maleciles are left hehind

be the pressure of the fask?
P = 101.325 kPa, pz=ﬂ.][}Pa, T=300 K
15,

(i) The volume of O,

: left behind will be the same, ie 2 dr? 2L,
(ii) The 5 : el ki same; Le. 2.dm. b ek = A
) The amount of O, left behind is given by \ UE'._-, ?:Lﬁ = 157 . (T
et (107 kPa) (2 dm®) g
RT (8314 kPadm’ K ! mol ! JOOK) bl i
N=nN, =(8.109x10°* mol) (6022 x10% mol ™)
=4.88 x 1()'6
(i) 2gofN, = L
14
! Total amount of gases in flask = %muﬁ +8.019 %107 moi = l—]imul
i Thus, the pressure of the flask is given by
% i R | -
g nRT _ (1 mol/14)(8.314 kPa dnz K™ mol ") (300 K) — 89,08 k¥
v 2dm’)
Example 1.4.7 Two flasks of equal volume connected by a narrow tube (of negligible volume) are a2

300 K and contain 0.70 mol of H, gas at 50.662 5 kPa pressure. One of the fasks is
then immersed into a bath kept at 400 K, while the other remains at 300 K. Calculase
the final pressure and the amount of H, in each flask.

! i : i 3 ince both of them are connected
lutio The final pressure in both the flasks will be the same, since | ; -
i with each other, Let n, be the amount of the gas in flask L (T, = 300 K) and », in the
flask 2 (T, = 400 K);

e AT D T T e e

For flask 1, pV = mRT, For flask 2, pV = nRT,
: o T, 400K _ 4
Therefore, — mT; =mt; i.e. w7 300K 3
- 1, = 0.7 mol
But ny + = ‘
Hence: ny = 0.4 mol at 300 K iy = 0.3 mol at 400 K
Volume of each flask is

(035 mol) 8314 kPa dm’ K™ ml D G00K) _ 1 g0

1] piad ety 3' HRT -
: sl (50.662 5 k)

r
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Final pressure is
el =i
_ mRT, (04 mol) (8314 kPadm® K~' mol ) BOOK) _ oo g o

%= T (1723 dm’)
e
1.5 CONCEPTS OF PARTIAL PRESSURE AND PARTIAL VOLUME
i Definition of Partial  The relation between the total pressure of a mixture of gases and the pressyres
Pressure of the individual gases was expressed by Dalton in the forms of 1aw of partjq]

pressures. The partial pressure of a gas in a mixture is defined as the presgyre
which the gas would exert if it is allowed to occupy the whole volume of (e

mixture at the same temperature.
Definition of Dalton’s According to Dalton's law of partial pressures, the total pressure of a mixtyre
Law of gases is equal to the sum of the partial pressures of the constituent pases.

Partial Pressures in  Let a mixture of gases have the amount n, of the first gas, n, of the second gas,
a Gaseous Mixture  and so on. Let the corresponding partial pressures be py, p,. .. The total pressure
is given by
Prowt =Pyt Pyt s
If the gases present in the mixture behave ideally, then, it is possible 1
write separately for each gas,

pV =mRT (1.5.1a)
P2V = n,RT (1.5.1b)
Hence (py+ps+ - )V=(@m+n+---)RT
3.2)
where 71,5 is the total amount of gases in the mixture. Dividing Egs (1.5.1a)
and (1.5.1b) by Eq. (1.5.2), we get

Le. Prot V' = Mo RT @

4]
Pi = — Pio =% Pioinl (1.5.32)
Mol
n, _
P2 =0 Pom = 2Pl (1.5.3b}
Lotal |
~ Definition of The fractions ny/m Mol are called the amount (mole) fractions of the
Amount (Mole) respective gases. The amount [raction of a constituent in any mixture (gaseous,
Fraction li - solid) is defined as the amount (or number of molecules) of that

divided by the total amount (or number of molecules) of constituents
€. If xs are given, it is possible to caleulate partial pressures by

a gas ina mixture is defined as the volume which the gas
¢ present alone in a container at temperature T and
re, According 1o the ideal £as equation, this is given by
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f!'ﬂ.?ﬂ'ﬂl_a‘s Stare 13

I —
P (1.5.6a)
v, < (m‘]
N = (1.5.6h)
Adding, we get
V4V, 4. =(n, +nz+-~:-ff—;t =n [E]
| i P fotal
From the ideal £as equation :
: RT
(o
olal p total 5D

‘We have v Ve Vi
Which is Amagat’s law of parti A

ST : partial volumes according to which the toral
@ mixture of gases is-equal to the v e total volume of

e sum of the partial volumes of the constituent
Dividing Eqs (1.5.6) by Eq. (1.5.7), we get
H-—_--;x‘:p':ma] = 1,_2.... {1.55]

The following reaction is carried out at 101.325 kPa and 383K,
2CH, + 30, — 2CO + 4H,0

with the initial amounts of CH, and O, as 0.01 mol and 0.03 mol, respectively. All reactants
and products are gaseous at 383 K. A short while after completion of the reaction. the
) flask is cooled to 283 K at which temperature H,0 is completely condensed. Calculate:
(i) The volume of the flask.
(ii) Total pressure and partial pressures of various species after the reaction at 383K
~ and 283K.
(iii) The number of molecules of the various substances before and after the reaction.

Solution The reaction is 2CH; + 30, — 2CO + 4H.0
Amountimal Temp.
In the beginning  0.01 0.03 0 0 MK _
At the end 0.0 0,015 0.01 0.02 33K s
.' 0.0 0.015 0.01 condensed 283K =

(i) Volume of the flask

ART (004 mol) (8.314 kPa dmn' K mol ') (383 K)

S g (101.325 kPa)

=1.257dm’

@O REDMI NOTE 9
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(i)

0.045 nll'-']_] “(” ‘125 kPa] =1 13-99 kPa

pltotal, 383 K) = [E(}-ﬂ] maol

0.025 mol E’Eﬁ]um 425 kPa) = 46.81 kPa
0.040 mol )\ 383 K

pliotal, 283 K) = (
p(CH,, 383K) =0

ﬂ.mﬁmul) _ 38,00 kPa
0,. 383 K) = | =220 1(113.99 kPa) = 38.
Pent s -[0.045 mol

P(CO,383K) = [h___”'m 0 J (113,99 kPa) = 25.33 kPa
' 0.045 mol

p(H,0,383K) = (”—mﬂ‘i) (113.99 kPa) = 50.66 kPa
' 0.045 mol

p(0,,283 K)= (MJ (46,81 kPa) = 28.09 kPa
A0.025 mol

p(CO,283K) = (M) (46.81 kPa) = 18.72 kPa
0.025 mol

(iii) Number of molecules before the reaction are

N(CH,) = (0.01 mol) (6.022 x 102 mol™) = 6.022 x 10*!
N(O,) = (0.03 mol) (6.022 x 10®mol ™) = 1.807 x 10%

Number of molecules after the reaction are

NCH) =0

N(O) = (0.015 mol) (6.022 x 102 mol™) = 9.033 x 107

N(CO) = (0.01 mol) (6.022 x 107 mol™) = 6.022 x 10*!

- N(H,0) = (0.02 mol) (6.022 x 10®mol™) = 1.204 x 10%

1.6 THE KINETIC GAS EQUATION

Postulates of an
~ Ideal Gas
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After knowing the experimental gas laws, it is of interest to develop a theoretical
model based on the structure of gases, which can correlate the experimental
facts. Fortunately, such a theory has been developed (known as the kinetic
theory of gases) and based upon certain essential postulates (which are supposed
tﬂ! be licable to an ideal ‘gas) it is pOSSl.b].E to derive an exPl'essig“ (known

lic gEs.-ﬁqualian) from where all these gas laws can be derived. The

@ large number of very small spherical tiny particles.
1ed with the molecules, The molecules of a given gas
L size, shape and mass,
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; Me occupied 1 . .

total volume gf 1he gas ¥ the molecules iy negligible in comparison to the
he mnlcl:ll[ﬁs are in I =4

; apid moti hich t2 camat

Motion, ! E on which is completely random. Durin i
pressure t:: Thini{::‘; “:]"h one. anothier and Wilh‘:l::ﬂ?;k:: of the vessegl.u'x;
vessel, B45 15 due to the collisions of molecules with the sides of the

. i.;e. there occurs no loss of energy when
: with the sides of the vessel.

§ ; nics, in particular Newton's second law of mestion
are applicable to the molecules n motion, |

There is no force of attraction or repulsion a lecules. i
. are mmfing i_n‘dép_;:.ndent of one anugn]:r. e AL
At 311?. nstant. a given molecule can have energy ranging from a small value
-:3 ;v:ﬁf_'!;' 13!36 value, but the average kinetic energy remains comstant for
emperature, ie. the ave kineti i i
shaclle: Gt T rage Kinetic emergy is proportional to the
Imagme a cube of edge-length [, containing N molecules, each having a mass
of m. Molecules are moving at random in all directions, with speed covering 2
considerable range of values.
~ The velocity u of any molecule may be resolved into three-component
Vﬁlﬂﬂiﬁes ﬂgSig:uﬁtﬁﬂ as "{x---"‘y'-md .. These are in the three directions at right
angles to each other and parallel to the sides of the cube as shown in Fiz. 1.6.1.
The component velocities are related by the expression

e o) 1.6.1)

7}
Considering the x-component motion of a molecule, we will have
Momentum of the molecule before collision with the side ABCD = mu.
Momentum of the molecule after collision with the side ABCD = —mu.

G o

poe b g v o o
PRS2 T, 1 - =T R

o EEr

-7y
[

R ——— e ]

R —
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Change of momentum of the molecule in a single collision with the side ABCH)
= 12mu,|,

Since £ the edge length of the cube, the molecule .ha" L "a""'{' 2 distance

/ 21 10 arrive back at the wall ABCD, The number of collisions per unit time ;.

the wall ABCD will be equal to u, /21, ! o ;
The total change of momentum per unit time due o such impacts i

lmu (EE.J = mi.[.!"
i Gl {

According o Newton's second law of motion

4

ki Force = mass x acceleration

'l d(velocity) d % velacity)
1 =massx-——{k——~=h—-{mass velocity
11 _

= % (momentum) = rate of change of momentum

Hence, total force due 1o impacts of a single molecule with the wall ABCD ¢
the vessel is mu/l.

- The area of the wall is /% Hence, the pressure exerted due to the collision
of x-component velocity of a single molecule with the side ABCD is

b e b
p. = "‘-’"“;” =2 (1.62)
x I vV

where V is the volume of the vessel.

Since each molecule will exert similar pressure, the total pressure exerted
on the wall ABCD will be

N N
p=2 p,= %Z 0, (1.6.3)

=l =l

can square speed as.

(1.6.4)

(1.8.3)
(1.6.6)

(1.8.7)

®O REDMI NOTE 9
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™ Eqs (1.6.6) ana (1.6.7), we can write m}E
TRt W g
MR mu = sy 168
3 =
Subsmuting this in Eq. (1.6.5), we gel
=N (13 1 =
RE v [5“ ] or PV=5mNu2 (1.6.9)

ple 1.6.1
; Calculate the pressure cxerted by 10 gas particles each of mass 107 g in a container
of volume 1 dm?. The root mean square speed is 10° cm s,

From the given data, we have

N=10" m=102g=10%kg V=1dm' =10>m’

E Ji2 =10 cms?! = 108 m s
Therefore, from the kinetic gas equation
AL 5 l mN;i'
ML =3
; rll'l.y# . e =
1 (1075 ke) (10%)(10° ms™)?
we have p:-ﬁ'( g]( 3)':3, ms )
3 (107 m”)
g %(1'07) kgm 7 = '13" x 10" Pa

1.7 SOME DERIVATIONS FROM THE KINETIC GAS EQUATION

. - F 3 + £ - . = o : 13‘“.‘5
The kinetic gas equation (1.6.9) can be used to dm:t?e the various gaseous
and to define expressions for some useful guanuues .su_x:h as the.rl:‘m{ mean
.squa"rc speed and the average kinetic energy. Before deriving these, it is helpful
:-tta write this equation in the following form: o
"~ One of the postulates of the kinetic theory of gases is

: Gas
on Involving
Temperature

-Aqgmga-.kiﬂﬂﬁﬂ energy = T
or %muZ = KT \

onality constant. Iﬂtroducin__g-this in Eq. (1.6.9) we have

(L) e aa
\2 3

arious gaseous laws from Eq. (1.7.1).

Jaw to be applicable are:
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Charles Law

Avogadro’s Law

Graham’s Law of
Effusion

@O REDMI NOTE 9 .
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(1) Temperature (7) should remain constant.
(i) Mass of the gas should remain constant. In other words, the toral Db

of molecules (N) remains unchanged.

Under these conditions, Eq. (1.7.1) yields
|

pV = constant or p o< -‘7

which is the expression for Boyle's law.
In this case:

{,'i)' Pressure (p) remains fixed.
(ii) Mass of the gas remains unchanged, i.e. N is constant.

With these conditions, Eq. (1.7.1) yields
V= [E EJ T ie. V = (constant) T or Visc' 7!

as required by Charles law.

It states that under similar conditions of pressure and temperature, equal volume
of all gases contain equal number of molecules. Considering two gases, we have

2 2
PV = ENIK?] and  p,V, = gNszz

Since py; = p, and T, = T,, therefore

—

pY, _ QIONKL VN
Y, (3N,KT, T

If volumes are identical, obviously N, = N,.
The rate of diffusion or effusion can be assumed to be directly proportional ©
the root mean square speed (or any other average speed). Thus

(N, is Avogadro constant)
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. With these, the above equation becomes.

Speed

Example 1.7.1
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o 3RT _ 3RT

| mN, M (1.7.2)
where M is the molar mass of the gas,

Thus, i _ ‘jﬁ _ [3RTIM, M,
2 \3RTIM, M,

which is Graham’s Jaw of effusion.

M‘T [u—r

Root mean square (rms)
squares of speeds, i.e.

\/;?: Julz +u§' +--++u_:,
N
According to Eq. (1.7.2), this is given as

J;T _ fBRT-
T{ (L7.3)
= {3 vV
e \/u"' = i{ o (1.7.4)

:I'hus,- rms speed is directly proportional to the square root of temperature and
inversely proportional to the square root of molar mass. Hence, at a given
temperature lighter molecules (say H,, He) move faster than the heavier molecules
(say O,, N,). There is no effect of change of pressure or volume on the rms
speed since, at a given temperature, pV, = constant.

speed is defined as the square rool of the average of the

A bulb of capacity 1 dm® contains 1.03 x 107 gaseous hydrogen molecules and the
pressure exerted by these molecules is 101.325 kPa. Calculate the average square molecular
speed and the temperature.

We have V=1dm?, N=103x10%  p=101.325 kPa

e
peiie U pavim
N, (6.022x10™ mol )
3 25" 3
e 18 (101.325kPa) (1 dm™) =7127K

AR (0.171 mol) (8.314 kPa qm3 K mol™)

3RT _ 3(8314JK™' mol ") (71.27K)
T M (20x107 kgmol™)
—8.888x10° kg = 8888 x10°(m ")’

ul

The average kinetic energy (KE) 15 defined as

. l'ﬁ ‘L § r:il-

T T
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According to Eq. (1.7.1), this is given as

== 3 8V
SEESN
For 1 mole of an ideal gas
pV=Rr and N= Na
With these, the above equation becomes
KE= 2 RL _34p (1.7.5)
R Ry

where k = RIN,, and is known as the Boltzmani constant. lts value is giveq py

= =
(o R _ 83WIKTmol _3506x107 IK
N, 6022 x 10% mol”
The total kinetic energy for 1 mole of the gas 15
S (1.7.6)
Egu =Ny (KE)= ERT
Example 1.7.2 For a eas containing 10%* molecules (cach having mass 10* g) in a volume of
g E : >
1 dm?, calculate the total kinetic energy of molecules if their root mean square spesd i
10° cm s™'. What will be its temperature?
Solution Total kinetic energy
= N[%’"F] = (10%) {-i— (107 kg) (10° ms™ }3}
—05x10* kgm? s> =0.5%10%J
Total kinetic energy is also equal to N(3/2)kT. Thus
NE)H =0.5x10* ]
ST (T ) e SRR 0 ()
3 Nk 3 (10%)(1.3806 x 1072 IK™)
=2414K
Example 1.7.3

Calculate the total kinetic energy of 0.5 mol of an ideal gas at 273 K.
Solution Total Kinetic energy

L by :
= R(ERT J = (0.5 mol) {% (R314JK "'mol ™) (273 K)} =1702]

ases do not nh-_ey the ideal gas laws exactly under all conditions of
e and pressure. Experiments show that at low pressure and moderately
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