Box 11 h
Boundahers merem: Continuous function on doud & badd internal
is bold therein
furble on A if J M>0 : Islands M V x CA
ie. $f(A) = \mathcal{E}_{f(A)} _{X \in A}$ is a slid set I chard where the state of boundedness of boundedness of boundedness of the sample 5.3.3
Jed intended Note: Each hypothesis of boundedness & me
mean is mandatory
Example 5.3.3
1 Interval must be bounded
Let $f: [0,\infty) \to \mathbb{R}$
be def as $f(x) = 2$
(1) 1 y done
2 h is do m I
3 I is NOT Lounded
we see that of is not bounded (which implies that between)
be see that of is not bounded (which implies that better than is not bounded (which implies that better is not bounded) Let M G IR to be N = M + 1/2 / X + (0,00) = I tone
and $f(x) = x > M$
ie for any M>0, FXFI: f(N)>M = fis undl
Q/ State boundedness theorem. Show to I tre and y to F T is had
Qy State boundedness sheerens Show that the condy that I is badd cannot be relaxed. hypotheris
2 Interval must be done
Let 1: (0,1) - IR be def as f(x) = 1/2 + x + (0,1]
I = (0,1)
ال الله الله الله الله الله الله الله ا
(2) f is the on I
V
3 I is not done interval
we see hut fis unbad (i.e. bad sum fails)
[Let M>0. Let x = 1] then x FI (M>0 =1 M+1>0)

let M>0. let x=1/m+1 thenx-I (0,1] & f(x) = 1/2 = M+1 >M + M>0 7x FI : {(x)>M function Muss Le continuous let I = [0,1] + p: I - IR be def as (1) I is closed @ I is had @ I is disch at a EI (" ht) does not exist) Sec that of is unbold.

Absolute Meaning of a function $\begin{cases}
f(x) \\
= f(x)
\end{cases}$ $f(x) \\
= f(x)
\end{cases}$ $\begin{cases}
f(x) \\
= f(x)
\end{cases}$ $f(x) \\
= f(x)
\end{cases}$ f(x)

The is a put of who make as \$ (51/2) = 1 > f(a) ∀u+[O,η] (2) f(x) = smn on [0,31] = I $\sqrt{2}$, $\sqrt{3}$ are points of also maxima on I $(\sqrt{3}) = (\sqrt{3}) \ge (x) \quad \forall x \in I$ Notes: 1) We note from of @ that point of also make more not anohu eg fal= x2 on (-1,1] { (±1) = 1 > { (4) Ax + (-1,1) 1, -1 are points of also max. { és until above 0°, €∪ €(0,00): {(U) > {(a) A f DOES NOT HAVE also Max on (0,00) | m f(2) = [/2 | n ((0, 0)) = 0 #u + (0,00) : f(4) = 0 (n) EM Max