
Suppose that G is a group with more than one element and G has no proper, nontrivial subgroups. Prove that $|G|$ is prime. (Do not assume at the outset that G is finite.)

Sa ${ }^{n}$
Let $G$ te infinite.
out $r \in G$. $\operatorname{arat} x \neq e$.
Alma that $|x|=\infty$.
then $\langle x\rangle \leq G$
$\langle x\rangle$ is subgeap of $G . \Rightarrow G=\langle\gamma\rangle$

$$
\because|x|=\infty \quad, \quad x^{k} \neq\left(x^{2}\right)^{m} \text { for any ord } k
$$

$\therefore\left\langle r^{2}\right\rangle$ is a subgenus of $\langle x\rangle$
$\therefore\left\langle r^{2}\right\rangle$ is a Pepper subgroup of G.

$$
\therefore|x| \neq \infty
$$

* AM elements in $a$ hare frise alder.

Now, If $r$ hat frise ester,
then $\langle x\rangle$ is Elite. tut $a=\langle x\rangle$

$$
\rightarrow \epsilon
$$

$\therefore$ a car nt be infinite.
(
$G$ is finite, let $e \neq x$ \& $\in \in G$
then $B=x\rangle$ is a subreoup of $G$ $\Rightarrow a=\langle x\rangle \quad(-h$ herno nouteinid sulseor)
$\Rightarrow$ a is Cyctic.
let $|a|=|\langle x\rangle|=n$
for any positane terigh $k$ of $n$, the geoul $\langle x\rangle$ heg subgeal $\left.<x^{r} / k\right\rangle$.

If $k$ is the fomisc of $n$, then $\left\langle x^{r(k\rangle}\right\rangle$ if the plapee subgear of $\langle x\rangle$.

$$
\longrightarrow \leftarrow
$$

$\therefore r$ dats not hare any ting atheetren (andn
$\Rightarrow \quad n$ is plime.
$\rightarrow(G)$ as plame.
Q. Ereey subgeul of antex 2 is nomal in a geoul.

Sb let $G$ be a geoup and $H$ be a subgeoup of $G$ with inter 2
$\because[G: H]=2 \Rightarrow$ no of distinct left (al right)
$\because\lfloor G: H \mid=Z A$ no of jistinct retr (al xught) Gis the union cosets is two ot al (oprgut) $G=e H \cup$ a His and $G=H$ He UHa
$G=H \cup$ ak and $G=M \cup H a$
where $a E F$
His nound in $G$ if $a H=H$.

Now, let $a \in G$ then $a \in K$ a a\&K.

$$
\begin{aligned}
& \text { wer } a \in H \\
& \text { aH }=H=H a \\
& \Rightarrow a H=M a \Rightarrow H \subset G .
\end{aligned}
$$

$$
a k=H
$$

$$
a \in M \text {. }
$$

$$
M a=M
$$

$$
\Leftrightarrow a \in H
$$

Cose-II:
wher a $\ddagger H$.
ferm $l_{a}$ ( $D, G=H \cup a H$.

$$
\begin{equation*}
\rightarrow a x=h>H \tag{2}
\end{equation*}
$$

Agour from $e_{a}{ }^{2} O, \quad h=H \cup M_{a}$

$$
\begin{equation*}
\lambda H_{a}=a>H_{1} \tag{3}
\end{equation*}
$$

for $a^{2}$ (2) $\&(3), \quad a M=M a$

$$
\rightarrow H \quad G
$$

$\therefore$ errecy subgeoup of inter 2 is volmal
in geonf $\bar{\sigma}$.
Choter
1 to 4,6 to $18,20,21,27,36$ to 45 , 47, 49 to bect Evestion.

