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These waves are called ripples and propagate mainly due to surface tension. If A lies between these
two values both terms are included to determine the velocity. Both for very large and very small values
of A, the velocity of the phase wave tends to infinity. Thus there must be wavelength of intermediate
value, i.e. critical wavelength for which velocity of water waves is minimum.

2.6 PLANE WAVES

The palne wave is the simplest example of a three dimensional wave. It exists at a given time, when
74

all

the surfaces on which a disturbance has constant phase,
forms a set of planes, each generally perpendicular to the
direction of propagation. That is, a plane wave is defined
as a wave in which the wave amplitude is constant over
all points of a plane perpendicular to the direction of
propagation.

There are quite practical reasons for studying this
sort of disturbance, one of which is that by using optical
devices, we can readily produce light resembling planc
waves.

The mathematical expression for a plane that is
perpendicular to a given vector k and that passes through
some point (x,, Yo, Zo) is rather easy to derive (Fig.
2.15). First we write the position vector in Cartesian
coordinates in terms of the unit basis vectors (Fig. 2.15a)

r =xi+yi+zk

where i, j, k are unit vector along respective axes.
[t begins at some arbitrary origin O and ends at the
point (x, y, z), which can, for the moment, be anywhere

in space.

Similarly,
Y Fig. 2.15 (a) The Cartesian unit basis
)= (i=x)i+ (v — vectors. (b) A plane wave
(r=1g) = (6 =xo)i + (v moving in the k direction.

Yol + (z—zp)k
By setting (r—-ry) k=0
we force the vector (r — r,) to sweep out a plane perpendicular to k, as its endpoint (x, y, 2) takes on
all allowed values. With '

H(2:58)

k=ki+k,j+kk ...(2.59)

Equation (2.58) can be expressed in the form |
ko (x —xp) + K, (y =) + k(2 —29) =0 ...(2.60)
pe aib)

Or as kxx-i-k)‘y-l—kzz:a
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where a = koxg+ ky, + kz,= constant «(2,62)

The most concise form of the equation of a plane perpendicular to k is then just
K- r=constant = a +2.63)
The plane is the

tocus of all points whose position vectors have the same projection onto the K direction,
We can nov

v construct a set of planes over which y(r) varies in space sinusoidally, namely,

wr)=Asin(k-r) .-(2.64)
yar)=Acos (k - r) +.(2.65)
Or W(r):/’e'kr ---(2.66)

For each of these expression yA(r) is constant over every plane defined by k - r = constant. Since
we are dealing with harmonic functions, they should repeat themselves in space after a displacement
of 4 in the direction of k. Figure 2.16 is a rather humble representation of this kind of expression.
We have drawn only a few of the infinite number of
planes, each having a different yAr). The planes should
also have been drawn with an infinite spatial extent,
since no limits were put on r. The disturbance clearly
occupies all of space.

The spatially repetitive nature of these harmonic
functions can be expressed by

y(r) = w(r+%) #:(2.67)

where £ is the magnitude of k and k/k is a unit vector

parallel to it (Fig. 2.17). In the exponential form, this
is equivalent to
Aek'r :Aeik'(I'*Ak/k) :AelkreIM

For this to be true, we must have

P = | = 27 :
—A ‘lSp/aCe
irory. CeMent;
Therefore, Ak =21 rection ofT‘ in the
k=2nA .
and Fig. 2.16 Wavefronts for a harmonic
The vector k, whose magnitude is the propagation plane wave

number k, 1s called the propagation vector.

At any fixed point in space where r is constant, the phase is constant
planes are motionless. To get things moving, y(r) must be made to vary in
accomplish by introducing the time dependence is an analogous fashion to th
wave. Here then

as is y(r); in short, the
time, something we can
at of the one-dimensional

yr, £) = A’k T F )

with A, wand k as constant. As this disturbance travels along in the k-
corresponding to it at each point in space and time. At any given tim
of equal phase are known as wavefronts. Note that wavefunction wi
wavefront only if the amplitude A4 has a fixed value at every point o

...(2.68)

direction, we can assign a phase
€, the surfaces joining all points
Il have a constant value over the
n the wavefront. In general, 4 is a
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function of © and may not be constant over all space or even over a wavefront, In the |atter casc, the
wave 18 said (o be inhomogencous. We will not be concerned with this sort of disturbance,

he phase veloeity of a plane wave given by eqn. (2.68) is equivalent to the propagation velocity
of the wavelront, In Fig. 2,17, the scalar mnu;nncm
of rin the direction of K is r,. The disturbance on a
wavelront s constant, so that after time dr, if the front
moves along K a distance dry, we must have

YAY, B) =yt dry t b d) =y, 1)L (2.69)

In exponential form, this is
,1.-"" b av) A(,M«r‘ Vkdr, T ot adh) = A("W‘ I i)

and so it must be that  kdr, = F axdl
The magnitude of the wave velocity, dr/dt, is then
dry ®

th — =49 -
i p t .(2.70)

We could have anticipated this result by rotating the
coordinate system in Fig. 2.17 so that k was parallel
to the v-axis, For that orientation

V’("' 1) = Aei(k.\' T ar) (27])

Fig. 2.17 Plane waves

since k « = kr, = kv. The wave has been effectively reduced to the one-dimensional disturbance.

2.7 SPHERICAL WAVES

Toss a stone into a tank of water. The surface ripples that originate from the point of impact spread
out in two dimensional circular waves. Extending this to three dimensions, imagine a small pulsating
spheres surrounded by a fluid. As the source expands and contracts, it generates pressure variations
that propagate outward as spherical waves.

“Spherical waves are waves in which the surfaces of common phase are spheres and the source
of waves s a central point.”

Consider an ideal point source of light. The radiation originating from it streams out radially,
uniformly in all directions. The source is said to be isotropic and the resulting wavefronts are again
concentric spheres that increase in diameter as they expand out into the surrounding space. The obvious
symmetry of the wavefronts suggests that is might be more convenient to describe them in terms of
spherical polar coordinates, Fig. 2.18. In this representation the Laplacian operator is

_1__3_(,_2 _a_) + —-—]—i(sin ei)+-2—]—— 9 em
/7

V2 —
p2or\ dr) r'sinf o0 d0 sin® 6 9¢°

m

where 7, 6, ¢ are defined by
x =rsin @cos ¢, y=rsinOsing, z=rcos6

Remember that we are looking for a description of spherical waves, waves that are spherically
symmetrical (i.¢., ones that do not depend on 6 and ¢) so that

| w(r) = y(r, 0, ) = y(r)
The Laplacian of y(r) is then simply
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We com obdain this result withom‘ bein -
: " A g familiar with eqn.
G'”,‘ Stant with the Cartesian form of the Laplacian

Vour) = '};(,x '3;) (2.73)

SQustion i ¢
PR

W on the spherically symmetrical wavefunciton wr).
' #nd convert cach term 1o polar coordinates. Examining
only the v-dependence, we have

dy _ dy or
. o Fig. 2.18 The geometry of spherical
and 32V coordinates.
9_’1(&)’ dyar X
&': at dar ax2
sIhce V(l‘) . “r)
Using Py +i= 7
we have g _x
dx r
Fr_19 ,1(1); o
x> rox ox\r) r »e
Py _ oy 1, x|y
ot T&T—rz ar2+rl r2 ) or
Now having 0" w/dx’, we form &*w/dy* and 8’ y/dz", and on adding get
o’y 20y
2 e gl oy g 8
v or’ +r or

which is equivalent to eqn. (2.73). This result can be expressed in a slightly different form:

Vy- %%W) (2.74)
The differential wave equation can then be written as
(2.79)

.+-(2.76)
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Nol_lce th_a‘ f'?'sd&t\lpressmn \is now just the one-dimensional differential wave equation, where the space
variable 1s ~and the wavefunction is the product (r1). The solution of eqn. (2.76) is then simply

ry(r, t) = f(r - vt)
or w(r, = 2= 2T

2
I'his represents a §phcr1c‘al w'ave progressing radially outward from the origin, at a constant speed v,
and having an arbitrary functional form f. Another solution is given by
(A=A
i) 2

- . ’.
and in this case the wave is converging toward the origin. The face that this expression blows up at
r =0 is of little practical concern.

A special case of the general solution

w(r, £)=C, f—(’_—v’) e ety ..(2.78)
is the harmonic spherical wave ’ /
A
y(r, )= (—) cosk (r Fvt) ™ (259)
r
A ik(rFuvr)
or v(r, t)= F e ... (2.50)

wherein the constant 4 is called the source strength. At any fixed value of time, this represents a
cluster of concentric spheres filling all space. (¢

Each wavefront, or surface of constant phase, $
is given b \
g y  ar
kr = constant \
\
; : . <
Notice that the amplitude of any spherical \

wave is a function of , where the term r'serves 4
as an attenuation factor. Unlike the plane wave a
spherical wave decreases in amplitude, thereby

: - L2l
changing its profile, as it expands and moves T ‘\\ : Seemenm Soul
o s : : , He
out form the origin. Figure 2.19 illustrates this |/ /o U\ !
. Tet Y] Al N |- NG Y
graphically by showing a “multiple exposure 0 > r

ic different times. The
of a spherlcal pulse at four. ; Fig. 2.19 A'quadruple exposure” of a spherical
pulse has the same extent In space at any point pilse

along any radius r, that is, the width of the pulse

along the r-axis isa constant.
The outgoing spherical wave emanating from a point source and the incoming wave converging to

a point are idealization. In actuality, light
only approximates spherical waves, as it
also only approximates plane waves.
As a spherical wavefront propagates
out, its radius increases. Far enough Fig. 2.20 The flattening of spherical waves it i
away from the source, a small area of the tance.
wavefront will closely resemble a portion
of a plane wave Fig. 2.20

e e e B S B " M M s i it B

Scanned with CamScanner



‘1‘

o WAVES AND OPTICS

2.8 WAVE INTENSITY

Waves transport energy, and the amownt of it that flows per second o WWKW%
{o the direction of travel is called the intensity of the wave. If thf:‘ wave flows continuously wiy, the
velocity o, there is a definite energy density, or total energy per unit volume. All the energy conyyip,
in a column of the medium of unit cross section and of length v will pee through the unit of areg I
sec. Thus the intensity is given by the product of and the energy density. Either the energy dengin,
the intensity is proportional to the square of the amplitude and to the square of the frequency. To proy,
this proposition for sine waves in a medium, it is necessary only to determine the vibrational hergy
of a single. particle executing simple harmonic motion.
The displacement of the particle executing simple harmonic meotion is given by eqn.(2.6)

¥ = a sin { ¥ - kx)
:;hcre ks the wave number and e the angular frequency of particle oscillations. It is further expressey

y=asn(at- a)
where e is the value of ke for that particle. The velocity of the particle is

‘i’. = wa cos (@ - 0)

when y = 0, the sine vanishes and the i :
T s v vl : Mhumwlwmnﬂuwbciqm s,

' ‘A‘ l Y @
(2] -
Since this is also the total encrgy of the particle proportiona
it follows that - “‘"’"mem-._

Energy density - of o
mimmity.vlimmhmhy.-inlhanbhmh
in‘wmmzmmm-umm,‘h s
m&mmmamnmmmmmmhmmdhhhhm,
e e s o 0 b,y o e e reyralor
intensity, will vary as |/ ., " from g I
If any of the encrgy is transformed 1o hest, that i 1o say. if there by ag.
Mﬁpﬁnnwﬁumhmmﬁuﬂuhm e o’ A
Similarly with spherical waves, the lows of intensity will be more rapid than iy rp T B8 the o
square law. For plane waves, the fraction dl// of the intensity lost in traversing an i ™ BY g
dx is proportional 1o dx, so that
ol

¥ AL s

mmmkmumw-x.umh

(% -oefe
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Evaluating these definite integrals, we find
= le™ ..(2.82)

This is called the exponential law of absorption. Fig. 2.21 is plot of the intensity against thickness
according to this law for a medium
having & = 0.4 per cm. The wave
equations may be modified to take
account of absorption by multiplying
the amplitude by the factor e *¥?, |
since the amplitude varies with the I_:, 0.50
square root of the intensity.

1.0

0.75

For light, the intensity can 0.25 . ,
be expressed in ergs per square ' !

ty 1 i 1 . 1 1
centimeter per second. Full sunlight, 00 '1 e ?1 3 348 4 T

for example, has an intensity in these
units of about 1.4 x 10°. Here it is Fig. 2.21 Decrease of intensity in an absorbing medium
important to realize that not all this

energy flux affects the eye, and not all that does is equally efficient. Hence the intensity as defined
above does not necessarily correspond to the sensation of brightness, and it is more usual to find light
flux expressed in visual units

2.9 DISTINCTION BETWEEN PROGRESSIVE AND STATIONARY WAVES

Progressive Waves:

| This is an advancing wave which moves in the medium continuously with a finite velocity.

2. Energy flows across every plane in the direction of propagation of the wave.

3. Each particle of the medium executes simple harmonic motion about its mean position with same
amplitude.

4. No particle of the wave is permanently at rest.

5. The phase of vibration varies continuously from point to point.

6. All the particles do not pass through their mean positions or reach their outermost positions simul-
taneously.

Stationary Waves:

1. There is no advancement of the wave in any direction.,
2. There is no flow of energy across any plane.

3. Except nodes, all the particles of the medium execute simple harmonic motion with varying ampli-
tudes.

4. Nodes are permanently at rest.

5. All the points between any pair of nodes vibrate in the same phase, but the phase suddenly reverses
at each ncde.

6. All the particles pass through their mean positions or reach their outermost positions simultaneously
twice in periodic time.
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