NUTRITIONAL BIOCHEMISTRY (Sem VI)

Pharmacological aspects of food-drug interactions

Pharmacodynamics is the study of the biochemical and physiological effects of a drug. This response may be enhanced or attenuated by the addition of other substances with similar or opposing actions.

Pharmacokinetics is the study of the time course of a drug in the body. It involves:

- Absorption: Movement of drug from the site of administration to the bloodstream.
- Distribution: This occurs when the drug leaves the systemic circulation and travels to various organs of the body.
- Metabolism: Transformation of a drug from a lipid soluble to a more water-soluble compound that can be handled easily by the kidneys.
- Excretion: Elimination of drugs and drug metabolites from the body.

Medication is administered to produce a pharmacologic affect in the body, or a specific organ or tissue. To achieve this goal, the drug must move from the site of administration into the bloodstream and then to the site of its action. An interaction between the drug and the food or a nutrient can alter this process at any point. Below are described the types of food-drug interactions.

Drug	Drug absorption			
	Drug	Type of drug	Interaction with food	
1.	Ciprofloxacin	Antibiotics	Form insoluble compounds with calcium in dairy products	
	Tetracycline		or calcium fortified foods/beverages, magnesium, zinc, or	
			aluminum in antacids, thus reducing the absorption of both	
			the drug and the nutrient.	
2.	Alendronate	Anti-	Absorption is negligible if these drugs are taken with food	
	Risedronate	osteoporotic	and reduced by 60% if taken with coffee or orange juice.	
3.	Encaptone	Anti-	Chelates with iron; hence iron must be taken 1h before or 2h	
		parkinsonian	after taking this drug.	
4.	Lanoxin	Cardiovascular	Should not be taken with high phytate foods like wheat bran	
			or oatmeal.	
5.	Cefuroxime	Antibiotic/	Absorption of these drugs is increased in the presence of	
	axetil/ saquinavar	antiretroviral	food in the stomach. Hence, they are advised to be taken	
			along with or immediately after a meal.	
6.	Famotidine/	Antacids/	Drugs like these which alter the gastrointestinal pH can	
	Omeprazole	Proton pump	interfere with the absorption of antifungal drugs like	
		inhibitors	ketoconazole. Ingestion of ketoconazole with cola (which	
			decreases the pH of the gut) can increase its bioavailability.	
Med	ication and Enteral			
1.	Chlorpromazine	Antibiotic	Suspensions of this can cause granulation and gel formation	
			and can clog feeding tubes and interrupt delivery of the	
			nutrient.	
Drug	distribution			
1.	Warfarin	Anticoagulant	Warfarin is 99.9% bound to serum proteins. Low albumin	

A. Effect of food on drug therapy

	1	1	
			levels (typically in older people) can cause more of free drug in the body, leading to excessive anticoagulation and
			bleeding. It also reduces the hepatic production of four
			vitamin K dependent clotting factors.
2.	Phenytoin	Anticonvulsant	Phenytoin is more than % bound to serum proteins. Low
			albumin levels (typically in older people) can cause more of
			free drug in the body, leading to phenytoin toxicity.
Drug	g metabolism		
1.	Theophylline	Anti-asthamatic	A diet rich in protein and low in carbohydrates can increase
	1 5		the metabolism of this drug in the liver.
2.	Simvastain,	HMG-CoA	Grapefruit and Seville oranges inhibit the cytochrome P-450
	atorvastatin /	reductase	3A4 enzyme system responsible for the oxidative
	Felodipine	inhibitors/	metabolism of these drugs. This increase in blood levels of
		calcium channel	unmetabolized drug by the ingestion of these fruits results in
		blocker	a greater pharmacologic effect and possible toxicity. Statins
		0100101	also affect the formation of Coenzyme Q_{10} and hence at least
			100mg CoQ_{10} daily is given to such patients.
Drug	excretion		Tooms co 210 and is siten to such putchest
1.	Lithium	Anti-manic	In conditions of low sodium or dehydration, kidneys absorb more sodium. However, if a person is treated with lithium, then alongside sodium, lithium is also resorbed, leading to possible toxicity. Like sodium, more of lithium is also eliminated from the kidneys, leading to a therapeutic failure.
2.	Memantine	Used to treat	Urinary alkalinizers (foods which increase the urinary pH)
		Alzheimer's	like milk and vegetables can decrease the excretion of this
			drug, leading to its higher blood levels and increasing the risk of toxicity.

B. Effects of drugs on food and nutrition

Nutri	Nutrient absorption			
1.	Ciprofloxacin Tetracycline	Antibiotics	Forms insoluble compounds with calcium in dairy products or calcium fortified foods/beverages, magnesium, zinc, or aluminum in multivitamin tablets, thus reducing the absorption of both the drug and the nutrient.	
2.	Furosemide, sulfamethoxazol e / misoprostol	Laxatives containing sorbitol/ gastric mucosa protectant	Reduces transit time of food and nutrients in the gut and may cause diarrhea, leading to loss of calcium and potassium.	
3.	Famotidine/ Omeprazole	Antacids/ Proton pump inhibitors	Inhibits gastric acid secretion and raises gastric pH. This impairs absorption of vitamin B12 by reducing its cleavage from the dietary sources.	
4.	Cimetidine	Histamine H ₂ receptor antagonist	Inhibits secretion of Intrinsic factor, and can cause vitamin B12 deficiency.	
5.	Colchicine/	Anti-	These drugs damage the villi and the microvilli. They	

	Paraaminosalicy	inflammatory/	inhibit the brush border enzymes and the intestinal transport
	lic acid	anti-TB (NSAID)	systems involved in nutrient absorption. This impairs absorption of vitamin B12. NSAIDs may also cause colitis,
			leading to diarrhea, weight loss and iron deficiency anemia.
6.	Sulfasalazine/ Trimethoprim	Against ulcerative colitis/ NSAID	These drugs damage the villi & the microvilli, and inhibit the brush border enzymes & the intestinal transport systems involved in nutrient absorption. These particular drugs are competitive inhibitors of folate transport mechanism.
	ient metabolism		1
1.	Phenytoin, phenobarbital	Anticonvulsants	Induce hepatic enzymes and increase the metabolism of vitamin D, K and folic acid. Hence, supplements of these vitamins are prescribed with these drugs.
2.	Isoniazid/ Levadopa	Anti-TB/ Anti- Parkinsonian	Blocks conversion of pyridoxine to pyridoxal-5-phosphate. These drugs can cause pyridoxine deficiency in patients with low pyridoxine intake.
3.	Methotrexate	Folic acid antagonist	Leucovorin (folinic acid, the reduced form of folic acid) is given along with methotrexate to protect normal cells and prevent anemia & GI damage.
Nutr	ient excretion		
1.	Furosemide, bumetanide	Loop diuretics	Along with increasing the excretion of sodium, these drugs also increase the excretion of magnesium, calcium, sodium and chloride, and can cause hyponatremia.
2.	Hydrochlorothia zide	Thiazide diuretics	Increases the excretion of potassium and magnesium but reduces the excretion of calcium by enhancing its renal reabsorption.
3.	Enalapril, fosinopril	ACE inhibitors (anti- hypertensive)	These drugs decrease potassium excretion and increase serum potassium levels. A combination of potassium sparring diuretics (like spironolactone) and ACE inhibitors can increase the risk of hyperkalemia.
4.	Prednisone	Corticosteroids	Decreases sodium excretion and increase potassium and calcium excretion. Calcium and Vitamin D supplements are prescribed in case of long-term treatment with these corticosteroids.
5.	Chlorpromazine	Antipsychotic	Increases excretion of riboflavin and can cause riboflavin deficiency.
6.	Cisplatin		This causes increase in excretion of magnesium, leading to development of acute hypo magnesia resulting from nephrotoxicity. Intravenous and oral supplementation of magnesium is recommended.

C. Modification of drug action by food and nutrients

	Combination of drug	Effect
1.	Monoamine oxidase (MAO)	MAO inhibitors prevent the deamination of pressor agents
	inhibitor phenelzine sulfate and	and increase its life in the blood. However, too much of
	pressor agent like dopamine or	these pressor agents can cause increased heart rate,
	histamine	headache or even stroke.
2.	Caffeine with stimulant drugs like	Increases the stimulatory effects of these drugs.
	amphetamines and theophylline	

3.	Warfarin with garlic,	papaya,	Enhances the anticoagulant effect of warfarin.
	mango and ginseng	(platelet	
	inhibitor)		

D. <u>Pyschoactive drugs</u>

	Drug	Effect
1.	Lysergic acid diethylamide	Induces hallucination. Effects include altered thoughts,
		feelings and awareness of one's surroundings.
2.	Methamphetamine	It is a potent central nervous system stimulant.