
8085 Instructions

Institute of Lifelong Learning, University of Delhi

Paper : Microprocessors and Computer Programming

Lesson: 8085 Instructions

Author: Dr. Anant Pandey

College/Department: Sri Venkateswara College, University of Delhi

8085 Instructions

Institute of Lifelong Learning, University of Delhi

Table of Contents

Chapter : 8085 Instructions

 Introduction

 Machine Language

 Assembly Language

 Instruction Set and Format

 Addressing Modes

 Instruction Types

 SIM and RIM

 Summary

 Exercises

 References

8085 Instructions

Institute of Lifelong Learning, University of Delhi

Chapter: 8085 Instructions

Introduction

A binary pattern of 0s and 1s that is already designed inside a microprocessor for
carrying out a specific task is called an instruction. And it is the entire group of such
binary patterns of the microprocessor, known as its instruction set, which determines
what different functions it can perform. Moreover, an instruction can also be thought of
as a command that is given to the microprocessor to perform a specific task on a
specified data. It is this command in the binary form given to the microprocessor by the
user through a program, which is matched by the microprocessor with its internally
designed binary patterns (read instruction set) that subsequently the appropriate action
specified in the binary pattern is performed by the microprocessor.

Before we study the entire instruction set of the 8085 microprocessor in detail it will only
be proper on our part to get a fair idea about the various types of languages that

programmers can use to communicate with computers. Broadly speaking, computer
languages can be classified into two types, namely low-level languages and high-level
languages.

Computer languages that are machine independent such as Basic, Fortran, Pascal, C, etc
are called high-level languages. A program written in a high-level language can run in
any computer irrespective of its microprocessor provided the computer has the
appropriate compiler or interpreter for generating the object code (that is the binary
equivalent of the program that the microprocessor can understand). Low-level languages
on the other hand are machine specific. Such languages are called low-level since each
instruction in such a language performs a much lower level task compared to a high-
level language instruction. Therefore a low-level language program will be much bigger
in size compared to a high-level language program written for the same task. The two
examples of low-level languages are the machine language and the assembly language.

Machine Language

Every computer has its own set of instructions in the binary form called its instruction
set. It is this set of instructions that forms the machine language of the computer (also
sometimes referred to as the binary language). An 8-bit microprocessor (i.e. a

microprocessor that recognizes a word length of 8 bits) can have a maximum of 28 (=
256) different instructions. Our own 8085 microprocessor which is also an 8-bit
microprocessor has 74 different instructions with 246 bit patterns designed to perform
various operations. Given below are a couple of (8-bit) instructions from the machine
language of the 8085 microprocessor:

(10101111)2 : this instruction logically XORs the contents of a register called the

accumulator (denoted by the symbol A) with itself and stores the result in accumulator.

(10000000)2 : this instruction adds the contents of a register called B with the contents
of the accumulator and stores the result in the accumulator.

In the single board microcomputers that are generally available in our labs the
instructions are entered as hexadecimal codes (through hex-keyboards) and not as
binary numbers as mentioned above for the two instructions. The hexcodes (short for
“hexadecimal codes”) for the two binary instructions are AFH and 80H respectively. A
program stored in the ROM (read only memory) of the microcomputer called the Monitor
Program translates the hexcodes into their binary equivalent.

8085 Instructions

Institute of Lifelong Learning, University of Delhi

Assembly Language

Since practically it is impossible for human beings to communicate with computers in the
binary language, all binary instructions are given symbolic codes or abbreviated English

type names called mnemonics that suggest the tasks that are to be performed by the
instructions. And it is the set of mnemonics of a computer that forms its assembly
language. Thus the assembly language like the machine language is also specific to each
computer. Therefore a program written in the assembly language of the 8085
microprocessor cannot be made to run in a computer having a different microprocessor
say the Motorolla 6800. In the assembly language of the 8085 microprocessor the
mnemonics for the earlier mentioned binary instructions are given in the table below

suggestive of the operations that the instructions can perform:

Binary Instruction Hexcode Mnemonic

10101111 AFH XRA A

10000000 80H ADD B

Here XRA stands for the logical operation exclusive-OR (i.e. XOR) and the symbol A for

the accumulator. Similarly ADD stands for the arithmetic operation of addition and
symbol B for register B.

A program written in mnemonics is called an assembly language program. By the end of
this chapter we will be in a position to write ourselves some simple programs in the
assembly language of the 8085 microprocessor.

Instruction Set and Format

The instruction set of the 8085 microprocessor as mentioned before consists of 74
instructions with 246 different bit patterns and all these instructions can be broadly
classified into five functional groups depending upon the operations that they can
perform. These functional groups are: data transfer (or copy) operations; arithmetic

operations; logic operations; branching operations; and machine-control operations.

Let us see the operations that the various instructions of each of these functional groups
are capable of performing:

(i) Data transfer (or copy) operations: data transfer is more of a misnomer for such
instructions since these instructions copy data (and not transfer them)

from one location called the source to another location called the
destination without affecting the contents of the source location. Data
transfer operations can further be classified into five different types. They
are:
(a) Transfer of data between registers: example is the instruction MOV

B,C which copies data from register C into register B.
(b) Placing of specific data byte into a register or a memory location:

example is the instruction MVI B, 67H (or MVI M, 4FH) which places
the data byte 67H (or the data byte 4FH) into the register B (or the
memory location M whose address is contained in the register pair
HL).

(c) Transfer of data between a memory location and a register:
example is the instruction LDA 2005H which copies data from a
memory location having the address 2005H into the accumulator.

(d) Transfer of data between and I/O device and the accumulator:
example is the instruction IN 4BH which copies data from an input
device having port address 4BH into the accumulator.

(e) Transfer of data between a register pair and the stack: example is
the instruction PUSH B which places the two data bytes from

8085 Instructions

Institute of Lifelong Learning, University of Delhi

register pair BC into the user defined memory locations called the
stack.

(ii) Arithmetic operations: instructions falling under this category perform arithmetic

operations such as addition, subtraction, increment (by one) and
decrement (by one).
(a) For addition any 8-bit number (for example by using the instruction

ADI 8-bit), or the contents of a register (using the instruction ADD
R) or of a memory location (using the instruction ADD M) can be
added to the contents of the accumulator and the sum is stored in
the accumulator. It is to be noted that no two 8-bit registers can be

added directly such as adding the contents of register B with that of
register D is not permissible. However, you will see later that the
instruction DAD Rp (where Rp stands for register pair) is an
exception to this rule. It is used for the addition of two 16-bit data
directly in register pairs.

(b) Like addition even for subtraction any 8-bit number (for example
by using the instruction SUI 8-bit), or the contents of a register
(using the instruction SUB R) or of a memory location (using the
instruction SUB M) can be subtracted from the contents of the
accumulator and the difference is stored in the accumulator. The
subtraction is performed by the 2’s complement method and the
difference if negative is expressed in the 2’s complement form.
Again direct subtraction of two registers not involving the
accumulator is not permissible. The accumulator has to be the

minuend in all subtractions.
(c) For increment or decrement the 8-bit contents of a register (using

the instruction INR R or DCR R) or of a memory location (using the
instruction INR M or DCR M) can be incremented or decremented
by 1. Moreover, the 16-bit data of a register pair (such as BC, DE,
HL or SP) can also be incremented or decremented by 1 using the

instructions INX Rp or DCX Rp respectively.

(iii) Logic operations: instructions under this category perform various logical
operations with the contents of the accumulator such as:
(a) OR, AND, XOR: any 8-bit number (using the instructions ORI 8-bit,

ANI 8bit, XRI 8-bit), or the contents of a register/memory location
(using the instructions ORA R/M, ANA R/M, XRA R/M) can be
logically ORed, ANDed, or Exclusively-ORed with the contents of
the accumulator and the result is stored in the accumulator.

(b) Rotate: each bit in the accumulator can be shifted one position to
the left (using the instruction RLC) or to the right (using the
instruction RRC).

(c) Compare: any 8-bit number or the contents of a register/memory
location (using instructions like CPI 8-bit and CMP R/M) can be

compared for greater than, less than or equality with the contents
of the accumulator.

(d) Complement: the accumulator contents can be complemented (that
is performing the NOT operation, logical inversion) using the
instruction CMA where all 1s are replaced by 0s and vice-versa.

(iv) Branching operations: instructions belonging to this group change the sequence

of program execution either unconditionally or after testing a certain
condition. Following are the two types of branching operations:
(a) Jump: there are unconditional (like JMP) as well as conditional

Jump instructions (like JC and JNC) that alter the program

8085 Instructions

Institute of Lifelong Learning, University of Delhi

sequence within the main program either unconditionally or
conditionally (depending on the status of a flag).

(b) Call, Return and Restart: such instructions alter the program
sequence either by calling a subroutine (or restarting at a service

routine) or by returning to the main program from a subroutine.
Both the Call and the Return operations have unconditional as well
as conditional instructions such as CALL 16-bit, CNC 16-bit, RET
and RNC. Details about these instructions and others of such type
are discussed later.

(v) Machine control operations: instructions of this category basically control the

machine functions such as HLT (indicating the end of program) and NOP
(indicating no operation to be performed by the computer).

We will again be returning to the these five categories of operations and discussing the
instructions belonging to each of these categories in much greater detail, but before we
do that we need to get a fair idea about the way instructions are designed and
formatted. As was mentioned earlier an instruction is a command to the microprocessor
to carry out a task on some data. This means that an instruction should have two parts
in it: one should be the task (or the operation) to be performed and the other should be
the data on which the operation is to be performed. Let us call the first part as opcode
(short for operation code) and the second as operand. The operand (that is the data) can
be specified directly as an 8-bit or a 16-bit data or indirectly through a register or a
register pair or a memory location. Sometimes the operand is implicit in the opcode (that
is included in the opcode itself). Now depending on the word size the instructions of the

8085 microprocessor are classified into three categories: 1-byte, 2-byte, and 3-byte
instructions.

(a) 1-byte instructions: a 1-byte instruction includes both the operation as well as
the data in a single byte called the opcode. Such instructions need one
memory location to store in the user memory. Given below are a few

examples of such instructions:

Instruction Operation Operand Hex-code

MOV B,A Move content of A
into B.

Data specified
through register
A.

47H (opcode for
the instruction)

DCR B Decrement

content of B by 1.

Data specified

through register
B.

05H (opcode for

the instruction)

CMA Complement the
content of A.

Data specified
through register
A (implicit in
CMA).

2FH (opcode for
the instruction)

(b) 2-byte instructions: in a 2-byte instruction the first byte is always the opcode of

the instruction and the second byte a data byte. Such instructions need two
memory locations to store in the user memory. Given below are a few
examples of such instructions:

Instruction Operation Operand Hex-code

MVI B,8-bit Move immediate

8-bit data into B.

8-bit data is

specified as the
second byte of
the instruction.

06H (opcode for

the instruction)

ADI 8-bit Add immediate 8-
bit data with

8-bit data is
specified as the

C6H (opcode for
the instruction)

8085 Instructions

Institute of Lifelong Learning, University of Delhi

content of A.
Store the sum in
A.

second byte of
the instruction.

(c) 3-byte instructions: in a 3-byte instruction the first byte is always the
opcode of the instruction and the second and third bytes are data bytes. The
second byte is the lower order data byte and the third byte is the higher order
data byte of a 16-bit data (generally a 16-bit address of a memory location).
Such instructions need three memory locations to store in the user memory.
Given below is an example of such instructions:

Instruction Operation Operand Hex-code

JMP 16-bit Jump to memory
location having
the 16-bit
memory address.

16-bit data
(memory
address) is
specified as the
second byte
(lower order byte

of the address)
and third byte
(higher order
byte of the
address) of the
instruction.

C3H (opcode for
the instruction)

Now let us see how instructions are formatted in the 8085 microprocessor that is how
opcodes are designed. All registers, register pairs and operations have been given
specific binary codes. Given below are some of these codes:

Register Code

B 000

C 001

D 010

E 011

H 100

L 101

A 111

Register Pair Code

BC 00

DE 01

HL 10

Operation Code Comment

Rotate each bit of accumulator by
one position to the left.

00000111 The operation has an 8-bit
code.

Add the contents of a register to
that of the accumulator.

10000sss The operation ADD has a 5-bit
code 10000. The 3 bits sss are
reserved for the code of a
register.

Move the contents of the source
register Rs to the destination
register Rd.

01dddsss The operation MOVE has a 2-bit
code 01. The 3 bits ddd are
reserved for the code of

8085 Instructions

Institute of Lifelong Learning, University of Delhi

destination register Rd and the
3 bits sss are reserved for the
code of source register Rs.

As an example let us see how the opcodes for various ADD and MOVE instructions are
designed:

Mnemonic ADD B ADD H MOV C,A MOV D,E

Binary
instruction
(Opcode)

10000 000 10000 100 01 001 111 01 010 011

Hex Code
(Opcode in
hexadecimal)

80H 84H 4FH 53H

Now with the knowledge on the instructions of the 8085 microprocessor that we have
gained till now we are in a position to understand and write simple and basic programs
in its assembly language. A program in general is a sequence of instructions that tells
the computer to perform a particular task. In the assembly language program the
instructions are to be chosen from the instruction set of the 8085 microprocessor. Let us
suppose that we want to write a simple program to add two bytes of data (say 45H and
A3H) and store the sum in register H. The logical steps required for performing this task
should be:

(i) Load 45H in the accumulator.
(ii) Load A3H in some other register say register B.
(iii) Add the contents of register B to that of the accumulator.
(iv) Store the answer in register H.
(v) Halt the program.

Let us see how these steps can now be translated into an assembly language program
which can then be loaded into the user memory for execution:

Mnemonics Comments User Memory
Location

Hex Code

MVI A,45H Load 45H in the
accumulator.

2000H
2001H

3EH
45H

MVI B,A3H Load A3H in register B. 2002H

2003H

06H

A3H

ADD B Add the contents of
register B to that of
the accumulator.
Result is stored in the
accumulator.

2004H 80H

MOV H,A Move the result in

register H.

2005H 67H

HLT Halt the program. 2006H 76H

For running the program in a computer we need to first look up for the opcode for each
instruction in the instruction set given in the manual of the 8085 microprocessor. Once
we have written the program with all the hex codes in proper sequence (matching one to

one with the mnemonics) we can then load the program in the user memory sequentially
starting preferably with its first memory location (2000H in the above example). After
the program has been loaded in the user memory execution should begin from the first
memory location. Initially the first hex code (which will be the opcode of the first
instruction) will be fetched by the microprocessor from the user memory, decoded and

8085 Instructions

Institute of Lifelong Learning, University of Delhi

then finally the appropriate action will be executed. This cycle of fetch-decode-execute
will then carry on sequentially, one instruction after the other, till the microprocessor
encounters the halt instruction.

Addressing Modes

The different ways of specifying the data (operand) in instructions are called addressing
modes. There are four addressing modes namely immediate, register, direct and
indirect.

(i) Immediate addressing mode: in this mode the data itself is specified in the
instruction. For example in the instruction MVI R,8-bit the data (8-bit) is

itself specified. Similarly in the instructions ADI 8-bit or LXI Rp,16-bit the
data (8-bit or 16-bit) again is itself specified.

(ii) Register addressing mode: in this mode the data is specified in the instruction by
the register in which it is present. For example in the instruction MOV
Rd,Rs (or ADD R) the data is specified by the register Rs (or R) where it is
stored.

(iii) Direct addressing mode: in this mode the address of a memory location or of an
I/O device in which the data is present (or is to be moved) is directly
specified in the instruction. For example in the instruction LDA 16-bit (or
IN 8-bit) the 16-bit address of a memory location (or 8-bit port address of
an input device) is directly specified in the instruction. Data from this
memory location (or input device) is to be loaded into the accumulator.

(iv) Indirect addressing mode: in this mode the address of a memory location in
which the data is present (or is to be moved) is specified indirectly by

means of a register pair. For example in the instruction MOV R,M which
transfers data from a memory location whose address is present in the
register pair HL into register R the address of the memory location M is
indirectly specified by the register pair HL. Similarly in the instruction
LDAX Rp the data stored in a memory location whose address is present in
the register pair Rp is to be transferred to the accumulator.

Instruction Types

As mentioned before, based on the types of operations that can be performed,
instructions are classified into five different categories. They are: data transfer,
arithmetic, logical, branching and machine control. Let us now study in more detail with
appropriate examples each of these categories (please remember that the first byte of
any instruction is its opcode):

(a) Data transfer: instructions of this type transfer data from a source which can be a
register or a memory location or an I/O device into a destination which again
can be a register or a memory location or an I/O device. In this transfer of
data the contents of the source are not modified. Moreover, data transfer
instructions do not affect any of the flags. Examples of commonly used

instructions of such type are:

Mnemonic Type of instruction Comments

MOV Rd,Rs

(Here Rd and Rs
can be any one of
the registers A, B,
C, D, E, H, or L)

One byte instruction.
Register addressing mode
instruction.

Moves data from
register Rs into register
Rd without modifying the
contents of register Rs.
For example the
instruction MOV A,B will
copy the content of
register B into the
accumulator (i.e.

8085 Instructions

Institute of Lifelong Learning, University of Delhi

register A).

MVI R,8-bit
(Here R can be
any one of the

registers A, B, C,
D, E, H, or L)

Two byte instruction.
Immediate addressing mode
instruction.

Move immediate 8-bit
data into register R. For
example the instruction

MVI C,7FH will load
register C with the data
byte 7FH.

OUT 8-bit Two byte instruction. Direct
addressing mode instruction.

Send the content of
accumulator to an
output device whose 8-
bit port address is
mentioned as the
second byte of the
instruction. For example
the instruction OUT 87H
will load the output
device having port
address 87H with the

data byte of the
accumulator.

IN 8-bit Two byte instruction. Direct
addressing mode instruction.

Accept the data into the
accumulator from an
input device whose 8-bit
port address is

mentioned as the
second byte of the
instruction. For example
the instruction IN 4EH
will load the
accumulator with the
data byte present at the

input device having port
address 4EH.

LXI Rp, 16-bit
(Here Rp can be
any one of the
register pairs BC,
DE, HL, or SP)

Three byte instruction.
Immediate addressing mode
instruction.

Load register pair Rp
immediate with 16-bit
data. Here the second
byte of the instruction
goes to the lower order

register and the third
byte to the higher order
register of the register
pair Rp. For example the
instruction LXI D,207FH
will load the lower order
byte 7FH into the lower
order register E and the
higher order byte 20H
into the higher order
register D.

MOV R,M
(Here R can be
any one of the

registers A, B, C,
D, E, H, or L)

One byte instruction. Indirect
addressing mode instruction.

Moves data from a
memory location M
whose address is

present in register pair
HL into the register R
without modifying the
contents of the memory
location M. For example

8085 Instructions

Institute of Lifelong Learning, University of Delhi

the instruction MOV D,M
will copy the content of
a memory location
whose address is

present in register pair
HL into the register D.

MOV M,R
(Here R can be
any one of the
registers A, B, C,
D, E, H, or L)

One byte instruction. Indirect
addressing mode instruction.

Moves data from the
register R into a
memory location M
whose address is
present in register pair
HL without modifying
the contents of the
register R. For example
the instruction MOV M,D
will copy the content of
the register D into a
memory location whose

address is present in
register pair HL.

LDAX Rp

(Here Rp can be
any one of the
register pairs BC

or DE)

One byte instruction. Indirect
addressing mode instruction.

Load accumulator from
memory location
indirectly through
register pair Rp. For

example the instruction
LDAX B will load the
accumulator with the
data byte present in a
memory location whose
16-bit address is
specified by the register

pair BC.

STAX Rp

(Here Rp can be
any one of the
register pairs BC
or DE)

One byte instruction. Indirect
addressing mode instruction.

Store the content of the
accumulator into a
memory location
indirectly through
register pair Rp. For
example the instruction

STAX D will store the
data byte present in the
accumulator into a
memory location whose
16-bit address is
specified by the register
pair DE.

LDA 16-bit Three byte instruction. Direct
addressing mode instruction.

Load accumulator with
the contents of a
memory location whose
16-bit address is directly
specified in the
instruction. For example
the instruction LDA

207DH will load the
accumulator with the
data byte present in the
memory location
207DH.

8085 Instructions

Institute of Lifelong Learning, University of Delhi

STA 16-bit

Three byte instruction. Direct
addressing mode instruction.

Store the content of the
accumulator in a
memory location whose
16-bit address is directly

specified in the
instruction. For example
the instruction STA
20B4H will store the
accumulator data byte
in the memory location
20B4H.

LXI Rp, 16-bit
Rp can be BC, DE,
HL, or SP.

Three byte instruction. Loads the register pair
Rp with the 16-bit
mentioned in the
instruction (as the
second and third bytes).

PUSH Rp
Rp can be BC, DE,

HL, or PSW

One byte instruction. Pushes the contents
(two bytes) of the

specified register pair
onto the stack.

POP Rp
Rp can be BC, DE,
HL, or PSW

One byte instruction. Pops the top two bytes
from a stack to the
specified register pair.

LHLD 16-bit Three byte instruction. Copy the data of

memory location with
the 16-bit address into
register L and the data
of the next memory
location into register H.
No flags are modified.

SHLD 16-bit Three byte instruction. Copy the data of
register L into the
memory location with
the 16-bit address and
the data of register H
into the next memory
location. No flags are
modified.

PCHL One byte instruction. Load Program Counter
with the 16-bit data of
register pair HL. No
flags are affected.

SPHL One byte instruction. Load the Stack Pointer
with the 16-bit data of
register pair HL. No
flags are affected.

XCHG One byte instruction. Exchange data of
registers H and L with D
and E respectively. No
flags are modified.

XTHL One byte instruction. Exchange data of
registers H and L with

top two memory
locations of Stack. No
flags are modified.

8085 Instructions

Institute of Lifelong Learning, University of Delhi

(b) Arithmetic: the various arithmetic operations that the 8085 microprocessor
performs through instructions are addition, subtraction, increment and
decrement. Some of the commonly used instructions with their mnemonics
are as given below:

Mnemonic Type of instruction Comments

ADD R

(Here R can be
any one of the
registers A, B, C,
D, E, H, or L)

One byte instruction.
Register addressing mode
instruction.

Adds the data in register
R with the data in the
accumulator and stores
the sum in the
accumulator. All flags are
modified reflecting the
data conditions of the
result in the accumulator.
The data in register R
remains unchanged.

ADI 8-bit Two byte instruction.
Immediate addressing mode

instruction.

Adds the second byte of
the instruction (first being

the opcode) with the data
in the accumulator and
stores the sum in the
accumulator. All flags are
modified reflecting the
data conditions of the

result in the accumulator.

SUB R

(Here R can be
any one of the
registers A, B, C,
D, E, H, or L)

One byte instruction.
Register addressing mode
instruction.

Subtracts the data in
register R from the data
in the accumulator and
stores the difference in
the accumulator. All flags
are modified reflecting

the data conditions of the
result in the accumulator.
The data in register R
remains unchanged.

SUI 8-bit Two byte instruction.
Immediate addressing mode
instruction.

Subtracts the second byte
of the instruction (first
being the opcode) with

the data in the
accumulator and stores
the difference in the
accumulator. All flags are
modified reflecting the
data conditions of the
result in the accumulator.

ADD M
SUB M

One byte instructions.
Indirect addressing mode
instructions.

Add/subtract the data in
a memory location whose
address is present in the
register pair HL with the
data in the accumulator
and store the result in the
accumulator. All flags are

affected.

INR R
DCR R

One byte instructions.
Register addressing mode
instructions.

Increment/decrement the
data in the register R by
1. These instructions
affect all flags except the

8085 Instructions

Institute of Lifelong Learning, University of Delhi

Carry flag.

INX Rp
DCX Rp

One byte instructions.
Register addressing mode
instructions.

Increment/decrement the
data in the register pair
Rp by 1. These

instructions do not affect
the flags.

INR M
DCR M

One byte instructions.
Indirect addressing mode
instructions.

Increment/decrement the
data in a memory
location whose address is
present in register pair HL
by 1. These instructions
affect all flags except the
Carry flag.

ADC R/M One byte instruction. Add the data in register R
or memory location M
along with the bit in carry
flag with the data in the
accumulator and store

the result in the
accumulator. All flags are
affected.

SBB R/M One byte instruction. Subtract the data in
register R or memory
location M along with the

bit in carry flag (borrow)
from the data in the
accumulator and store
the result in the
accumulator. All flags are
affected.

ACI 8-bit Two byte instruction. Add 8-bit data along with
CY flag bit to the data in
accumulator and store
the result in accumulator.
All flags are affected.

DAD Rp

Rp can be BC, DE,
HL, or SP.

One byte instruction. Add the specified register
pair Rp data with that of
HL and store the result in

HL. Only CY flag is
affected.

(c) Logical: the various logical operations that the 8085 microprocessor
performs through instructions are are as given below:

Mnemonic Type of instruction Comments

ANA R/M

One byte instruction.

Logically AND the data
in register R or memory
location M with the data
in the accumulator and
store the result in the
accumulator. All flags

except CY and AC are
modified reflecting the
data conditions of the
result in the

8085 Instructions

Institute of Lifelong Learning, University of Delhi

accumulator. CY flag is
reset and AC flag is set.

ANI 8-bit Two byte instruction. Logically AND the
second byte of the

instruction with the data
in the accumulator and
store the result in the
accumulator. All flags
except CY and AC are
modified reflecting the
data conditions of the
result in the
accumulator. CY flag is
reset and AC flag is set.

ORA R/M One byte instruction. Logically OR the data in
register R or memory
location M with the data
in the accumulator and

store the result in the
accumulator. All flags
except CY and AC are
modified reflecting the
data conditions of the
result in the

accumulator. Both CY
flag and AC flag are
reset.

ORI 8-bit Two byte instruction. Logically OR the second
byte of the instruction
with the data in the
accumulator and store

the result in the
accumulator. All flags
except CY and AC are
modified reflecting the
data conditions of the
result in the
accumulator. Both CY

flag and AC flag are
reset.

XRA R/M One byte instruction. Logically XOR the data
in register R or memory
location M with the data
in the accumulator and
store the result in the
accumulator. All flags
except CY and AC are
modified reflecting the
data conditions of the
result in the
accumulator. Both CY
flag and AC flag are

reset.

XRI 8-bit Two byte instruction. Logically XOR the
second byte of the
instruction with the data
in the accumulator and

8085 Instructions

Institute of Lifelong Learning, University of Delhi

store the result in the
accumulator. All flags
except CY and AC are
modified reflecting the

data conditions of the
result in the
accumulator. Both CY
flag and AC flag are
reset.

CMA One byte instruction. Complement (logical
NOT) the contents of the
accumulator.

RLC One byte instruction. Rotate each bit in the
accumulator by one
position to the left with
the MSB shifting to the
LSB position as well as
to the CY flag.

RAL One byte instruction. Rotate each bit in the
accumulator by one
position to the left with
the MSB shifting to the
CY flag and the CY flag
bit shifting to the LSB

position.

RRC One byte instruction. Rotate each bit in the
accumulator by one
position to the right with
the LSB shifting to the
MSB position as well as
to the CY flag.

RAR One byte instruction. Rotate each bit in the
accumulator by one
position to the right with
the LSB shifting to the
CY flag and the CY flag
bit shifting to the MSB
position.

CMP R/M One byte instruction. Compare the data in
register R or memory
location M with the data
in the accumulator for
equality, greater than or
less than.
The flags are modified
according to the
subtraction result of A–
R/M. However, the
accumulator retains its
earlier value and not the
difference.

CPI 8-bit Two byte instruction. Compare the second

byte of the instruction
with the data in the
accumulator for
equality, greater than or
less than.

8085 Instructions

Institute of Lifelong Learning, University of Delhi

The flags are modified
according to the
subtraction result of A–
8-bit data. However, the

accumulator retains its
earlier value and not the
difference.
If

(i) A=data, then Z
flag is set.

(ii) A>data, then CY

flag is
reset.

(iii) A<data, then CY
flag is set.

CMC One byte instruction. Complement the CY flag
bit. No other flag is
modified.

STC One byte instruction. Set the CY flag. No
other flag is modified.

DAA One byte instruction. Decimal Adjust
Accumulator. It converts
the accumulator data
from binary to BCD

using the AC flag
internally.

(d) Branching: instructions of this type are used in the 8085 microprocessor for

changing the sequence of program execution. They are broadly classified into
three types: Jump instructions; Call and Return instructions; and Restart
instructions. Call and return instructions are associated with subroutines while
restart instructions with interrupts. Let us focus on the Jump instructions as of
now. They are all three byte instructions which make the program control
jump to a specific memory location for further execution either unconditionally
or if a certain condition is satisfied. In case of conditional jumping the
instructions test the status of one of the four flags S, Z, P, and CY. Let us see
them in more detail:

Mnemonic Type of instruction Comments

JMP 16-bit

Three byte instruction.

Jump the program
control unconditionally
to the memory location
specified by the 16-bit
address mentioned in
the instruction (as
second and third bytes
of the instruction).

JC 16-bit Three byte instruction. Jump if Carry flag is set
to the 16-bit address.

JNC 16-bit Three byte instruction. Jump if Carry flag is not
set to the 16-bit
address.

JZ 16-bit Three byte instruction. Jump if Zero flag is set
to the 16-bit address.

JNZ 16-bit Three byte instruction. Jump if Zero flag is not
set to the 16-bit

8085 Instructions

Institute of Lifelong Learning, University of Delhi

address.

JP 16-bit Three byte instruction. Jump on Plus i.e. if sign
flag is reset to the 16-
bit address.

JM 16-bit Three byte instruction. Jump on Minus i.e. if
sign flag is set to the
16-bit address.

JPE 16-bit Three byte instruction. Jump if Parity flag is set
to the 16-bit address.

JPO 16-bit Three byte instruction. Jump if Parity flag is
reset to the 16-bit
address.

CALL 16-bit Three byte instruction. Call a subroutine i.e.
transfer the program
control to starting
memory location of a
subroutine specified by
the 16-bit address
mentioned in the
instruction. There are
conditional Call
instructions as well.

RET One byte instruction. Return to the main
program after

completing the
subroutine. There are
conditional return
instructions as well.

(e) Machine control: instructions falling under this category, as suggested by the

name, control machine operations. A couple of such examples are as given
below:

Mnemonic Type of instruction Comments

HLT

One byte instruction.

Halts any further
execution and makes
the microprocessor
enter into a wait state.

The buses are placed in
high impedance state.

NOP One byte instruction. No operation is to be
executed. Generally
used while trouble
shooting a program.

SIM and RIM

Let us now see more closely two multi-purpose one byte instructions primarily associated
with the interrupts namely SIM and RIM. SIM stands for Set Interrupt Mask and RIM for
Read Interrupt Mask.

SIM is used for implementing the interrupts RST 7.5, 6.5, and 5.5 and for serial data
output. The instruction reads the 8-bit data in the accumulator and enables/disables the
interrupts according to its interpretation of the data. The instruction interprets the 8-bit
data of the accumulator as follows:

8085 Instructions

Institute of Lifelong Learning, University of Delhi

SOD SDE XXX R7.5 MSE M7.5 M6.5 M5.5

D7 D6 D5 D4 D3 D2 D1 D0

Bit D7 of the accumulator is latched into the Serial Output Data (SOD) output line (pin

number 4) and made available to a serial output device if bit D6 = 1 (i.e. the Serial Data
Enable (SDE) bit is high). Bit D5 is XXX i.e. a Don’t Care bit.
M7.5 i.e. the RST 7.5 Interrupt Masking bit D2 is used for masking (disabling) the
interrupt RST 7.5. If D2 = 0 then RST 7.5 is enabled else masked. Similarly the M6.5
and the M5.5 bits are used to mask the interrupts RST 6.5 and RST 5.5 respectively.
MSE (Mask Set Enable) is a master control over all the interrupt masking bits (D2, D1,
and D0) and thus bit D3 should be high for the bits D2, D1, and D0 to be effective.
R7.5 (Reset RST 7.5) i.e. the D4 bit is an additional control to mask the interrupt RST
7.5.

The instruction RIM on the other hand is used to load the accumulator with 8-bits
indicating the current status of the interrupt masks, the interrupt enable, pending
interrupts, and serial input data according to the format given below:

SID I7 I6 I5 IE 7.5 6.5 5.5

D7 D6 D5 D4 D3 D2 D1 D0

SID (Serial Input Data) i.e. bit D7 will come from pin number 5. I7, I6, I5 will be high if
corresponding interrupt is found pending. If Interrupt Enable flip flop is set then IE bit is
high. Bits D2, D1, D0 will be high if corresponding interrupt is found masked.

Summary

So we have seen in this chapter how the various operations that the microprocessor can
perform through instructions can be classified into five different categories. Also towards
the end we did a couple of instructions that are primarily associated with the externally
initiated operations called the interrupts. Now it is time that we did some exercises to

further strengthen our understanding of this subject.

Exercises

1. The accumulator contains C5H and the CY flag is set. What will the accumulator
and CY flag contain following each of the instruction given below?
(i) XRA A

(ii) ADI 91H
(iii) RRC

2. Write instructions to enable interrupt RST6.5 and mask other interrupts.
3. After the execution of instruction RIM, the accumulator contained 49H. Explain

the accumulator contents.
4. How many bytes instructions are the following:

(i) MOV A,B

(ii) MOV A,M
5. How many bytes instructions are the following:

(i) JNC 2060H
(ii) LXI H, 2072H

6. How many bytes instructions are the following:
(i) IN 84H
(ii) ADI 6AH

7. Suppose after executing the instruction ADD the flag register contains 45H. What
does it indicate?

8. How many T states are used in executing the instruction MOV B,A?
9. How many T states are used in executing the instruction MOV B,M?
10. Which of the following instructions is/are direct addressing mode instruction(s)?

8085 Instructions

Institute of Lifelong Learning, University of Delhi

(i) LXI
(ii) LDAX
(iii) STA
(iv) STAX

11. Which of the following instructions is/are indirect addressing mode instruction(s)?
(i) MOV A,B
(ii) MOV M,A
(iii) STA
(iv) LDA

12. Which of the following instructions is/are immediate addressing mode
instruction(s)?

(i) LXI
(ii) MVI
(iii) IN
(iv) ADI

13. Which of the following instructions is/are register addressing mode instruction(s)?
(i) MOV A,H
(ii) MOV A,M
(iii) LXI
(iv) MVI

14. What instruction can be used for 16-bit addition in register pair HL?
15. What instruction can be used to retain the accumulator data but clear the carry

flag at the same time?
16. Which out of the following is used for incrementing the value stored in a register

pair?

(i) INR
(ii) INX

17. Which out of the following is used for decrementing the value stored in an 8-bit
register?
(i) DCR
(ii) DCX

18. Can the data present in memory location 20A0H be transferred to the
accumulator using a single instruction?

19. How is the instruction RAL different from RLC?
20. How many different memory locations can be addressed by the 8085

microprocessor?

Hints:
1. (i) A=00H; CY=0; (ii) A=56H; CY=1; (iii) A=E2H; CY=1
2. MVI A, 0DH

SIM
3.

0 1 0 0 1 0 0 1

D7 D6 D5 D4 D3 D2 D1 D0
4. (i) 1; (ii) 2

5. (i) 3; (ii) 3
6. (i) 2; (ii) 2
7.

0 1 0 0 0 1 0 1

S Z X AC X P X CY

8. 4

9. 7
10. (iii)
11. (ii)
12. (i), (ii), and (iv)
13. (i)

8085 Instructions

Institute of Lifelong Learning, University of Delhi

14. DAD
15. ORA A or ADI 00H
16. (ii)
17. (i)

18. Yes; LDA 20A0H
19. In RAL the bits rotate left through carry flag. MSB moves to the carry flag and the

carry flag bit moves to LSB position. In RLC the MSB moves to the carry flag as
well as to the LSB position. The previous carry flag bit is lost.

20. 65,536 or 64 k

References

1. Microprocessor Architecture, Programming and Applications with the 8085 By
Ramesh S. Gaonkar (Prentice Hall, 2002).

2. Microprocessor Architecture, Programming and Systems featuring the 8085 By
William A. Routt (Thomson Delmar Learning, 2006)

3. Microprocessors and Programmed Logic, 2nd Edition by Kenneth L Short (P.H.I.,

1988).

