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Lattice vibration 
 

To get into the deeper knowledge of Lattice Vibrations first we should understand what do 

the “vibrations in a lattice” means. It is well known that the Heisenberg’s uncertainty 

principle accounts for the vibration of atoms (in a real crystal) around their equilibrium 

position even at absolute zero temperature. At this temperature the energy of each atom is 

known as zero point energy with the amplitude of vibrations known as zero point amplitude. 

The amplitude of vibrations of the atoms around their equilibrium position starts increasing 

when the temperature of the crystal is increased. The atoms gain more thermal energy at 

higher temperatures and thus start oscillating with greater amplitude as shown in Fig.1. 

 

 

 

  
 

Fig.1. (a) The atoms in a crystal at absolute zero temperature with zero point motion of atoms 

with displacement from the equilibrium position as a1 (b) The atoms in a crystal at room 

temperature with increased amplitude of vibrations of atoms with displacement from the 

equilibrium position as a2. 
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Fig.1’. (a) The atoms in a crystal at absolute zero temperature with zero point motion of 

atoms with displacement from the equilibrium position as a1 (b) The atoms in a crystal at 

room temperature with increased amplitude of vibrations of atoms with displacement from 

the equilibrium position as a2. 

 

 

 

In a real crystal atoms are not bounded to their equilibrium positions only, but the motion of 

one atom also affects the motion of neighbouring atom. Thus when one atom of a crystal 

vibrated about the equilibrium position the neighbouring atom also start vibrating and so the 

next neighbouring atom. In this way when an entire group of atoms vibrate in a coordinated 

way it is referred to as a Lattice vibration. The forces which lock the atoms in a crystal to 

their equilibrium position are directly proportional to their displacements from equilibrium 

position in the elastic limit and therefore we assume that atoms are being bound by elastic 

springs between them as shown in Fig.2. This assumption is known as Harmonic 

approximation where we have assumed the particles (atoms) of a crystal being coupled by an 

ideal elastic spring. In this approximation atoms vibrate about the equilibrium position under 

a simple harmonic oscillation (like a simple harmonic oscillator). One important point to 

mention is that, the lattice vibration character is highly dependent on the –  

 

(a) Number of atoms in one unit cell of crystal (Monoatomic, Diatomic, Triatomic etc.),  

 

(b) Symmetry of the crystal, 

 

(c) Type of chemical bond between the atoms, 

 

(d) Crystal defect concentration. 
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Fig.2. The model of a simplest lattice showing the elastic coupling between the neighbouring             

atoms. 

 

Lattice vibrations as explained above accounts for the thermal properties of the crystals and 

contribute to the heat capacity of metals. In our further discussion we want to study the traits 

of elastic vibrational motion of the crystal lattices by considering the case of one dimensional 

monoatomic and di-atomic chain of atoms first. In reality the crystal is a 3D structure but to 

simplify the problem we have reduced the system to lower dimension (1D) and if required 

then we can generalize the results to 2D and 3D. 
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Dynamics of one dimensional infinite monoatomic chain of 

atoms  
 

To investigate the dynamics of the vibrational motion in an infinite 1D-chain of identical 

atoms (each having the same mass m), we assume that the distance between the equilibrium 

position of nearest-neighbouring atoms is a such that the total number of atoms N in the chain 

is very large . The system we have considered is non-homogeneous as atoms are separated 

from one another, and being bound by the ideal elastic springs between them. The 1D-chain 

of atoms is assumed to be lying along x-axis (Fig.3).  

 

 

 

  Fig.3. The model of a linear (1D) monoatomic lattice  

 

 

The x-coordinates of the atoms present in the 1D-chain at (n+2)
th

, (n+1)
th

, n
th

, (n-1)
th

, (n-2)
th

, 

……….sites are at xn+2=(n+2)a, xn+1=(n+1)a, xn=na, xn-1= (n-1)a, xn-2=(n-2)a ………. 

Similarly the symbols un+2, un+1, un, un-1, un-2, …… represents the displacements of the atoms 

present at (n+2)
th

, (n+1)
th

, n
th

, (n-1)
th

, (n-2)
th

, ……….sites in the 1D-chain within the elastic 

limits. These displacements arises due to excitation in vibrational motion of the atoms, 

otherwise the atoms execute only zero-point oscillations around their mean positions (or more 

or less stay at the equilibrium positions). In the elastic limit it is assumed that the restoring 

forces acting between the nearest-neighbour atoms are linear. Under these assumptions we 

can write the force equation for the n
th

 atom as –  

  

   
1 2

1 1   

n

n n n n

F f f

u u u u  

 

   
 

 1 1   2n n nu u u                       …(1) 

 

In the above equation we have assumed that  is the spring constant or force constant 

(or force of interaction per unit displacement), Fn is the net force acting on the n
th
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atom, and (un+1-un), (un-un-1) are the extensions produced in the springs connected with the n
th

 

atom. The force  1 1n nf u u    acts in the right direction, while the force  2 1n nf u u  

acts in the left direction. In writing the above force equation we have strictly neglected the 

effect of atoms other than nearest ones on n
th 

atom. According to Newton’s second law of 

motion Eqn.(1) can be rewritten as –  

 

 
2

1 12
2n

n n n n

d x
m mx u u u

dt
                       …(2) 

 

The solution of above equation of motion can be assumed as travelling waves (i.e. the 

displacements produced in atoms are in the form of travelling waves) as –  

 
 

0

i t Kna

nu u e
 

                 …(3.1) 

 ( 1)

1 0

i t K n a

nu u e
  

                  …(3.2) 

 ( 1)

1 0

i t K n a

nu u e
  

                  …(3.3) 

 

where, K is the wave-vector, u0 is amplitude of oscillation of an atom,  is the frequency of 

oscillations which is same for each atom (i.e. all atoms in lattice vibration oscillate with the 

same frequency). Substituting the Eqns.(3.1), (3.2), (3.3) in Eqn.(2) we arrive at the following 

equation –  

 

 2 2iKa iKam e e       

 
2

/2 /2         iKa iKae e                     …(4) 

 

Substituting the, sin( )
2

ix ixe e
x

i

 
  

 
 and  

2
2 1

sin ( )
4

ix ixx e e    in the above equation we 

can again rewrite it as –  

 

2 24 sin
2

Ka
m 

 
    

 
                  …(5) 

 
4 2

sin sin
2 2

Ka c Ka

m a






   
     

   
  

     max   sin
2

Ka


 
  

 
                    …(6) 

 

where the maximum value or cut-off value of frequency is max 2 /sv a  , with /sv c  , 

/m a   being the mass per unit length and /c a   is the longitudinal stiffness per unit 

length. As frequency is a positive quantity therefore we have neglected the negative solution 

in Eqn.(6) and have considered only magnitude. Above relation in Eqn.(6) is known as 

Dispersion relation. This dispersion curve is shown in Fig.4, which is periodic in nature with 

a period of 2π and symmetric about the origin at K=0.  
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Fig.4. Dispersion relation for a 1D monoatomic chain of atoms, showing periodic curve. 

 

 

Above dispersion curve clearly shows that for one value of ω there are several values of 

wave-vector K. Therefore we have defined the brillouin zones as  –  

 

First Brillouin zone :   
K

a
     

Second Brillouin Zone : 2       and     2
K K

a a
          

 
 

Now in first brillouin zone each value of frequency correspond to a unique value of wave-

vector. The above dispersion curve also indicates the mirror symmetry as ( ) ( )K K   . 

The mirror symmetry implies that +K,-K represents a plane wave propagating in the positive, 

negative direction through the monoatomic lattice. Now we will examine some simple cases 

of this Dispersion relation, of which first is –  

 

If the Frequency of oscillations is very low – This case is often regarded as Long 

wavelength limit also. In this limit K→0 which implies that, sin
2 2

Ka Ka 
 

 
. This reduces 

the Dispersion relation in Eqn.(6) to –  

 

max
2

Ka
                        …(7) 

  
2

2

s

s

K av
v K

a
                       …(8) 

 

Using the dispersion relation in above equation we can calculate the, 

Phase velocity vp as,  p sv v
K


                           …(9) 
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Group velocity vg as,   
g s

d
v v

dK


                          …(10) 

 

Above shows that in this limit, phase velocity and group velocity are equal to vs and the 

dispersion relation is linear. This is the case where discrete chain of atoms behaves as if it is 

continuous and approaches continuum. In fact, long wavelengths in the system do not respond 

to discreteness of the system. Here a very large number of atoms contribute to the 

displacements, which is very much similar to the case of homogeneous line. The system here 

follows the dynamical behaviour, neglecting the effect of atomic nature of chain. 

 

 

 
 

Fig.5. Dispersion relation for a 1D monoatomic chain of atoms (low frequency case). 

 

 

If the Frequency of oscillations is high – In the high frequency limit, the phase velocity and 

group velocity are no longer equal as compared to the previous case. Using the Eqn.(6) we 

obtain, 

 

Phase velocity vp as,  max sin
2

p

Ka
v

K K

  
   

 
            …(11) 

Group velocity vg as,   max cos
2 2

g

d a Ka
v

dK




 
   

 
             …(12) 

 

It is clear from the above equations that both group and phase velocities are a function of 

frequency max. This kind of medium is highly dispersive in nature. In the previous case the 

medium was not dispersive and it follows the characteristics of a homogenous continuous 

medium. (Note: Dispersion refers to a phenomenon in which group/phase velocity of a wave 

travelling through a medium is dependent on its own frequency and such a medium 

is known as Dispersive medium.) 
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If the Frequency of oscillations is maximum – In this limit the atoms in monoatomic chain 

of vibrate with the maximum frequency which is – 

 

max 2 sv

a
                         …(13) 

 

Using above the group and phase velocities are calculated as,  

 

Phase velocity vp as,  2 s

p

v
v

K aK


                            …(14) 

Group velocity vg as,   0g

d
v

dK


                                    …(15) 

 

Zero group velocity refers to no propagation of energy or signal. In this condition only 

standing wave is produced as shown in Fig.(6).  

 

 

Fig.6. Standing wave produced in lattice when each atom vibrates with the same maximum 

frequency. 

 

 

At K=π/a, wavelength is equal to 2a. This situation is parallel to Bragg’s reflection 

(According to Bragg reflection of X-rays by the atomic planes in a crystal nλ=2d sin(θ), 

where n is the order of reflection. Here for the 1
st
 order reflection with normal incidence n=1, 

which implies that λ=2d sin(90)=2d).  
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Dynamics of one dimensional finite monoatomic chain of 

atoms 

  

(a) In the previous case we considered the infinite length of the chain but now we want to 

examine the normal modes of vibration when the length of chain is finite. We assume that the 

length of chain is L and is fixed at both the ends as shown in Fig.(7) with zero displacement at 

the two fixed atoms.  

 

 

 

 
Fig.7. One dimensional finite monoatomic chain of length L having N+1 atoms fixed at both 

the ends. 

 

 

 

We number the atoms in the chain in such a way that 0
th

 atom is fixed at the left end and N
th

 

atom is fixed at right end of the chain. Therefore total number of atoms present in the lattice 

is N+1 with L=Na. We assume that (due to fixed boundary conditions a standing wave is 

produced in the lattice) the symbol un is given as –  

 

   0 sin sinnu u Kna t                                       …(16) 

  

such that, u0 = uN = 0 which ensures the normal mode of vibration of the lattice. For this we 

must have sin(Kna)=0 giving, 

 

       where    1,2,3,4,.....
m

K m N
L


  -1  

 

We have not included m=0, N values as they correspond to un=0 (zero displacement of the 

atom). This clearly indicates that in the N+1 number of atoms we have fixed the two atoms 

and thus there are N-1 normal modes of vibration where each mode corresponds to one atom 

which is free to move. 
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(b) Now we consider the case where the one dimensional monoatomic chain is bent in 

form of a circular ring and 0
th

 atom is joined with N
th

 atom. In this situation when a 

vibrational mode is excited then both joined atoms suffer the same displacement and are free 

to move (shown in Fig.8), which is unlike the previous case where the two end atoms were 

fixed.  

 

 
Fig.8. One dimensional finite monoatomic chain of length L having N+1 atoms aligned along 

a circular ring with first and last atoms being superimposed on each other. 

 

 

The running wave solution for this case can be written as –  

 
 

0

i t Kna

nu u e
 

                  …(17) 

 

The boundary condition for this case is n n Nu u  , as the amplitude is same after every N 

number of atoms. To satisfy this boundary condition (Born and Von Karman cyclic boundary 

conditions) we must have –  

 exp 1iKNa                              …(18) 

 

Above implies that,  

2 4 6
0, , , ,.....

N
K

Na Na Na Na

   
                          …(19) 

 

It means that there is total number of N independent K values which makes the frequency 

spectrum discrete. The dispersion relation curve is no longer a continuous curve for this case. 
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   Assuming a linear monoatomic lattice, through 

which a maximum frequency of 5x1012 Hz can 

propagate through lattice, calculate the velocity of the 
wave in solid. (Given a=10 A0) 

 

Ans :  It is known that frequency  where  is the wavelength at maximum 

frequency condition. We have seen that maximum frequency occurs at first brillouin 

zone boundary at  in a monoatomic linear lattice, where wavelength is 2a. 

Therefore,  

 

   
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Dynamics of one dimensional diatomic linear chain of 

atoms 
 

Next we consider a linear diatomic chain of atoms as shown in Fig.9. We assume that it is a 

one dimensional lattice with two different kinds of atoms having masses M1 and M2 in one 

unit cell of the lattice. We also assume that the separation between any two consecutive M1 

and M2 atoms is a and symbol ur represents the displacement of r
th

 atom from its equilibrium 

position. In this case also we restrict the interactions between the atoms to nearest neighbours 

only within the consecutive atoms M1 and M2. In the Fig.9 all M1 atoms are present at the 

even sites (…2n-4, 2n-2, 2n, 2n+2, 2n+4…..) and all M2 atoms are present at the odd sites 

(…2n-5, 2n-3, 2n-1, 2n+1, 2n+3…..).  

We can write the equations of motion for both the kind of atoms as – 

 

 
12 , 1 2 2 1 2 2 12n M n n n nF M u u u u                    …(20) 

 
22 1, 2 2 1 2 2 2 1 22n M n n n nF M u u u u                      …(21) 

 

In the above equations of motion, η is again the spring constant or force of interaction per unit 

displacement which is equal between any two consecutive atoms M1 and M2. If we assume 

that all the atoms vibrate with same frequency ω, then the solutions of Eqns.(20) and (21) can 

be written as –  

 2

2 1

i t Kna

nu A e
 

                  …(22)

 (2 1)

2 1 2

i t n Ka

nu A e
  

                                   …(23) 

In the above running wave type solutions K represents a particular vibrational mode. An 

important point to note here is that we have taken the same frequency of oscillations for both 

the kinds of atoms, irrespective of their different masses. This makes them oscillate with 

different amplitudes. On substituting Eqns.(22) and (23) in Eqns.(20) and (21) we get –  

 2

1 1 2 12iKa iKaM A A e e A                               …(24) 

 2

2 2 1 22iKa iKaM A A e e A                  …(25) 

 

      2

1 1 22 2 cos 0M A Ka A               …(26) 

     2

1 2 22 cos 2 0Ka A M A               …(27) 

 

 

The above system of equations is known as “constant coefficient linear homogeneous 

system”. 
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Fig.9. The model of a diatomic linear lattice showing the elastic coupling between the 

neighbouring   atoms having two kinds of atoms with masses M1 and M2.  

  

 

Now we put the determinant of the system in equations (26) and (27) equal to zero to get the 

solution of this system as –  

 

 
 

2

1

2

2

2 2 cos
0

2 cos 2

M Ka

Ka M

  

  

 


 
        …(28) 

 

 

On solving the above determinant the dispersion relation for the diatomic linear chain of 

atoms is obtained as follows –  

   

 
2 2

2

1 2 1 2 1 2

4sin1 1 1 1 Ka

M M M M M M
  

   
       

   
     …(29) 

 

 

It is clear from the above dispersion relation that even if we have single value of wavevector, 

it corresponds to two different values of ω as –  

 

  Optical Branch 

 
1/2

2 2

1 2 1 2 1 2

4sin1 1 1 1 Ka

M M M M M M
  

 
           

    
 

  Acoustical Branch 

 

Using the above frequencies we can plot the Dispersion relation for the diatomic linear chain 

of atoms as shown in Fig.10 below. It is clear from the Fig.10 above that the only 

range of frequencies that can be excited in a diatomic linear chain of atoms gets 

 

 

 

 

 

  

 

 

 

 

Atoms in 1D chain of atoms 

a a a a a a 

un-2 un-1 un un+1 un+2 

Atoms in 1D diatomic chain of atoms 

u2n u2n-1 u2n+2 u2n+1 u2n-2 

M2 M1 

 
1/2

2 2

1 2 1 2 1 2

4sin1 1 1 1 Ka

M M M M M M
  

 
           

    
 
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broken up into two branches, where top branch is called optical and lower one is called 

acoustical branch. It means that for each value of K there are two types of vibration in which 

a lattice can go or we can say that there are two different modes for each K. Also in between 

these two branches there exists a band gap of frequencies corresponding to no lattice 

vibrations. It means that this range of frequencies cannot be excited in a diatomic linear chain 

of atoms.  

 

 

 

 
Fig.10. The optical and acoustical branches and forbidden frequency band gap in the 

frequency spectrum for a linear diatomic chain of atoms (for the first brillouin zone only). 

 

 

 

(1) Optical Branch 

 

In this case, the atoms undergo a lattice vibration such that both the kinds of atoms move in 

the opposite directions as shown in Fig.11. To excite these kinds of vibrations a force is 

needed such that, it incorporates the opposite motions on two kinds of atoms such that the 

center of mass (of the unit cell) is at rest with the amplitude of vibration of atoms being 

inversely proportional to their masses. Using the expression of + we get the optical branch 

frequency as –  

 
1/2

limit

0

1 2

1 1
2K

M M
  

  
    

  
                …(30) 

1/2

limit

12

2

K
a

M







 
  

 
                 …(31) 
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where we have assumed M1 to be less than M2. Hence in the Fig.[] above the maximum value 

of +  is given at the point where K=0 and minimum at the K=±π/2a at the first brillouin zone 

boundary. Using the Eqns.(26) and (27) at K=0, we get –  

 

   2

1 1 22 2 0M A A                               …(32) 

   2

1 2 22 2 0A M A                     …(33) 

 

On solving the above we get,  1 2

2 1

A M

A M
   which also shows that atoms move in opposite 

directions.  

 

 

 

(2) Acoustical Branch 

 

In this case, the atoms undergo a lattice vibration such that both the kinds of atoms move in 

the same direction with the same amplitude irrespective of their different masses as shown in 

Fig.12. The motion of the center of mass is also in the same direction. To excite these kinds 

of vibrations a force is needed such that, it incorporates the motions in two kinds of atoms in 

the same direction with equal amplitudes such that the center of mass (of the unit cell) also 

moves in same direction. Using the expression of - we get the optical branch frequency as –  

 

 
limit

0 0K                    …(34) 
1/2

limit

22

2

K
a

M







 
  

 
               …(35) 

 

 

Hence in the Fig.[] above the minimum value of -  is given at the point where K=0 and 

maximum at the K=±π/2a at the first brillouin zone boundary. Using the Eqns.(31) and (35) 

we can calculate the width of the forbidden band gap of frequencies in Fig.[]. This gap 

depends on the ratio of two masses as – 

 

2 1/       Increases       Forbidden frequency bandgap also increases

                    Decreases     Forbidden frequency bandgap also decreases    

                    1                   Forbi

M M  

 

  dden frequency bandgap disappear 

                                                      (The two spilt branches join at )
2

K
a


 

 

 

 

At θ =0, we can replace sin(θ) by θ only, therefore in the limit of K→0, we can also 

substitute, 

1/2
2

2 2

1 2 1 2 1 2

1 1 1 1 4
K a

M M M M M M
  

 
           

    
 

          …(36) 

  
1 2

2
Ka

M M


 


             …(37) 
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Substituting the        
 

2
1/21/2 22cos 1 sin 1 1

2

Ka
Ka Ka Ka   and using Eqns.(37), 

(26) and (27) we get –  

 

 

 
2 2

1 1 2

1 2

2
2 2 1 0

2

Ka
Ka M A A

M M


 

    
       

       

                       …(38)

  

 
22

1 2 2

1 2

2
2 1 2 0

2

Ka
A Ka M A

M M


 

    
       

        

             …(39) 

 

On solving the above we get, 1

2

1
A

A
   which also shows that atoms move in same directions 

with equal amplitudes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Do you know why we call these branches as Optical &       
      Acoustical ????............ 

 
 

Ans :  An ionic crystal consists of two kinds of ions which are oppositely charged. When 
this kind of crystal comes under the influence of light beam, the oppositely charged 
ions are forced in the different directions, and the optical branch kinds of vibrations are 
excited in the system. From this, the term Optical branch has been derived. 

Similarly when sound waves strike any crystal surface then it forces all the atoms to 

vibrate in the same direction and produces acoustical branch vibrations. Thus these 

kinds of vibrations are called Acoustical branch vibrations. 
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Fig.11. Motion of atoms (neighbouring atoms out of phase) in a diatomic linear chain of 

atoms when the optical branch vibrations are excited. 

 

 

 

 

 

 

 
Fig.12. Motion of atoms (neighbouring atoms in phase) in a diatomic linear chain of atoms 

when the acoustical branch vibrations are excited.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Atom with M1 mass 

Atom with M2 mass 

 

 

 

 

 

 

  

 

 

 

 

 

Atom with M1 mass 

Atom with M2 mass 
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 If M2→  , then acoustical branch frequency becomes single valued at zero and optical 

branch frequency at 
12 / M .  

 

 

 If M1→0, the diatomic case reduces to monoatomic case with lattice constant being 

2a. Here optical branch does not appear without affecting the acoustical branch. 

 

 

 If M1=M2 then lattice vibration frequency range lies between 0 and 14 / M . The 

only difference then between monoatomic and diatomic case is that, for monoatomic 

case whole range of this frequency accounts for acoustical branch and for diatomic 

case this range of frequency splits into two branches acoustical one corresponding to 

frequency from 0 to 12 / M and 12 / M to 14 / M corresponding to optical 

branch. 

 

 

 For a crystal with N number of atoms per unit cell, the frequency range will split up 

into N number of bands. 

 

 

 For a fixed length L the periodic boundary condition is, 2 2( ) ( )n nu x u x L  which 

ensures, 
2 3

, , ,....
2

N
K

L L L L

   
     . Here N is the total number of allowed K 

values representing N normal modes for vibration. 
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   For a KCl crystal the unit cell parameter is 6.3A0.  
 

Also estimate the forbidden 
frequency band gap. 

Ans : The parameters we know for this problem are :  

 

Using the above  parameters we can calculate :  

(a) Maximum value of optical branch frequency as -  

 

Here , therefore on substituting these values we get –  

 

 
(b) Forbidden frequency band gap is estimated as –  

 

Note : If  instead of K atom we take Na atom this band gap will increase. 

[100] 

Plane 

And the young’s modulus of 

elasticity along [100] direction is 

29.67GPa. Calculate the 

maximum value of the optical 

branch frequency and the 

corresponding wavelength. 
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   If v0=105 cm/sec, compare the frequencies of 

sound waves of =10-7 cm for (a) Homogeneous line  
(b) Acoustic waves (c) Optical waves on a linear lattice 
containing two identical atoms per primitive cell of 
interatomic spacing 2.5A0 (d) Light waves of same 
wavelength 

 

Ans :   

(a)Frequency in case of homogeneous line is given by given by - 

 

 

 
(b)For acoustic waves in a diatomic lattice the frequency varies from  to for 

 to  for where  is the force constant. In case of 

diatomic lattice,     

     

 
 

(c) For optical waves in diatomic lattice the frequency varies from   for 

 to  for  . Since the lattice has two identical atoms per 

primitive cell hence there will be no forbidden gap in frequencies. Therefore, 

 and  

 
 

 
(d) For light waves of wavelength 10-7cm, the velocity we have c=3x1010cm/sec. 

We have, . 
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   A cubic cell consists of two atoms of masses m1 and 
m2 (m1> m2) with m1 and m2 atoms situated on alternate 
planes. Assuming only nearest neighbour interaction 
the center of mass of the two atoms : 

(a) Moves with the atoms in the optical mode and 
remains fixed in the acoustic mode 

(b) Remains fixed in the optical mode and moves 
with the atoms in the acoustic mode 

(c) Remains fixed in both optical and acoustic mode 
(d) Moves with the atoms in both optical and 

acoustic modes 
 

Ans :  Option ‘d’ 
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   Consider the energy E in the first brillouin zone as a 
function of the magnitude of wavevector k for a crystal 
of lattice constant a. Then  

(a) Slope of E vs. k is proportional to the group 
velocity 

(b) Slope of E vs. k has its maximum value at 
|k|=π/a 

(c) Plot of E vs. k will be parabolic in the interval  
(-π/a) < k < (π/a) 

 (d)  Slope of E vs. k is non-zero for all k in the 
interval (-π/a) < k < (π/a) 

 
 

Ans :  Option ‘c’ 
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Concept of Phonons 
 

The concept of photons is well known. A photon is basically a quantum of light (or all forms 

of EM radiations). The energy of a single photon is given by  where   is the photon 

frequency. If we have an EM radiation with a particular mode (having photons of single 

frequency) then its energy can be expressed as n  where n is the number of photons. 

Similar is the concept of phonons. Basically a phonon is a quantum of vibrational motion. 

Whenever a lattice (all atoms in a lattice) vibrates with single frequency, then the energy of 

this particular mode is given by –  

 

LatticeVibrationE n                    …(40) 

 

Here n is the number of Phonons and  is a single frequency at which all the atoms in lattice 

vibrate. This is known as the quantization of lattice vibrations. A particular mode of lattice 

vibrations represents an average number of phonons given by –  
1

1BK T

AVERAGEn e




 
  

 
                …(41) 

 

A phonon is sometimes referred to as a quasiparticle also. Phonons also follow the Bose-

Einstein distribution function. There could be different types of phonons as shown in Fig.13 

below. 

 

Fig.13 : Three types of phonons optical, acoustical and thermal. 
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The change of energy in the lattice vibrations is also quantized, for example whenever the 

energy of a lattice vibration is increased or decreased it has to be –  

 

LatticeVibrationE     ,  1n               …(42) 

 

Because we assume that up to the first order approximation only, the energy of lattice 

vibration changes by the gain or loss of one phonon only. Similar to the photons, phonons 

also have momentum related to them known as the Phonon Momentum. For the phonons also 

we can use the De-Broglie relation as – 

 

p K                   …(43) 

 

where, K is the wavevector for a particular phonon.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Evidence for phonons???? 

 
 

Ans :    Inelastic scattering of neutrons and X-rays by crystals 

      & 

          Zero lattice heat capacity at absolute zero temperature 
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CONCLUSION 

 

The theory of lattice vibrations discussed above mainly aims at indicating that, the atoms in a 

crystal cannot vibrate with all frequencies. There are some definite frequencies with which a 

lattice vibration can exists and these frequencies exist in form of allowed band of energies. 

There are some frequencies also which cannot propagate in a crystal and these frequencies 

occur in the forbidden frequency band gap. Also the lattice vibrations are quantized, which 

are explained in terms of phonons. As a summary we can go through the following points –  

 

 For a one dimensional monoatomic chain of atoms, the dispersion relation is linear in the 

long wavelength limit whereas in the higher frequency region the medium behaves as 

dispersive one.  

 

 A linear monoatomic lattice is equivalent to a low pass filter as it allows only the 

frequencies less than equal to 4 / m  , to pass through it. 

 

 Any lattice wave propagating through a linear monoatomic lattice can be reduced to a 

corresponding wave which represents a wavevector lying in the first brillouin zone from 

/ a  to / a .  

 

 In the finite length of linear monoatomic lattice the number of normal modes of vibration 

is N-1 when the atoms at the end are fixed and N modes when the chain is bent in form of 

circular ring.  

 

 For a diatomic linear chain of atoms the frequency range if split up into two frequency 

branches known as optical and acoustical branches where the frequency of acoustical 

branch is less than the optical branch.  

 

 The region between the optical and acoustical branches in the spectrum is known as the 

forbidden frequency gap whose width increases with the increase in the mass of atom 

(having higher mass).  

 

 The first brillouin zone for diatomic case lies in the region from / 2a  to / 2a .  
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 There is N number of normal modes for a diatomic case.  

 

 The lattice vibrations are quantized where a quantum of lattice vibration energy is known 

as phonon. 

 

 A phonon acts like as if, it is having a momentum K  but in reality there is no such thing 

like a phonon momentum on a lattice in physical sense. 

 








