‘gggis,t_ﬁence of a noru.al mo

L
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Normal Modes

We shall now obtain the normal modes of transverse vibrationg
uniform string fixed at a both ends aud stretched with a tension.
Consider a uniform string of length L and linear density u strefcheq
along the s-axis with a tension T uand fixed at its ends x = 0 and x ;‘L
Equation (6.6} descrives the motion of any part of the string lying bﬂtWe;e;;
x=0and r = L. [n order to find the normal 1aodes, we assume tpe
gular freq phase constant g
This means that every pariicle of the surmg cxecutes SHM of angylar

of g

frequency w and phase copstant . Thus, for a normal mode we have
yix, t) = A(x) cos (wt+¢) (6.8)

These are infinite number of equations one for each particle characterized
by its x value in the range O and L. The variable y(x,#)is the displace-
ment at time ¢ of a particle located at x and A(x) is the amplitude of its
motion. The amplitudes of all particles of the string will determine the
shape or configuration of the mode. Differentiating twice with respect to

% and t we have ™

S —
———————azyas;’ 1) = _J_d’;xzx) cos (wt+¢)

and P8 = 2 A) cos (wr+)

o
since A(x) is by definition a function x only, we can write the

. dPA(x) . L& s - |
total derivative dx(z instead of a partial derivative, Substituting these

derivatives in Eq- (6.6) gives i
— o? A() cos (wt+9) = 7 %%’im (at +¢)

Notice that,

ot dx?
Z o, The parameter  will be identified to be the way
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he gbnuml solution for the displacement y (x, 1) of the string, in a
Tn mode, i obtaired by using Eq. (6.10) in Eq. (6.8).
\'L

1(x, 1) = (A sin kx+-B cos kx) cos (wi-+4) {6.11)

B Conditions. Equation (6.11) is a bit too general because the
| Bl = y"“ondmons have not been used so far. Our string is fixed at
: mu\?i‘ndl Suppose the string has total length L and the ends of the
btmm" aro at x = 0 and x = L. Siuce these ends are rigidly fixed, there
Cl‘“ bo no displacement at these ends. In other words, the boundary

conditions ure 2

(0, t) = w(L, t) = 0 for all values of ¢

Using the frst boundary condition, namely (0,2} =0 for <ll 7 in
Eq. (6.11) we have

B=290
Thus for a string fixed at x *——2.0, E(i. (6.11) reduces to
3, t) = A sin &x cos (wt+¢) (6.12)

Normal Mode m?“@?‘m The frequencies of the normal modes of trans-
ﬁ?{:’v'bmuons of the string can be obtained by using the second boundary
condition, namely y(L, t) = 0 for all ¢, in Eq. (6.12) This requires

Asin kL =0

This equation is satisfied by choosing 4 = 0. But this corresponds to a
trivial situation of a string permanently at rest. Hence the only way we
can satisfy the boundary condition at x = L is to have

sin kL‘. =0
or kL = nm
where n is an integer having values 1, 2, 3, ..., ®, Thus
i = = (6.13)
- We have excluded the case n = 0,i.e. k=0, becs Isg e also
' COrreSp()Ilda to an uninteresting ation of a

at rest as is obvious from Eq. (6 12). Notice that
the string is fixed at x — L permits only some valu

those given by Eq. (6.13). But k = wfs, where o

the angular frequency of the normal mode.
values of & [dictated by Eq. (6.13)] are pm :
values of w are allowed. These values are gi

or
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with» = 1, 2, 3, .... @. Here we have used subscript to ing;
value of o for & particular integral value of n. Equatjon (6.14) {Cae the
angular frequencies of the normal modes_for transver ra Elves the

of 5

string-fixed at both ends. The corresponding frequencies (ip hery)
modes are given by Of the

—_—

n /4

Ya = 2L | m (6‘15)

The mode with » = 1 is called the fundamental mode; its frequency 2

[kl

DR

The modes with 2 = 2,3, 4, ... are _harmonics of the fundamenta] frequep.

cies vi which follows from the fact that

ve = 2vp, vs = 3y, va = 4y, ete,

nfinite number_of | le | :
which are harmonics.of the tundamental IIEqUENCy. v, . The fact that the
Taode frequencies vs, vy, efc, are harmonics of the fundamental _mode
Trequency v, 1s a result of our assumption that the string is perfectly
Saiform and flexible. Real sirings do not strictly obey this simple

(O i - . 5
The reason is that the strings in real physical

~‘sequence of frequencies :
systems (such as the strings of a violin or a piano) are not perfectly

uniform and flexibie.

Normal Mode Shapes. Eguation (6.12) gives the displacement of the
-par' ticles of the string in a normal mode. For the nth mode this equation
reads

san 1

Thus the string ba

¥a (x, 1) = An sin kn x cOS (wnt+$n) (6.16)

where k» = ELE and ws = kav = k.«, —Zi The constants A and ¢ are

to be determined frcm the initial conditions. We shall subsequently
consider a set of initial conditions. Let us now obtain the shape of the

first few modes. .
In the fundamental mode (7 = 1), also called the first harmonic, the
particle displacements are given by

Y1 (%, 1) = A sin kix cos (wit-+é1)

¥ (x t) = 4 sin (—Zﬁ) cos (wyf+d1)
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~ent VAluEs of t.  This is the shape of the fundamental mode. When

- d\ﬂ«‘t ag is vibrating in one segment, as shown in s {1
s Stf1 b

L (he SH

18. 6.2 (a ‘ts'“'equency
i \'ibl".liiﬂll is Vi given b)'
0 r
v 1 gF
| =i K {
2L i
% T-’“ E X D
x:0 Y
——
—— —— e :l_jI
= VI 2l
X:=0 X
(a)
\ p ‘ ; v - 2
S 6‘ = V1
\ \\.~L—f’£:\~_-" s
Xz 0 = 4y
b)

Fig. 6.2 Modesof a uniform string fixed at both ends
[n the feond harmonic (1 = 2) (also_called the_ first ), the
displacements of the various particles of the string as & of time
a1e given by

2 (x, )= 4, sin( —2{—):—) cos (wat +¢2)

Notice that

Y21s zero at x = 0, L]2 and 1 L. Figure 6.2 () gives the shape
of thig mode; the string now vibrates in two segments at a frequency v2
Which g twice the frequency v, of the fundamental mode. iFig’_urg‘s 62(c)
nd (d) show the next two harmonics. These figures reveal that there are
cenm-‘lllﬁ)ims on the string which a 1

Vth"f‘” POInts depends upon fi¥number of the mode
‘Pﬂw des. The points where The ™ :
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, /w‘"
(at a given time) are called antinodes. 1In the next chapter we shall show
that the standing waves on a, string are nothing but its normal modes.

A S i N e T SRS 2

It may be remarked that Eq. (6.15) for allowed frequencies expresses 2
very important property of a uniform flexible string stretched betweed
rigid supports. It states that the frequencies of all the overtones of su¢t
a string are integral multiples of the fundamental frequency. Overtonés
bearing this simple relation to the fundamental are called harmonics; the
fundamental being the first harmonic and the first overtone (tWice
fundamental frequency) being the second harmonic and so on.

As stated earlier, actual vibrating systems do not have exactly harmon©
overtones due to non-uniformities in the string and the supports at its ends
being not perfectly rigid. Very few vibrating systems have nearly B3
monic overtones. These system form the basis of most of the mﬂ"“‘
instruments. The reason is that, when the o 3 ' harmom"' ot
tonal quality of the sound is considerably Mdegmdlald o

o

improved,




