1.5
Operators

* The average value of the position of

400

(%)= f xp(x,1)dx = j AW (x, 1) dx j W (x, 1) (x, 1) dx

In quantum mechamcs the average value of a
physical quantity is also called an expectation value

- Its physical meaning: the average of repeated
measurements on an ensemble of identically
prepared systems

* How does the expectation value of x change with
time? d<x>
dt
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Operators

ih ¢ *8
* Thus:

‘I’ _— \de
im 8x
« We can write:

d<x> h O
— ——VY
<p> m 3 I\P e dx

* Synopsizing:

<x> = T lI’*(x,t®~l’(x,t)dx < p> = T‘P*(x,t)\l’(x,t)dx
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Operators
 Defining operators of position and linear
momentum:
& h oY (x,t
xWV(x,t)=x¥Y(x,t) p¥Y(x,t)= 6(x )
I X

« We can generalize the definition of an average on an
operator: o0
(0)- v ova
« Synopsizing: -
’;

= j‘d‘}’*(x,t)x\P(x,t)dx I‘P (x, t)—Tq’(x t)dx
4 I OX



1.t
Operators

 Defining operators of position and linear

momentum:
x¥(x,t) = xWV(x,1) pY¥(x,1)= h awéX, 1)
l X

« We can generalize the definition of an average on an
operator: o0 )
(0)= [ ovas

* For example:
R A2 A A 2 2
Ap P Ppwzlhé(ha‘l’): Bt 8"F

% _E 2m i ox\ i Ox _2m Ox”
h* 0°Y

V)P =V()¥ E¥=T+V)¥ =- —+V¥
2m Ox
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Operators

* The total energy operator is called the Hamiltonian:

- Rk
=— —+ V¥
2m Ox

* Let’s recall the Schrodinger equation:

s O h* 0*Y
ih— =— —+ V¥
Ot 2m Ox”

. Thereby: plliam Rowan
; (’3\}’ A Hamilton
lhE:qu \/\ (1805—I1865)

* Does this remind us of anything? /\

. A A h* 0°Y
EY =T+V)¥ =— + V¥

2
2m oOx




6.4 EXPECTATION VALUES OF DYNAMICAL VARIABLES

We have seen thal in quanium mechanics a particle s represented by a wave
function which can be obtained by solving the Schrddmger equation and
contains all the available information about the particle. We shall now see how
mformation concerning the dynamical vanables of the particle can be exiracted
from the wave function V. Since ¥ has a probabilistic nterpretation, it turns out
that exact information about the variables cannol be obtlamed. Instead. we aoblain
only the expeciation value of a quantity, which is the average value of the
measurements of the quantity performed on a very large number of independent
ilentical sysiems represented by the wave function . Or, equivalently, it is the
average of a large number of measurements on the same sysiem

First, let us consider the measurement of the position of the particle. Since
Ple,fy=%"(r,) ¥ir, 1) is interpreted as the position probability density at the
point ¢ al the time 1, the expectation value of the position veclor r is given by

{r} - J- r P(r, i)dr

- '_[w‘{r,r} W (r, f)dr (6.34)

where W (r, 1) is normalized. This equation is equivalent 1o the three equations
{x) = _[ L (6.35a)

(y) = J W dr (6.35b)

(2} = j Wz W dr (6.35¢)

The expectation value is a function only of the time because the space
coordinates have been integrated out. Further, the expectation value of a
physical quantity is always real. Note the order of the factors in the integrand—
the vector ¢ (or each of x, v, 2) has been sandwitched between ¥ on the lefi
and ¥ on the right. This is immaterial al this stage but is chosen for reason
which will be clear shortly.

The expeciation value of any quantity which is a function of r and 1 would
be

[ flr,0)} - J‘F *(r, ) £(r, £) ¥ (£, §) dr (6.36)




As an example, the expectation value of the potential enerzy 15
(Fir,0) = J ¥+ (r, ) Fir, & ¥ir, Hdr (6.37)
Lat us now see how to obtam the expectation values for quantities whach

are functions of momentum or of both posihon and momenturs, The meost
umportant example of the latter category 15 the energy. We assume that for thas

parpose If 15 possible fo use the operator representations:

p=—-ih' ¥
rF=—h Vv
d
E = ih—
e

The question that anses 15 How these differenhal operstors are to be
combined with the position probability density ¥* ¥ fo obtain the desired
expressions! [his queston 15 answered by uwsang the classical expression for the
energy

2

E=£ .y

and requinng, m accordance with the comespondence prnciple, that the
expectation values sahsfy

1
(E) = (P—m> +(7)
Rq:la::ingfandp!byﬂlemzmpnndingnpﬂatum: we get

i f
h—) = +({F 6.35
A 6
Thiz equation mmst be consstent with the Schrédinger equation
gl
w I BV gy
dt Xm

Multiplying by '¥* on the left and integrating, we zet
Jq’*f:h aJwr-jtF*[ AV ]wﬂ |werwdr (639)

The last term on the nght-hand side 15 simply {77} Therefore, (6.38) and (6.39)
would be consistent provided the expectation valus is defined in the general
case with the opevator acting on V', and mulsiplisd by %" on the lgft. We then
have
= 1 * 5 ﬁ
{E} J W ik g dr (6.40%

= J W (—ih) § W dr (6.41)



The last equation 15 equivalent to

(p.)=—ih |W* ‘;i dr (6.423)
= K

{p,)=—in [ aa_lp dr (6.47h)
L l}'

(p.) =—itt [W* 1—w dr (6.42<)
oz

Generahong the above results, we are led to the following posmlare:

suppose, the dynarmeal state of a particle 15 desenbed by the normalbized wave
funchon Wir, ). Let A(r, p. ) be a dynamcal vanable representing a physical
quantity associated with the particle. We obtain the operator A (r, —iAdW, 1) by
performing the substitution p — —ih V. and then calculate the expectation value
of 4 from the expression

Iu}=jw*{r,:] Alr,— ihV, 1) Wi, f) dr (6.43)

Smece the expectation value of a physical quantity 15 always real, 16,
(A)* = {4}, 1t follows that the operator A mmst satisfy

j Y _jup a‘r=j{_;1w:|* W (6.44)
Thus, the operator associated wath a dynamical quantity must be Hermitian.




