Topology of a Metric Space

Open and Closed Sets
Definitionl.

Let (X, d) be a metric space. The set

S(xg,r) = {x € X :d(xy, x) < r}, where r > 0 and x; € X,

is called the open ball of radius r and centre x;. The set

S(xp, 1) = {x € X :d(x,x) =r}, where r > 0 and x; € X,

is called the closed ball of radius r and centre x;.

Examplel.

The open ball S(x,r) on the real line is the bounded open

interval (xy — r, x + r) with midpoint x; and total length 2. Conversely, it is clear
that any bounded open interval on the real line is an open ball. So the open balls
on the real line are precisely the bounded open intervals. The closed balls S(x, 1) on

the real line are precisely the bounded closed intervals but containing more than
one point.

Definition2.

Let (X, d) be a metric space. A neighbourhood of the point x; € X
is any open ball in (X, d) with centre x;.

Definition3.

A subset G of a metric space (X, d) is said to be open if given any

point x € G, there exists r > 0 such that S(x,r) C G, i.e., each point of G is the

centre of some open ball contained in G. Equivalently, every point of the set has a
neighbourhood contained in the set.



Theoreml.

In any metric space (X, d), each open ball is an open set.

Proof. First observe that S(x,r) is nonempty, since x € S(x,r). Let y € S(x, r), so
that d(y, x) < r, and let r' = r — d(y,x) > 0. We shall show that S(y, r’) C S(x, r),
as illustrated in Fig. 2.5. Consider any z € S(y, ’). Then we have

dz,x)=d(z,y) + d(y,x) <r' +d(y,x)=r,

which means z € S(x,r). Thus, for each y € S(x,r), there is an open ball
S(y, ") C S(x, r). Therefore S(x, r) is an open subset of X. 0

T
Theorem?2.

Let (X, d) be a metric space. Then

(i) 7 and X are open sets in (X,d);
(ii) the union of any finite, countable or uncountable family of open sets is open;
(ili) the intersection of any finite family of open sets is open.



Proof. (1) As the empty set contains no points, the requirement that each point in (f is
the centre of an open ball contained in it is automatically satisfied. The whole space X
is open, since every open ball centred at any of its points is contained in X.

(ii) Let {Gy: a0 € A} be an arbitrary family of open sets and H = U, G- If H is
empty, then it is open by part (i). So assume H to be nonempty and consider any
x € H. Then x € G, for some a € A. Since G, is open, there exists an r > 0 such
that S(x,7) C G, C H. Thus, for each x € H there exists an r > 0 such that
S(x,r) C H. Consequently, H is open.

(iii) Let {G;: 1 = 1= n} be a finite family of open sets in X and let G = N"_, G;.
If G is empty, then it 1s open by part (). Suppose G is nonempty and let x E G.
Then x € G,j=1,...,n. Since G; 1is open, there exists r; >0 such that
S(x,1) C Gj,j= 1 cn Let r :min{rl,rg,...,r,,}. Then r >0 and S(x,r) C
Steyr)yj=1,...,n [herefore the ball S(x,r) centred at x satisfies

MRS
=1
This completes the proof. O

Note.

The intersection of an infinite number of open sets need not be open.

To see why, let §, = S(0, %) CC o n=1, 2,.... Each §, is an open ball in the
complex plane and hence an open set in C. However,

which is not open, since there exists no open ball in the complex plane with centre 0
that is contained in {0}.

[



Theorem?2.

A subset G in a metric space (X, d) is open if and only if it is the

union of all open balls contained in G

Proof. Suppose that Gis open. If G is empty, then there are no open balls contained
in it. Thus, the union of all open balls contained in Gis a union of an empty class,
which is empty and therefore equal to G. If G is nonempty, then since G is open,
each of its points is the centre of an open ball contained entirely in G. So, G is the

union of all open balls contained in it.

I'he converse follows immediately from Theorem 1 and

Theorem?2.
1T



Example 1.

The open ball S(x,r) in R with metric d (see Example 1.2.2(iii)) is the

inside of the circle with centre x and radius r as in Fig. 2.1. Open balls of radius 1

and centre (0,0), when the metric is d; or d.-

are 1llustrated in Figs. 2.2 and 2.3.

Figure 2.3

Example 2.
Consider the metric space Cgla, b] of Example 1.2.2(ix). The open ball

S(x,r), where x;, € Cgla,b] and r > 0, consists of all continuous functions
x € Cgla, b] whose graphs lie within a band of vertical width 2r and is centred
around the graph of x. (See Fig. 2.4.)
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Definition4.

A subset G of a metric space (X, d) is said to be open if given any

point x € (5, there exists r = 0 such that S(x,r) € G, Le., each point ot (s is the

centre of some open ball contained in G. Equivalently, every point of the set has a
neighbourhood contained in the set.

Theorem3.

In any metric space (X, d), each open ball is an open set.

Proof. First observe that 5(x,r) is nonempty, since x € S(x, r). Let y € S(x, ), so

that d(y,x) < r, and let ¥ = r — d(y, x) > 0. We shall show that S(y, ') C S(x,r),
as illustrated in Fig. 2.5. Consider any z € S(y, ). Then we have

diz,x)=d(z,y) + d(y,x) < ¥ +d(y,x) =,

which means z € 5(x,r). Thus, for each y € S(x,r), there is an open ball
S(y,r") C S(x,r). Therefore S(x, r) is an open subset of X. n
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Example 3.
In a discrete metric space X, any subset G is open, because any x € G is the

centre of the open ball S(x, 1/2) which is nothing but {x}.
Example 4.

In £, let G={x={x}= 3" |Jc,|2 < 1}. Then G is an open subset of £;.
Indeed, G = S(0, 1) is the open ball with centre 0 = (0,0,...) and radius 1.
Theoremd. |let (X, d) be a metric space. Then

(i) & and X are open sets in (X,d);
(ii) the union of any finite, countable or uncountable family of open sets is open;
(iii) the intersection of any finite family of open sets is open.

Proof. (i) Asthe empty set contains no points, the requirement that each pointin 7 is
the centre of an open ball contained in it is automatically satisfied. The whole space X
is open, since every open ball centred at any of its points is contained in X.

(ii) Let { G4t oo € A} be an arbitrary family of open sets and H = U,cp Go. If H s
empty, then it is open by part (i). So assume H to be nonempty and consider any
x € H. Then x € G, for some & € A. Since G, is open, there exists an r > 0 such
that S(x,r) C G, C H. Thus, for each x € H there exists an r > 0 such that
S(x,r) € H. Consequently, H is open.

(iii) Let {G;: 1 = i= n} be a finite family of open sets in X and let G =N!_,G..
It G is empty, then it is open by part (i). Suppose G is nonempty and let x € G.
Then x € Gj,j=1,...,n Since G; is open, there exists r; >0 such that
S(x,7) C G,j=1,...,n Let r=min{r,r,...,n}. Then r >0 and S(x,r) C
S(x,1)j = 1,..., n. Therefore the ball S(x,r) centred at x satisfies

S(x, 1) €[] S(x 1) € G.
=1

This completes the proof. O



Note.

The intersection of an infinite number of open sets need not be open.

To see why, let 5, = 5(0 LyCcC n=1, 2,.... Each &, is an open ball in the

'n
complex plane and hence an open set in C. However,

m S = “:D}:-

n=1

which is not open, since there exists no open ball in the complex plane with centre 0
that is contained in {0}.

Theoremb5. A subset G in a metric space (X, d) is open if and only if it is the

union of all open balls contained in G.

Proof. Suppose that G is open. If G is empty, then there are no open balls contained
in it. Thus, the union of all open balls contained in G is a union of an empty class,
which is empty and therefore equal to G. If G is nonempty, then since G is open,
each of its points is the centre of an open ball contained entirely in G. So, G is the
union of all open balls contained in it. The converse follows immediately from

previous theorems.
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