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high temperatures, gases obey the laws of Boyle, Charles and Avogadro
approximately, but as the pressure is increased or the temperature is decreased,
a marked departure from ideal behaviour is observed. Figure 1.8.1 shows,
for example, the type of deviation that occurs in Boyle's law for H, at room
temperature,

- — Ideal gas
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“ig. 1.8.1 Plot of p
ersus V of hydrogen,
s compared to that

f an ideal gas Mo
The curve for the real gas has a tendency to coincide with that of an ideal
gas at low pressures when the volume is large. At higher pressures. however,
deviations are observed.
;ompression The deviations can be displayed more clearly, by plotting the ratio of the
actor observed molar volume V| to the ideal molar volume V_ ... (= RT/p) as a
function of pressure at constant temperature. This ratio is called the compression
factor Z and can be expressed as
V P
T == vV (1.8.1)
Vm,ideal RIS
cample 1.8.1 / At 273.15 K and under a pressure of 10.132 5 MPa, the compression factor of O, is

0.927. Calculate the mass of O, necessary to fill a gas cylinder of 100 dm’ capacity
under the given conditions.

lution From the given data, we have
T=27315K, Z=0927, p=10.132 5 MPa
Thus, the molar volume of O, is
v = ZRT _ (0927)(8.314 MPa em’ K™ mol™) (273.15K)
s P 10,132 5 MPa
=207.77 cm’ mol™’

The mass of this molar volume will be equal to the molar mass of oxygen, ie.
207.77cm’ weighs 0,032 kg. Thus, the mass of oxygen required to fill a gas cylinder of
100 dm? (i.e. 10° em®) under the given condition is

( i ke )(105 em’) = 15.40 kg

207.77 cm®
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For an ideal gas, Z = 1 and is independent of pressure and i .\
tion of both temperature and pressure.

1] real gas, Z =f(T- P)! a func _ ! = L
= shows 2 graph between Z and p for some gases at 273.15 K, the pressure t

in this graph is very large. It can be noted that:

(1) Z is always greater than 1 for H,. s

(2) For N,. Z < 1 in the lower pressure range and is greater than 1 at highes
pressures. It decreases with increase of pressure in the lower pressure
passes through a minimum at some pressure and then increases conti
with pressure in the higher pressure region. | e

(3) For CO,, there is a large dip in the beginning. In fact, for gases which
casily liquefied, Z dips sharply below the ideal linge in thet,log W

r=00 L8




Fig. 1.8.3 Plots of Z
versus p of a single gas at
various temperatures
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Figure 1.8.2 gives an impression that the nature of deviations depend
upon the nature of the gas. In fact, it is not so. The determining factor 1s the
temperature relative to the critical temperature (see p. 36) of the particular gas;
near the critical temperature, the pV curves are like those for CO,, but when
far away, the curves are like those for H, (Fig. 1.8.3) '

r.

Vi Ty =0y =Ty

1 1 i
0 200 400 600
p101.325 kPa —

Provided the pressure is of the order of 1 bar or less, and the temperature
is not too near the point of liquefaction, the observed deviations from the idea!
gas laws are not more than a few per cent. Under these conditions, therefore.
the equation pV = nRT and related expressions may be used.

1.9 VAN DER WAALS EQUATION OF STATE FOR A REAL GAS

Causes of Deviations
from ldeal Behaviour

Evidence for
Molecular Volume

The ideal gas laws can be derived from the kinetic theory of gases which is
based on the following two important assumptions:

(i) The volume occupied by the molecules is negligible in comparison to the
total volume of the gas.
(ii) The molecules exert no forces of attraction upon one another.

It is because neither of these assumptions can be regarded as applicable
to real gases that the latter show departure from the ideal behaviour.

The molecules of a gas, however, do occupy a certain volume as can be seen
from the fact that gases can be liquefied and solidified at low temperatures and
high pressures. On decreasing the temperature of a gas, the thermal energy
of molecules is decreased and the effect of applying high pressure is to bring
the molecules closer to one another, thereby increasing the forces of attraction
amongst them. Both these factors favour liquefaction and solidification. In the
solid state, however, there is a considerable resistance to any further attempt at
compression. It is, therefore, apparent that the molecules of a gas must have an
appreciable volume, which is probably of the same order as that occupied by
<he same number of molecules in the solid state.
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where b is called the excluded volume or co-volume. The numerical v
b is four times the actual volume occupied by the gas molecules.
shown as follows. S
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- Correction for
Forces of Attraction

Fig. 1.9.2 Arrangement
of molecules within and
near the surface of a
vessel
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Excluded volume per molecule

- 4 4 4 5 :
=3 B Em =4 ;’?nr ]-:m‘vnlumc occupied by a molecule)

Since b represents excluded volume per mole of the gas, it is obvious that

i
!::Nh{ii[inr*” (19.2)

Consider a molecule A in the bulk of a vessel as shown in Fig. 1.9.2. This
molecule is surrounded by other molecules in a symmetrical manner, with the
result that this molecule on the whole experiences no net force of attraction.

A
ale 2
2N s

Now, consider a molecule B near the side of the vessel, which is about 1o stnke
one of its sides, thus contributing towards the total pressure of the gas. There
are molecules only on one side of the vessel, i.e. towards its centre, with the
result that this molecule experiences a net force of attraction towards the ceatre
of the vessel. This results in decreasing the velocity of the molecule. and hence
its momentum. Thus, the molecule does not contribute as much force as it would
have, had there been no forces of attraction. Thus, the pressure of a real gas
would be smaller than the corresponding pressure of an ideal gas. L&

pp=pr+ correction term (19.3)
This correction term depends upon two factors:

(i) The number of molecules per unit volume of the vessel Larger the
number, larger the net force of attraction with which the molecule B is dragged
behind. This results in a greater decrease in the velocity of the molecule B and
hence a greater decrease 11 the rate of change of momentuim. Consequently. the
correction term also has a Jarge value. If n is the amount of the gas present i

the volume V of the container, the number of molecules per unit volume of the
container 1s given as

N’:_nﬂi or N’n:f—

V V

Thus, the correction term is given as:

, ! (1.94a
Correction term = —
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ogether, we have

Taking both these factors { |

n\(n
Correction term = F —1;

2

s n
or Correction term = Hfﬁ
portionality constant and is a measure of the forces of attraction

(1.9. {:.

where a is the pro
between the molecules. Thus
2
2= P +a ﬂ‘_z
V % ¥ . .
The unit of the term an’/V? is the same as that of the pressure. Thus,
the ST unit of a is Pa m® mol~. It may be conveniently expressed in kPa dm
mol~. N
When the expressions as given by Egs (1.9.1) and (1.9.6) are substituted in the
ideal gas equation p,V, = nRT, we get |
ﬂzﬂ ; _f"_'
{P + T (V —nb) =nRT (1.9.7)
I y

This equation is applicable to real gases and is known as the van der Waal
equation. : .

Table 1.9.1 Van der Waals Constants

Grers g b G a
kPa dm® mol™®  dm?® mor! E: kPa dm® mol>

nm

H, 21.764 0.026 61 S

He 3457 002370 Sﬂ;ﬁ 220253

g:e 140.842 0.039 13 C,H, 336.173-

AR Ok CHyw 146322

- 7,90 056 _ 166.17.

NO 135.776 0.027 %; Clligliso) 1304053

NO,  S35401  og4os o™ 1926188
H,0 353.639 0.030 49 C 02 : 15&-;6’8

E.

Fan



Example 1.9.1

Solution

Example 1.9.2

Solution

Example 1.9.3

Solution

77///4

are characteristics of the gas. The values of these constants are determined by
the critical constants of the gas. Actually, the so-called constants vary 1o some
extent with temperature and this shows that the van der Waals equation is not
a complete solution of the behaviour of real gases.
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Calculate the pressure exerted by 22 g of carbon dioxide in 0.5 dm’ &t 29%.15 K wsing:
(2) the ideal gas law and (b) van der Waals equation. Given:

a = 363.76 kPa dm® mol™? and & = 4267 cm’ mol
22g
44 g mol !
V=05 dm’ T=208.15 K
o = 363.76 kPa dm® mol™ b= 42.67 e’ mol”’ = 0.042 67 dm’ mol”
(a) From the ideal gas law, p = nRT/V, we have
p = (0.5 mol) (8314 kPa dm’ K™ mol') (298.15K)
(0.5dm™)

Amount of CO, = =105 miol

=2.479 % 10 kPa

2
(b) From the van der Waals equation, p = "0 _ _ "9 e have
V—-nb V*

_ (0.5mol) (8.314 kPa dm’ K~ mol™") (298.15K)
0.5 dm” ~ (0.5 mol) (0.042 67 dm" mol™")

(0.5 mol)’(363.76 kPa dm® mol )
(0.5dm’)*
=2 589.31 kPa — 363.76 kPa = 2 225.55 kPa

'I‘wova.ndarWiﬂIs-ga&eshmthtsmﬁcval’ucnfbhmﬂiﬁewm_nwhn%ufu
would occupy greater volume under identical conditions? If the gases have the same 2
value but different values of b which would be more compressible”

Iftwngaseshnvasamﬂ--mlucofbbmmﬁumwﬂu;sofa.@m gas having 2 larger
value a will occupy lesser volume. This is because the gas with a larger value of a will
have a larger force of attraction, and hence 1@9:1 ﬂismnqe between i mh:uluu -

If two gases have the same value of a but different valuss of b, then mﬂﬂm .
value of b, larger will be the compressibility because the gas with the smalies

bwillmﬂp}flcasurvolunwmdhmgﬂ will be more compressible.

; 1 N
Calculate molecular diameter d of helium from its van der Waals constani

(b =24 cm’ mol™). .
Since b=4xwlmmwcupiadbythumhwlesmlmkuhyﬂ

or b= -4NK(%.-:=E’)

1L
b e 3% 24 cm’ mol ! __}
i [lﬁﬂ,‘u = 116(6.022 x 10 mol ) (3.14)
= 1,335 % 10% e = 1335 pm
d = 2r = 267 pm |
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Exvample 1.9.4

Solution

Applicability of the
van der Waals

Equation

273 K is 0.011 075 o .

joal Chemisiry Pa and =7
: (0,132 5 MP3 B0 0 of helium atom. The yq MOl
e molar. volume nfl;ﬂ he:';r';tg ﬂl[{- Calculate the radius © valug -
125 k i R
Jume al
volu reduces {[§]

may be ncglectud. s
; er Wails cquation after neglectt £
PV = §)y=RT

the given datd,

The van d
we have

Substituting
3 g mol™) (273 K)

at 101.325 kPa:
(101325 kPa) (Vo ~ b)

ie V,-b= 224 dm’ mo

ar 10.132 5 MPa:
(10,132 5 MPa) (0.011 075 Van

0.011 075 V,,— b = 224.00 cm
(175 and then su

_ (8,314 kPa dm
[l = 224 % 10* em® mol ™’

_ by = (8:314 MPa cm’ K™ mol™) (33

3 mol™
ptracting Eq. (2) from it, we get

e

Multiplying Eq. (1) by 0.011 :
b 0.011 075 b = (248.08 = 224) em’® mol™
3 =1
= 24.08cm” mol” _ 54 35 om® mol ™’
0.988 925
: 4 ]
Since b= (EWEJHNA}
L 113 ”
we have r=[ 3b ] =[ 3% 24.35cm” mol ' :
167N 16 % 3.14 % 6.022 x 10* mol ™!

=1.34x107° cm = 134 pm

Since the van der Waals ion is ap

S als equation is applicable to real o5 1t e
considering how far this equation can explain the experimen ga:f’ e
real gases, as represented by Fig. 1.8.2. The L M ol e
of a gas is van der Waals equation fi

a
2 o V., R RY

2 ; a

[ Vm & o PVy+ r =RT
m
or o .
. V. RT
rom the R
T Iah‘“"" Cquation ¢ jg clear
n s '. Z _: -
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(alV RT) increases as V is i
! 5 Inversel iy i .
decrenses with increase of p. ¥ proportional 16 p. Consequently, 2

At high pressure When i

/ e nop s large, Vo will be -
in rnm[mrlmn 1o V... However, the IurTn alv? m‘:‘;lﬂ:lﬂ::d R i 5
comparison Lo poin B, (19.8), Thus ) N ol

;J[Vm - b =RT

or Z=14 00
RT (1.9.10)

Here Z is greater than 1 and it ine i ' sure
: reases lincarly with
explains the nature of the graph in the high pressure r:ggm POy

At high ;empm_:mu and low pressure If temperature is high. V_ will sl
be sufficiently large and thus the term a/V2, will be negligibly m;ﬂ At this
stage, b may also be negligible in comparison to V.. Under these cr:;nlﬁtm
Eq.(1.9.8) reduces to an ideal gas equation of state: |

pV., = RT

Hydrogen and helium The value of a is extremely small for these gases & ey
are difficult 10 liquefy. Thus, we have the equation of state as p(V, - &/ = RT
obtained from the van der Waals equation by ignoring the term V5, Hesce.
7 is always greater than 1 and it increases with increase of p.

The van der Waals equation is a distinct improvement over the \deal zas
law. It gives qualitative reasons for the deviations from ideal behaviour. However.
the generality of the equation is lost as it contains two constants, the values of
which depend upon the nature of the gas.

110 OTHER EQUATIONS OF STATE FOR REAL GASES

Berthelot's Equation The van der Waals equation is one of the many equations of state suggested

Dieterici’'s Equation

in order to account for the behaviour of real gases. There are two other smple
ations of state which involve just two arbitrary constanis. The first of these,

due to Berthelot, is

[,p + %:_iz}(v —nb) =nRT (1.10.1)

where a and b are constants called the Berthelot’s constanis (different from va
der Waals constants) and are characteristics of the gas.

The second equation, due 10 Dieterict, 18

(p exp(nalVRT)} (V = nb) = nRT O
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quminllh

e T ,
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of a gas |
I — s 2
AT T o i (1103
RT i Vm m m
: a8 ‘e |
ature dependent constants known as second,
are lempera I  oluated exged lhwly 4

¢ COC

Virial :quation

.
-
L=

e - —

=
T3
o
-
=
-
-y
=
=
o
-
Ly
<

where B, C, .« | P
ete,, virial coelfcients. Ihes
«ach different tem srature, ot ot B R
o (!llhzriecund '::rial coefficient B may he obtain MW

data. Rearranging the virial equation, we g€l

8
V(p"’m_ =B+___.+”.
i 8 o 4

n
Thus, extrapolating the graph
WV, =0 gives the value of B, i.c.

between V[ (pV/RT) — 1} versus WV, 4

Vv 8
B= vliT» I [——‘; ?'j‘ - ] (1.104)

The third virial coefficient C would be the slope of this plot if there were
no higher terms in Eq. (1.10.3). These further terms cause the plot 1o be curved
so that C must be evaluated from the initial slope.

P_hysical The second virial coefficient B has the unit of volume and may be considered
::gniﬁﬁmoe of to be an excluded molar volume as can be shown by using statistical mechanic
Constant B The term B can be expressed in terms of intermolecular attraction by the equation

B=27Wa I:{]_exp(_wfkr)}rz ar

B =2nN zd . g.
4t
Hence B is the prog
molecule Het of Avogadro constany ang



Craseous State 3]

"
~roblem 1.10.1 Show that at low densities, the van der Waals equation

[ .” + i
Vi

and the Dieterici’s equation

PV, = b) = RT exp(~alRTV,,)

(V. =b)=RT

m

give essentially the same value of p,

Solution At low densities, volume of the gas is large, therefore b may be ignored in comparison to
V,,- Moreover, the term a/RTV,, will have small value and thus the term expl - alRTY..)
can be expanded as

a
RTV,

exp(=a/RTV,)) = | -

Thus, under these approximations we can write van der Waals equation as

RT
[p+ —ﬂz—]wmpR’r or p= V——--fi;;
||".-I'I'Il m Vm

and Dieterici’s equation as

.2 )
PRI T e 1Yt

m

Thus, we see that both van der Waals equation and Dieterici’s equation reduce to the
same expression of p at low densities.

1.11 REDUCTION OF VAN DER WAALS EQUATION TO VIRIAL EQUATION

Virial Equation in The van der Waals equation of state for 1 mole of a gas is
Volume
£ b)=RT or = Rbsiies
P+F(Vm-)— p T
m
Multiplying both sides by V,/RT, we get
-1
b a
T A/ (B SR Z=[1*_4} "V RT
2. ¥o=b V.RT P s

is large and b/V,, << L. Thus, the expressiol

I'e it)ﬂ- Vl
In the low pressure reg % ries in b/V

(1 — bV, can be expanded into a power s¢

=1

2 b 3
1__b_ =1+—b—+{—b- + i}_) oy
Vm Vm Vm m
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Sulbatitut

Thus for the ¢

Third virial coefficient € = p?, and so O
jon of state involves the expression of

Virial Equation in An altcrnative form of the virial equat
7 in terms of 2 power geries 10 Ps 1.6
(1.11.2)

Pressure
,-1+A1p+.-‘|,p +

ons for A; and Az €4t be derivad as follows:

The expressi

2

z=1+(b_i-)_]- ol
RT )V, V.,

Since Z = pVu/RT, therefore, 1/Vy = pIRTZ. Hence

2
z=1+(b..-..£_]_____+b1( P g
RTZ RTZ

Comparing Eqs (1.11.2) and (1.11.3), we get
1+A.,p+,¢zpz+---_=1+(b;_‘1—} :

—_— =y

R1Z < \RTZ "1*

= A’F+A2P *o ”——*(b—f p+.
s RTZ\  RT RT
Dividing by p, We get

A+ AP+ =__‘_(b——‘i~]+ b Y
de s wzCwmr) R 2T
ting state of zero pressure, Z = 1 and this-equatiﬁnbeew "

e a
R'r(” ‘Tﬁ:)
which is the requirg : 5
quired expression for A;. Thus Gy ‘b‘ T .
A14.A2p4...=Al[l_)+(_b_T v :
We repeat the pr " Z RT 7
ol

dmdmg by p an
d

fif S ﬁF by taking the l“ﬂllmg 2l

I pressure, Then e at zero Dresswm,

A, 0 =

1ge8q
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Z ™ -;;fﬁ\ = ) == fakky X8
Ay g e ' &~
A, = [‘T.’J ~ Al = —"—-{25- L
R (RT)" KT I
Thus, the expression for Z correct up 1o the third coefficient is ‘ L ﬁ}
| o 7] '
Z=14—|b-— i L
RT[ RT]F+ mr;-‘[y’ wr )7t A5

The correct coefficient for p could have been o
IV, in Eq. (1.11.1) by the ideal value: however, this
of the coefficients of higher powers of pressures.

The slope of Z versus p curve is obtained by differentiating the above virial
equation in Z with respect to pressure, keeping the temperature constant |-

blained by simply replacing
would yield incorrect values

0z 1 ;
[——] =—[f;__?_)+ 2a [Zb"’a_JP""" (1L
ap )45 RT RT ) (RTY RT
At p = 0, all higher terms drop out and this derivative simply reduces 1o
0z 1 [ a ]
= fpem R ) Py ! = i1 )
[Bpl, o =T (p=0) L8
Comment on the The derivative in Eq. (1.11.8) is the initial slope of the plot of Z versss 7
Plots of (Fig. 1.8.2). Now if b > a/RT, the initial slope is positive and the size effect
Compression (i.e. b factor) will dominate the behaviour of the gas. However, if b < /87 the
Factor versus initial slope is negative and the effect of the attractive forces (ie. a factor) will
Pressure dominate. Thus, the van der Waals equation, which includes both the effects of

size and of intermolecular forces, can interpret both the positive and negathve
slopes of the Z versus p plots. In interpreting Fig. 1.8.2, we can say that ut
0°C, the effect of attractive forces dominate the behaviour of methane and
carbon dioxide, while the molecular size effect dominates the behaviour of
hydrogen.

While interpreting Fig. 1.8.3 (graph of Z versus p of the same gas m
different temperatures), we can say that if the temperature is low enough. the
term g/RT will be larger than b and so the initial slope of Z versus p will be
negatfve. As the temperature rises, a/RT becomes smaller. At a sufficiently
high temperature it becomes less than b, and the initial slope of Z versus p
curve turns positive.

Boyle Temperature At some intermediate temperature Tg, called Boyle temperature, the initial slupe
is zero. This is obtained from Eq. (1.11.8) by putting b — @/RTy = 0, which
yields

el (1.11.9)
pe Rb

Al the Boyle temperature, the Z versus p line of an ideal gas is tangent
to that of a real gas when p approaches zero. The latter rises above the ideal
gas line only very slowly. In Eq. (1.11.6) the second term is zero at Ty and the
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Problem 1,11.1
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derive the. EXpressio asicl t"‘1‘"’“'311
the Expressions for ;:JS::::: Secon \rin e - the m :ff :nﬂ _
m =

.!‘

" VBT.V h'igh' Ihust ’
e npessure gl ide range of pre
fe sm Jhaves ide ¢ intermolecular forces

jning terms @ f .
;:m?entlmipcmiure the real Eﬂhnr  lecules an
bct:);unc the effects of {he size ik
compensate oa each other o ot I 2 el o
The Boyle temperature i = 52% !

{H"I] = - C}I } ) |
Tu(He) = - 249 °C Tu(CHy e
2 Tp(NH3) =
QC m o
temperature of 0 ai
{ for H, and He, the i;.,alues s

Thus we can see tha e

le temperatures and so they - e _.
s gn:sisB:ty 0 °C re below their respective B“ﬁig‘: peratures and so they
have Z values less than unity in the low pressure

Given that Z = 1.000 54 at 273.15 K and 101.325 kPa pressure and the Boy
of the gas is 107 K, estimate the values of a and b.

We are given that Lol
Z=100054, T=273.15K, p=101.325kPa, and TB=IG7K_

From the expression

uienlily
*- )

wehave b=(z- X2, 4
»  RT

At Boyle temperature, Ty = alRb so that g = RbTy. Therefore,
RTZ R!:'T
P RT

On rearranging, we get

| VRN e
b= —= ||
(T‘-?LJ[ P )R-I-z

b=(Z-1)—=

Substituting the values, we have &
,,=[ 21315k J 000
i, S 34—
215K - 107k [Tﬁi‘m“‘ﬁ] (8.314 kPadm"K"‘
X(273.15K
=0.0199 43 o) sy
Also =
a RbT =f33|4k?adm31( 1 mol™!
i ey e 1(0.019 9dm3
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Ciikarginin State A5
Raevthiolion's eqriaiingg
NI 1]
" i
.=k ™V
Multgplyang by V IRT. we g
K r.l'-lll.l - ‘rHI L - ' [ ' L
AT Vo=b V. RT" Y v rei!
w4 b 1 2 i -
e Ve v, Kr
| ] 1 J
= | [h ] [
AT [VJ '
The second vinal coclficient and Boyle tempersture are
i
HZ[I'J - ]; T .[‘.’]
Y R R Y
Dieterici’s equation
B Al expl-alV. K1)
& e QXD
I:vm L b) 1
Therefore,
i
S v b :
Zom 2l gy el (gl R = | 1= expl-alV_KT')
mvm--b”‘m’{vm”‘”

2
b b i ] i
= !+—-+[—-]+~-- [l— +---]=Ir (b— -J+
[ Y Ve } vV KT v, RT

Thus, the second virial coefficient is (b ~ @/RT) and Boyle wemperature Ty, s a/kb.

CRITICAL CONSTANTS

In 1869, Thomas Andrews carried out an experiment in which p-V relations
of carbon dioxide gas were measured at various temperatures. The types of
isotherms obtained are shown in Fig. 1.12.1. Other real gases also show the
same types of isotherms.

We observe from Fig. 1,121 the following:

(1) At high temperatures, such as Ty, the isotherms look like those of an
ideal gas.

(2) At low temperatures, the curves have altogether different appearances.
Consider, for example, a typical curve abed. As the pressure increases, the
volume of the gas decreases (curve a to b). At point b liquefaction commences
and the volume decreases rapidly as the gas is converted 10 a liquid with a much
higher density. This conversion takes place at constant pr:ssurt_p.‘m the pmm
¢, liquefaction is complete and thus the line cd represents the variation of V with
p of the liquid state. The steepness of the line cd is evidence of the fact that the
liquid cannot be easily compressed. Thus, we note that ab represents the gaseous
state, be, liquid and vapour in equilibrium, and cd shows the liquid state only.




