FV of single Present cash flow

Find the amount if Rs. 1800 is invested at 5% compounded semiannually for 8 years. Also determine the compound interest.

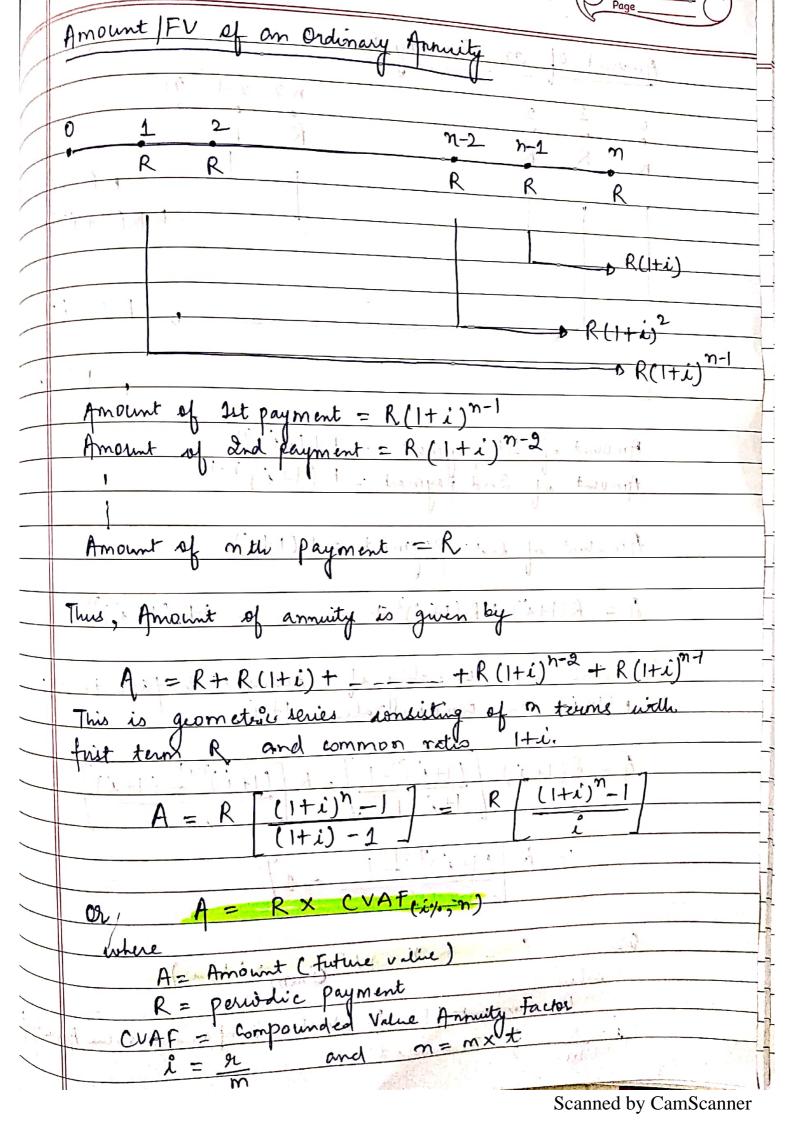
Principal (P)		₹1,800.00		1000
Rate of Interest (r)		5%		15%
Time in years (t)		8		5
No. of times compounding in a				
year (m)		2		12
Amount (A)	P*(1+r/m)^(m*t)	₹2,672.11	1800*(1+0.05/2)^(8*2)	
Compound Interest (CI)	A-P	₹872.11		
	Using Excel Formula			
Amount (A) or FV	FV(r/m,m*t,0,-P,0)	₹2,672.11	FV(RATE,NPER,PMT,[PV],[TYPE])	\$2,107.18
Compound Interest (CI)	A-P	₹872.11		

FV of series of Equal Annual cash flows

Find the total accumulation of deposits of Rs. 500 made at the end of every 3 months for 4 years at the rate of 6% compounded quarterly.

Periodic Payment/Annuity (PMT)		₹500.00	
Rate of Interest (r)		6%	
Time in years (n)		4	
No. of times compounding in a			
year (m)		4	
Amount (A)	Periodic payments*CVAF	₹8,966.18	500*17.93236984

CVAF for 0.015 and 16 years


	Using Excel Formula		
Amount (A) or FV	FV(r/m,m*t,-PMT,0,0)	₹8,966.18	FV(RATE,NPER,PMT,[PV],[TYPE])

FV of an Annuity Due

At the beginning of each quarter, Rs. 600 is deposited into a savings account that pays 6% compounded quaterly. Find the balance in the account at the end of 5 years

Periodic Payment/Annuity (PM	Τ)	₹600.00			
Rate of Interest (r)		6%			
Time in years (n)		5			
No. of times compounding in a					
year (m)		4			
	Periodic		600*23.1236671*(1+	1	
Amount (A)	payments*CVAF*(1+r/m)	₹14,082.31	6%/4)	CVAF for 0.015 and 20 years	23.1236671
	Using Excel Formula				
Amount (A) or FV	FV(r/m,m*t,-PMT,0,1)	₹14,082.31	FV(RATE,NPER,PMT,[P\	/],[TYPE])	

11	
	FUTURE VALUE
	TOTOKO VIJEGO
	$FV = PV \left[1 + \frac{R}{m} \right]^{m \times t}$
_	
	where FV = future value
	PV = Present Value
	n = rate of interest
N.	m = No. of times compounding in a year
	t = Time period in years
	or FV= PV x CVF(1/m/, 9 mxt)
	(*9m/. 9 mxt)
	where, CVF = compound value factor.
	ANNUITY: is a sequence of payments, usually equal
	ANNUITY: is a sequence of payments, usually equal in size, and made at equal intervals of time.
D	Ordinary Annuity: - is the annuity whose first payment
21	Ordinary Annuity: - is the annuity whose first payment is made at the end of first payment interval:
	interval.
Д	Annity Due: is an annuty the first payment is made at the beginning of the first payment interval.
	at the beginning of the first Rayment
	interval, Type - 1
1	
,	

1	P
	AMOUNT OF AN ANNUITY DUE
	Amount of let payment = R(1+i) ⁿ Amount of and payment = R(1+i) ⁿ
_	Amount of and payment = R(1+i) n-1
	Amount of lest payment = R(1+i).
	$A = R(1+i) + R(1+i)^2 + + R(1+i)^n$
	Geometrie series consisting of n terms with first term.
	R(1+i) and common (ratio 1+i.
	it is a surrance base of South to be
	$A = R(1+i) \left[\frac{(1+i)^{n}-1}{1+i-1} \right] = R\left[\frac{(1+i)^{n+1}-(1+i)}{1+i-1} \right]$
	1 - 1 + 1 1 1 1 1 1 1 1 1
	= R (1+i)n+1 - 1
	L CKAYDEX S = A M
	2 in a
	Or A = RX CVAF (1/2,71) X (1+i)
	helice Justin State of the
	Az Amount IFV , CVAF = Compounded value Annuity forder
	$\lambda = \mathcal{H}$ $\gamma = m \times \mathcal{H}$
	m