Aim: To determine the amount of Dissolved oxygren in given water sample by winkler's method

Apparatus Required: Burette, Pipette, Conical flask, Cork, Beaker, Volumetric flask, Glass rod, Weighing bottle

Chemicals Required:

- 1. Manganous Sulphate Solution (MnSO₄.4H₂O)
- 2. Alkali-iodine Oxide
- 3. Conc. Sulphuric Acid(H₂SO₄)
- 4. Starch Solution
- 5. Sodium Thiosulphate Solution (0.025 N)
- 6. Potassium Dichromate Solution (0.025 N)

Dissolved Oxygen

- Oxygen is one of the most common dissolved gases in the water
- DO is the most important indicator of the health of a water body
- * DO is vital for survival of aquatic life in water bodies.
- A higher dissolved oxygen level indicates a better water quality. If dissolved oxygen levels are too low, some fish and other organisms may not be able to survive.
- Oxygen affects a vast number of other water indicators, not only biochemical but also like the odor, clarity and taste.

Dissolved Oxygen

- D.O. range 5-9 mg/L: Good quality water
- ❖ Value below 5mg/L: Aquatic organism become stressed
- ❖ Value below 2mg/L: hypoxic water cause "Mass Fish Kill"

Factor Affecting Dissolved Oxygen

- Temperature
- Pressure
- Salinity
- Surface area
- Level of organic activities

Oxygen can become dissolved in three ways

- Introduced into water by algae, through photosynthesis
- Enters water directly from atmosphere
- Introduced by mechanical equipment

Dissolved Oxygen Measurement Methods

Titration method/ Winkler method/ lodometric method for determination of Dissolved Oxygen

- It is not possible to directly measure the amount of dissolved oxygen in a water sample directly.
- The dissolved oxygen does not directly react with another suitable reagent, an indirect procedure was developed by Winkler.
- An iodine/thiosulfate titration can be used to measure the dissolved oxygen present in a water sample.

Titration method/ Winkler method/ lodometric method for determination of Dissolved Oxygen

- 1. Preparation of standard solution of K₂Cr₂O₇ sample
- 2. Standardization of Na₂S₂O₃
- 3. Preparation of water sample
- 4. Titration of water sample against Na₂S₂O₃

3. Preparation of water sample:

Fill the reagent bottle with water

Remove 5 mL water by pipette+1 mL MnSo4+ 1 mL Alkali lodide azide

Replace Stopper & invert several times to mix

Flock in the solution is allowed to settle

After settling add 1 mL Conc. H2SO4

Stopped it & invert several times to mix & dissolved all the flock (Repeat it till ppt dissolve)

Chemical Reactions

Manganese sulfate in alkaline conditions

1. $Mn^{2+}_{(aq)} + 2OH^{-}_{(aq)} \rightarrow Mn(OH)_{2(s)}$ (white precipitate)

Mix with sample under water - This reacts with the dissolved oxygen to produce a brown precipitate.

2. $4Mn(OH)_{2(s)} + H_2O + O_{2(aq)} \rightarrow 4Mn(OH)_{3(s)}$

Adding concentrated H₂SO₄ - enables the Mn(IV) compound to release free iodine from KI.

3.
$$2Mn(OH)_{3(s)} + 6H^{+}_{(aq)} + 2I^{-}_{(aq)} \rightarrow 2Mn^{2+}_{(aq)} + I_{2(aq)} + 6H_{2}O_{(l)}$$

Titration: The free iodine is then titrated with standard sodium thiosulfate

4.
$$I_{2(aq)} + 2S_2O_3^{2-}(aq) \rightarrow 2I_{(aq)} + S_4O_6^{2-}(aq)$$

Table -1 Standardization of Na₂S₂O₃ using starch as an indicator

S. No.	Volume of K ₂ Cr ₂ O ₇ (mL)	Burette reading (mL)		Titrant used
		Initial	Final	Difference (mL)
1.	10			
2.	10			Lanesca
3.	10		4.2	
4.	10	and the second	Charles and Charles	
5.	10			

Table -2 Titration of water sample with Na₂S₂O₃ using starch as an indicator

S. No.	Volume of Water sample (mL)	Burette reading (mL)		Titrant used Difference
		Initial	Final	(mL)
1.	100		į.	(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
2.	100		3 10	

