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1. LEARNING OUTCOMES

This chapter will introduce the reader to the concept of metrics (a class of functions which
is regarded as generalization of the notion of distance) and metric spaces. A lot emphasis
has been given to motivate the ideas under discussion to help the reader develop skill in
using his imagination to visualize the abstract nature of the subject. Variety of examples
along with real life applications have been provided to understand and appreciate the
beauty of metric spaces. Moreover the concepts of metric subspace, metric superspace,
isometry (i.e., distance preserving functions between metric spaces) and norms on linear
spaces are also discussed in detail.

2. PREREQUISITES

It is assumed that the reader has done a course which includes introductory real
analysis, that is, the reader has familiarity with concepts like convergence of sequence of
real numbers, continuity of real valued functions etc. But it is nowhere assumed that the
reader has mastered these topics and hence all the concepts are well explained. Next we
list few inequalities that are required in the chapter.

Inequalities
1. Cauchy-Schwarz Inequality

Let x;,y; e R for i = 1,2, ..., n, then following inequality holds:

mn n n
Dl Yl [Y vl
i=1 i=1 i=1

2. Minkowski’'s Inequality

Let x;,y;eRfori=12,..,nand p =1 be any real number. Then

(ihf +J"i|p)55 (ihi]”)g‘* (Zn:]}'i]p)i .

3. Minkowski’'s Inequality for Infinite Sums
Let p = 1 be any real number and {x,},.: , {¥.}.=1 D€ real sequences such that

Y lalP <o and Y yl? < oo .
n=1

n=1

Then ¥;5_:lx, + v, |7 is convergent. Moreover,

=

(ilxn +.v,,|*’)p < (ilx,ll")5+ (zmp)a_

n=1 n=1

Theorem A. For any w,x, v,z € R,

[\/(wz +y)+J(x2 + 22)]2 =w+x]?+[y+z?.

Proof: Consider
(wz—xy)2 >0

= w2z +x%y? —2wzxy =0
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=  w?z? +x%y? = 2wzxy

=  wx?+ylz? + wiz? + x%y? > wix? + yiz? + 2wzxy  |adding w?x? + y2z? both sides |
= wixi+zH)+vi(x*+28) = (wx +yz2)?

= (w2 +y?)(x*+2%) = (wx + yz)*?

= Jw?+y?)(x? +22) > (wx + yz) [This is Cauchy Schawrz Inequality|

= 2y (w2 +y2)(x2 + z2) = 2(wx + yz)

= W2+yH)+ (P +zH)+2)(wi+y2)(x2+22) = (wi+ YD)+ (2% +27) + 2(wx + yz)

= [J(wz +y2)+J(x2 + z2)]2 >w+x]P+[y+z]?

Hence the Inequality. ]

3. INTRODUCTION

A metric space is a non-empty set equipped with structure determined by a well-defined
notion of distance. The term ‘metric’ is derived from the word metor (measure). Natural
and immediate questions that comes to mind are what do we mean by measure, what can
be measured and how it can be measured? In the search of answers to these guestions,
let us consider the following example:

? New Dehi, Deihi 110001

Suppose a person wants to go from New Delhi to
Mumbai. The adjoining figure gives possible routes from
New Delhi to Mumbai. Depending on the situation, he
may travel by taking any of the given possible option., & viaNHae

We note that there are two different ways to interpret '

his journey. R o Mo Hee

+ Delhi, India—Mumbai, India

(i) Navigational distance (in km) from New Delhi
to Mumbai.

B via Mumbai - Agra National Hwy

(ii) Navigational time (in hrs) to reach from New
Delhi to Mumbai

Suppose he travels via NH48, then the distance travelled is 1402 km and time taken is
21h 31min. So in this example, Time and Distance represent two different modes of
measurement.

Here, we shall discuss and learn about a very special class of functions that ‘measure
difference’ which mathematicians were able to identify in the beginning of the 20th century.
In the mathematical literature, this special class is represented as “distance”. In the plane,
distance between two points is measured along the straight line joining them. Our
objective in this chapter is to illustrate through examples the different ways of measuring
difference (distance) between objects besides straight line measurements, so that
students can grasp the abstract nature of the subject.
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To begin with, let us observe the fundamental properties of v

L)
straight line distance measured between two points in R, From .y
high school geometry, we know that straight line distance

between points A and B is /(x; — y1)? + (x; — y2)?%.

'{:Lx:)

Properties of straight line distance
1. Measurement between distinct points is a positive real number.
2. Two points in a space are identical if and only if measurement between them is
zero.
3. Measurement is symmetric in nature i.e., distance measured along A to B is same

as measured along B to A. ¢

4. Measurement between two points is less than or equal fim,,-z,
to the total distance taken when we travel via some _ ¢
other point. A -

[ (znz2)

(x1,%2)

X

From the first two properties, we observe that
straight line distance is non-negative real AC < AB + BC
number.

How to generalize all these ideas under one notion so that the properties remain intact?
The solution is provided by real valued functions which measures difference. Such
functions are known as metric in the mathematical literature. Further since the prototype
for such functions is straight line distance, these functions are often regarded as distance
functions.

These functions were first considered in 1905, by the French mathematician Maurice
Frechet who thought of generalizing the notion of distances and extending them to arbitrary
sets. In his doctoral dissertation “"Less Espaces Abstrait”, he introduced the concept of a
metric on a set.

Metric Space
Let X be any set and let d:Xx X - R be a real valued function satisfying the following
properties:

Pl1. d(x,y)=0forallx,ye X;

P2, dx,y)=0 & x=y

P3. d(x,y)=d(y,x) forall x,ye X

P4. d(x,y) < d(x,z)+d(z,y) forall x,y,ze X

The function d is called a metric on X (sometimes the distance function on X). The
ordered pair (X,d) is called a metric space. Thus a metric space consists of a non-empty
set equipped with a concept of distance (metric). If there is no ambiguity on the metric
considered, then we simply denote the metric space (X,d) by X. We refer the elements in

X as points and d(x, y) as the distance between the paints x and y.

Trivially, an empty function is the only metric on the empty set. Also, owing to condition

second, the only metric on a singleton set is the zero function.
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4. EXAMPLES OF METRIC SPACES

Example 4.1 The Real Line R

Let R be the set of all real numbers and w: IR x R —» R be a function defined as
u(x,y)=|x—-y|l vx,ye R

Then we shall prave that u is @ metric on R

First abserve that by definition, (x,¥) >0V x,y € R . Therefore P1 holds.

Forany x,v in R,
u(x,y) =0 |[x—y|=0e x=y

Therefore P2 holds.

Again, for any x,y in R,
u(x,y) = |lx—y|l =y —x| = uly,x).
Therefore P3 holds.

To see the triangle inequality (P4), suppose x,y,z € R be any three points.
Consider
u(x,y) = |x—yl
=|(x—-2)+(z—-y)l
<lx—zl+|z-yl
= u(x,z) +u(zy).

It follows that
u(x,y) < ulx,z2) +ulzy) VvV x,yzek

Thus all the four axioms are satisfied. Hence u is a metric on R and the ordered pair (R, u)
is @ metric space. The metric u is called the usual or standard metric or Euclidean

metric on E. [ |

Example 4.2 The Euclidean Metric on C (Extension of Euclidean metric on R)
Let C be the set of all complex number and d : € x € —» R be a function defined as
dlz,z')=|z—2'| Vzz eC.
Then d is a metric on €, called the usual metric or Euclidean Metric on C. Of course,
d is an extension to € x € of the Euclidean metricu on R i.e.,
u=d|g. |

Example 4.3 The Euclidean Plane R* v

‘ v 3
Let X = R? be the set of all ordered pairs of real numbers and B

d: R? x R* -+ R be a function defined as
d(x,y) = \/(11 =)+ (e —»)? VYx=(x,x).y=(y.¥y2) E RZ. *eax)

We shall show that d is a metric on R?. By definition,

d(x,y) =0 V x,y e R%,
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For any x = (x,,x;), y = (00, y2) € R?,
d(x,y) =0

'\/(11 =) +0p—y)*=0
X, =y =0 and x;—y,=0
xy=yand x; =y,

x=y.

LI B I

For all x = (x;,x;), ¥ = (01, 32) € R?,
d(x,y) = \/{x1 — ¥ )2+ (x, —y)?
=1 — )% + (3 — x,)?

=d(y, x).
Suppose x = (x,,x;), ¥ = (y1.¥2), z = (2;,2;) € R? be any three points.

Consider,
Ty B o (v:¥2)
d(x,y) = \/(11 =)+ (xp— y)? -
=[(x1 —2z1) + (21 — yDI2 + [0z — z2) + (22 — y2)]?
=Jla+b]? + [c + d]? Ag. - --oC
(xLx2) (z.22)
where =x, —z, b=z, —y,, c=2x,—2z, and d= z,—y, .
Applying Theorem A , we get e >

d(x,y) < Ja? 4 c2 +Jb? +d?

< \/(xl — 2+ (% —z)2 + \/(ZL —n)2 +(z; — ¥,)?
< d(x,z) +d(zy).
Thus all the four axioms are satisfied. It follows that d is a metric on R? and the ordered

pair (R?,d) is a metric space. The metric d is called the Euclidean metric on R?, and the

metric space (R? d) is called the 2-dimensional Euclidean Space R2. |

Example 4.4 Taxi Cab Metric on R?
Let R? be the set of all ordered pairs of real numbers and d: R? x R2 - R be a function
defined as
dOuy) = lx =yl + 1% =y ¥ x=(x,x%),y= 0, y,) € R%
We shall show that d is a metric on R?.

By definition, d is a non-negative function and hence P1 holds.

For P2, consider any x = (x,,x,), ¥ = (., ¥.) € R?, then
dx,y)=0e |x; =y +[x; —¥:| =0
e |x;—wl=0 and |x, —y,| =0
ox, =y and x; =Yy,
& (x,%) =, y,) e, xX=y.
Now again for P3, consider any x = (x,,x;),y = (v, ¥.) € RZ,
d(x,y) =[xy =il + |xz = y2| = Iy = x4 + |z — x| = d(y,x) .

Thus P3 is satisfied.
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To see triangle inequality (P4), let x = (x;,x;), vy = (. y2), z= (2, z:) € R be any points in
R*. Then
dCx,y) = |x; =yl + |z — vl
=|(xy —2y) + (2 =y + (2 — 23) + (2; — y2)
< |xy — 24|+ lzg — vl + |2 — 22| + |22 — v2l
=Xy —zy| + |x; — 23| + |2y — W]+ |22 — el
=d(x,z) +d(zYy) .

Hence all the four axioms of a metric is satisfied by d, therefore d is a metric on R?. &

z
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d((ab).(x.y))=|x-al+|y-b]

Figure 2. Road Map of a City

Example 4.5 Maximum Metric on R?

Let R? be the set of all ordered pairs of real numbers and d : B x B - R be a function
defined as

d(x,y) =max {|x; —y:l.[x2—y21} V¥ x=(x,x2), y=(y) ER.
We shall show that d is a metric on R?.

By definition, d is a non-negative function and hence P1 holds.

For P2, consider any x = (x,,%,), ¥y = ()1, ¥2) € R?,

1y
dlx,y) =0 max {|x; —y1l, |1xa —y2[} =0 ________[y_:,,:)
e |x;—y| =0 and |x, —y,| =0 :
e =y and x; =y, r—
= ; _ G | “* max [ [xt-y1], x2-y2] )
e (x,x) =y y:2) ie, X=Yy.
For anv X = (lexz)ly = (ylsyz) € sz +X

d(x,y) = max {[x; — y1 1 lx2 — 2|}
=max {ly; — x|, |y, — %1}
=d(y,x).
Thus P3 is satisfied.
To see triangle inequality (P4), let x = (xy,x2), ¥y = (¥1,)2).2 = (2;,2;) € R? be any points in
R3. Consider
|x: =yl = 10y — 1) + (21 — w1

< |xy —zy| + |2y — w4l
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< max {|x; — z], [x; — 25| } + max{|z; — w4, |22 —¥2l}
=d(x z)+d(zvy)
Le, |xy—wn|<dkxz)+d(zy) T —— (A)

Similarly,
X, — ;| €d(x,2) +d(zy) . 00 ——————— (B)

From (4) and (B) it follows that
max {|x; — y1l, X2 = ¥z} = d(x,2) + d(z,y)
Le., d(x,y) <d(x,z)+d(zy).
Hence the triangle inequality holds and therefore d is a metric on R2. [ |

Example 4.6 Let X = R? and d: R? x R? —» R be defined by

d{xy)=|xy]

dfxz)=|x|+|z|

|x — ¥yl if x and y are in the . :
d(x,y) = same ray from the origin
Jx| + ¥ otherwise
where x = (x;,x,) and y = (y,,y,) € R2. Show that d is a metric o

on R?, (Here |x — y| = u(x,y) and |x| = u(x, 0) and u is Euclidean
metric on R2. )

Proof: Clearly, d(x,y) 20 Vx,y € R%.

For any x,y € R?

)= { |x — ¥yl if x and y are in the same ray from the origin
BYTZ el + Iyl otherwise
o { u(x,y) if x and y are in the same ray from the origin
~ lu(x, 0) +u(y, 0) otherwise
L { u(y, x) if x and y are in the same ray from the origin
T uly, 0) + ulx, 0) otherwise
_ {]y — x| if x and y are in the same ray from the origin
T Uyl + x| otherwise
=d(y,x).

By definition of d, observe that
dx,y)=|x—y|l VxyeR. ——————— (A [~ |x =yl < x|+ |¥I]

Thus for any x,y € R?
dix,y)=0 = |x—y|=0 =x=y.

Also, x = y implies that x and y are in the same ray from the origin and therefore
dix,y)=I|x—yl=0.

Finally to prove triangle inequality, consider any x,y,z € R?.

CaseI «x and y are in the same ray from the origin

Then
d(x,y) = |x =y
=u(x,y)
<u(x,z)+ulzy)
=|x—z|+]z-yl
<d(x,z)+d(zy) |Using (4)]
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Case II  x and y are in the different ray from the origin.

Subcase I =z and x are in different ray from the origin

Then
d(x,y) = |x| + Iyl
=u(x,0) +u(0,y)
< ulx,0) + [u(0,2) + ulz, y)|
= |x| + Izl + |y —2l]
= [Ix| + |z|] + |y — 2|
<d(x,z) +d(y.z) [~ |y —z| <d(y,z) .. (4)]
=d(x,z) +d(z,y)

Subcase II z and x are in same ray from the origin.

Then z and y are in different ray from the origin. Therefore
d(x,y) = |x| + |yl
=u(x,0) +u(0,y)
< ulx,z) + u(z,0) + u(0,y)
=Ix—z| +|z| + |yl
=d(x,z)+d(zy).

Thus in all the cases triangle inequality is satisfied and hence d is a metric on k2. ]

Railway Metric

The metric given in Example 4 is
called the Railway metric as it can be
used to describe the following
situation (hypothetical).

Proposed Metro
Network for 2030

Consider a proposed metro network
of India for 2030 where all the major
towns lie on some metro track
originating from Delhi (see adjoining
Figure). Thus on this network, one
can travel directly between any two

towns which lie on the same metro .
@ Interchanging guim

track to Delhi. Otherwise first one has

® Town ®

to go Delhi and change to anather .
line. '
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