8.2 THE SQUARE POTENTIAL BARRIER

We now consider a one-dimensional potential barrier of finite width and height
given by

[ 0 x<0
Mx)y= 4V, O<x<a (8.20)
‘x 0 x>a
Vix)
[
Region | Region 11 Region Il1
¥a
A A
Be it wmmmn AN FEE
0 a -

Figure 8.4 The sguare potential barrier.

Such a barner i1s called a square or a rectangular barrier and 1s shown m
Figure 8 4. Although the potential barriers in the real world do not have such
simple shapes. this idealized treatment forms the basis for the understanding of
more complicated systems and often provides a fairly good order-of-magnmitude
estimate.

As mn the previous section, we consider a particle of mass m incident on the
barrer from the left with energy E. As mentioned therein, according to classical



mechames, the particle would always be reflected back if E = Fy and would
alwzys be transmutted 1if E = Fy. We shall show that, quantom mechameally,
both reflection and transmmssion ocowr with fimite probability for all values of E
except In some spectal cases.

Wa shall diseuss the two cases, E = Fy and E = F separataly.

Case1: E= Iy
Let us diade the whole space mio three remions: Bemion I {x = ), Bemon 1T
{0 = x = a) and Regmon I {x = a). In regions [ and 10T the particle 15 free and
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The generzl solubon of ths equation 1=

Ae™ + Ba™ x<0

F+Ge™ zx>a

where 4, B, F, (& are arbifrary constants. For x = 0, the term Aexp(ikx)
corresponds to a plane wave of amplitude 4 incident on the bamer from the left
and the term B exp (—ikx) comesponds to a plane wave of amphiude B reflected
from the bamer. For x = a. the tem F exp (i) comesponds to 2 transmitted
wave of amplitude F. Since no reflected wave 15 possible n ths region we mwst
set &= 100,

In remon 1T the Schrddinger equation 15

m;r}={

W dp(x)
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Since E = T, the quantity k' is positive. Therefore, the general solution of this
equation 15
P =Ca**+ D™ Daxa<a
The complete spenfinchon 1= given by
Ae™ +Be™  x<0

wix)=4 C**+De™* Q<x<a (8.23)
Fe* x=a



The real part of the bamer etgenfunction for E = Fy 15 shown schematieally
m Figure 8.5(z).
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Figure B.5 Schematic plots of the real pants of the barmer eigenfunctions for
(a) E = Wpand (b} E = V.

Contimmty of W{x) and dpix)dx at x =0 and x = a prves

A+B=C+D (8.24)
ik (4 - B) =ik (C-D) (8.25)
Cee + Dgit'a = Fylta (8.26)
ik (Ce¥'® — Do) = jkFghs (8.27)
From (3.24) and (8.25) we obtain
A= %[m k) + Dk - ¥] (8.28)
B= %[m —¥) + Dk + ] (8.29)
From (8.26) and (8.27) we obtain
= % Fik + k) ¥4 (8.30)
1 -
D= T F(F — k) &+t (8.31)
Dividing (8.31) by (8.30)
D_ K-k
T ¥k (8.31)




Dividing (8.29) by (8.28)

(k- k) + [

|@&em

b | b
It:n r&lb

(k4 B)+| | G-
On substitwhon for IVC from (8.32), this becomes
E _ {kl_ FE}'I:I.— Fl‘nt"n'}
i  (k+KP-(k-k)P St

(8.33)

We need a sinmlar expression for FId. Equations (8.24) and (8.23) weld

C= %[..-![.ik+ ¥) — Bk — K]
Substitufing in (8.30)
Ak + k) — Bk — ¥) = F(k + k)e'* ~ ¥
o L ket =0 - 2G-B)

I:kl Hl:lﬂ F’l.!";l:l
(k+ Ky - (k- k)’ ™

=k+K)- [
Smmplifiing, we obtzin
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The reflection and trapsmassion coefficients are. respectively,

R=|E

: kTR ' 4E(E-T)
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4K 4E(E-Fy)

It can be eazily shown that, as expected.
R+T=1

(8.34)

(833)

(836)

Mote that T 15 1 peneral less than wmaty. This 15 in confradiction to the
clas=zical result that the parbicle always crosses the bamer when E = Fy. Here
T=1 only when Fa=m, 2x, 3x. ... Now, 1f 1" 15 the de Broghe wavelengih

of the parficle when 1t 15 passing through the bamer, then
_ I

1.'



Therefore T = 1 when
a= HILHT], =123 _.
Thus, there 15 perfect fransmizsion only when the thickmess of the bamer 1=
equal to an mtegral multple of half the de Broghe wavelength in the miternal
region. Thas 1= analogous to the interference phenomena in the transoussion of
Light through thin refractng layers.
Equation (8.36) shows that
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I [1 + :| as E — I (from above) (837
Az E memeases, T oscillates between a steadily increasing lower emvelope and
unity, as shown in Figure 8.6. The dimensionless parameter mFpa®/it’ is
considered as 2 mezsure of the “opacity” of the bamer.
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Figure 8.6 Variation of ransmission coefficient for a square patential bamier as
a function of BTV, for ml,a®is® = 10,
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Case 2: E = I

Inregon I (x <} and ITI {x == &), the Schridinger equation and 1fs solubion remain
the same as 1o case 1. In region IT (0 = x < a) the Schrédinger equation 15

dy 2 2 _ 2m(F,— E)
- K =0, EF=_—L 238
= wix) o (8.38)
Therefore, the egenfimehon mm regron IT 15
W) =Ce + D™ D=x=a (8.39)
The real part of the complete sigenfimetion for E < I 15 shown schematically

in Figure .55

The reflection and transmizsion coefficients can be mmediately obtainad
if we replace & by ik mm (8.35) and (8.36). Eemembenng that smix = i smhx,
we obtam
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Refle—— o E | _|;, JEGL (8.40)
and | (k" + K7) smh(Ea) |}y smh(Ka)
i P I SPE IRy I 2 -3 2epe st

T= 1_(]: + K ]-_}513]1 (Ea) 1. F m:h (Ka) 841)
K 1 | 4E(FR-E)

It 15 agamn readily venfied that R + T'= 1. We note that T — 0 i the liomt
E — 0. Further, T 15 3 monotomcally mncreasmg function of E and approaches

20’
Thus T joins smoothly to the value ziven 1 (8.37) for the case E — I from
above (see Figure 5.6).
For a broad lagh bamer, La == 1. This 15 true for most cases of prachical
inferest. We may take zinh EKa = exp(Ea)2. In that case,
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(8.43)

and 15 very small.

Further, the factor 16E{Fy — EVFF varies slowly with ¥y and E and 15 of
order umty 1o meost cases. The exponential factor 15 the dommant ope and vanes
rapdly with Fy and E. Therefore, for order of magmtude calculabion, we can
take

T = g2 (8.44)



