
Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

Paper : Microprocessor and Computer Programming

Chapter: Microprocessor Programming

Author: SubhasisHaldar

College/ Department: Physics Department, Motilal

Nehru College, University of Delhi

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

Microprocessor Programming for beginners

The target audience of this chapter are those students who has just began
learning about computer and microprocessor. Assembly language programming is
something which if not handled in proper way scares away the students and can
cause permanent detraction towards it. So through this chapter I tried to present
the basic concept and logic of assembly language programming in easiest form

for the beginner.

I sincerely hope after going through above article students will be motivated to
learn microprocessor and assembly language in detail.

I will eagerly wait for any suggestions/modifications from the vivid readers.

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

Table of Content

1. Basic Components of a computer

2. Program Addition

3. Few lines about memory

4. Assembly language programming

5. Few more lines about memory

6. Program Subtraction

7. Addition and Subtraction (Indirect Method)

8. Program Multiplication

9. Program Division

10. Program HCF of two numbers

11. Program LCM of two numbers

12. Program 16 bit Addition.

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

Basic components of a computer system: -

These are five basic components of a computer.These are:

1) Input: This is the component through which a user loads the computer with
various data and instructions to carry out desired operation/function. Typical and
most widely used input device is keyboard.

2) Arithmetic and Logic Unit: This is the main number crunching section. In
this unit all the arithmetic and logical operations are performed over the raw data
as per instructions which were loaded through input.

3) Control Unit: This unit provides necessary timing and signals, which are
required by the ALU section to carry out the desired task in proper chronological
order.

4) Memory: The job of this unit is to simply store all the instructions and data

required to carry out a given task. It is different from other units in the sense
that its size can be varied according to the need. Memory is nothing but piles of
registers each of which can store any eight-bit number.

5) Output: This section provides the final outcome of the task carried out by the
ALU section to the user. Most widely used output devices are Video Display Unit
(VDU) and printers.

Generally theALU section is combined with the control section and together they
are called Central Processing Unit (CPU). The CPU when fabricated on a single
chip is known as microprocessor Unit (MPU) or simply microprocessor.

Likewise the Input and output section can also be combined and is considered as

part of peripheral device.

So a typical computers bare minimum requirement is one chip of microprocessor,
one or few chips of input/output devices and few chips of memory.

Since the computers are made up of electronic components (mostly transistors)
and since these electronic components work in only two states (saturation or cut-
off), binary numbers are most suitable number base systems to work with the
computers. So all the (i) data to be analyzed, all the (ii) instructions which are
required to carry out a given task and all the (iii) memory location where the
program has to be written must be in binary form. So computer understands only
the binary language. Now the base of the binary number is very small (binary
number base is 2) which means large number of digits are required to represent
a decimal number. (e.g., decimal 41 is equivalent to 101001 in binary). Thus, it is

very difficult to handle such a large numbers and chances of making error are
very high. Therefore we look for a number system, which shall be easily
convertible into binary number and simultaneously much smaller in size.
Remember, it is much difficult to convert a decimal number into a binary number
(This is because the base of decimal number is not an integral multiple of power
of base of binary number). So we use an unusual number system, namely
hexadecimal number system having base 16. Hexadecimal number base is
integral multiple of power of binary base (24 = 16).
Hexadecimal numbers are much smaller in size and in fact they are smaller than
decimal numbers. Also they can be easily converted into binary numbers. What
we need to do is to change every hexadecimal numeral into equivalent four bit
binary numbers! That’s all!

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

So instead of writing all the codes, instruction and data in binary format in
processor what we can do is use hexadecimal numbers and gets them converted
into binary format by the machine itself. This definitely is more advantageous as

it greatly reduces the possible commencement of errors due to large number
handling.

The programs written both in binary languages or hexadecimal languages are
known as machine language. Figure1 shows an example of a typical machine
language program where addresses, codes and datum are all written in
hexadecimal format.

Memory Address Stored content of memory address

2000H 3E
2001H 00
2002H 06
2003H 53
2004H 0E
2005H 2A
2006H 80
2007H 81
2008H 5F
2009H 76

An obvious question – what the program shown in fig 1.do? Well, as long as the

person who had written the program doesn’t tell, we can only make wild guesses.
Just looking at the program it is not at all possible to find what the program is
going to do. So merely using hexadecimal codes does not solve our entire
problem where our primary aim is to make the programs more users friendly. It
should be more clearly understandable. We can tackle this problem by writing
some short of mnemonics or abbreviation for the codes of the instruction. Using

suitable and meaningful mnemonics we can easily understand the flow of the
program. That will certainly make it more user friendly. For instance, the program
shown in fig .1 in hexadecimal code depicts simple addition of two numbers (53H
and 2AH) stacked in two different registers B and C, with the final result stored in
register E. The same program is rewritten along with mnemonics in figure 2
which make it moreunderstandable.

Program 1 (Addition)

Memory Address Mnemonics Stored content of memory address

 2000H MVI A,00 3E
2001H 00
2002H MVI B,53 06
 2003H 53
 2004H MVI C,2A 0E
 2005H 2A
 2006H ADD B 80

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

 2007H ADD C 81
 2008H MOV E,A 5F
 2009H HLT 76

The programme written in mnemonics is called assembly language and the
equipment attached with the microprocessor to convert these mnemonics to
binary language is called assembler.

In case microprocessor does not have any assembler, we find out the codes of

the mnemonics by looking at the prescribed table; what we call as hand
assembling. Both machine language and assembly language are considered to be
low level languages and mostly they are machine dependent.

Machine language is the most basic form of writing a program and it gives much
deeper insight of how all the logical instructions are carried out step by step by
the computer. Remember, whenever we write any program in any language, it is
the logic behind the program which have to be translated in that language to
carry out the specific task. Whatever be the language, logic of calculation remains
the same. Forinstance, if I want to add two numbers, the methodology of addition
will remain same irrespective of whether I am doing it in English or Spanish. So
the important part of any program is writing the proper logic to carryout the
particular task. The best way of expressing this logic is to draw the flowchart
depicting all the basic instructions to be carried out by the computer in order to

complete the task.Once flowchart is complete, the rest of the thing is very trivial
where one has to convert all those basic instructions into a particular language,
to be used.

Few lines about memory:

The memory capacity of 8085 microprocessor is 64K or 65536. In each of these
location one can store any 8 bits number which may be data or instruction. In
order to identify these locations uniquely we require separate addresses of all
these locations. Now any single binary digit can be associated with two distinct
locations (bit 0 can be considered as address of one location and bit 1 can be
considered as address of the second location). Similarly different combinations of
two bits can uniquely identify four different locations as shown below:

 00 - Location 1
 01 - Location 2
 10 - Location 3
 11 - Location 4

For two bits the number of combination which can be associated with memory
locationsis 22 (=4). Similarly if we extend this to three bits the number of
combinations will be 23(= 8) as given below

 000 - Location 1
 001 - Location 2
 010 - Location 3
 011 - Location 4
 100 - Location 5
 101 - Location 6
 110 - Location 7

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

 111 - Location 8

So in order to identify 65536 different locations the number of bits required in the
address can be calculated as below 2n = 65536 or n = 16.

So all the possible different combinations of 16 bit number will uniquely, identify
all the 65536 different memory locations. (First address being all sixteen zeros
and last address as all sixteen ones). Since sixteen bit addresses in binary format
is difficult to handle, we convert these addresses in hexadecimal format with
starting address as

0000H and last address being FFFFH.

The entire 65536 memory can be differentiated in two parts. Memory position
starting with address 0000H and up to certain level depending on the make is
called ROM (Read only memory) where generally the monitor program is stored.

Program written in ROM cannot be altered and is permanent. After ROM,
read/write location (Random Access memory – RAM) starts. These locations are
available for the user to write different programs.You are free to use any address
location in the RAM for writing the program.

Assembly Language Programming:

Now I am going to present few basic programmes and analyze them wherever it

is needed. Looking at any table/or manual all the assembly language instruction
can be converted into machine language. For student help I am going to write
these programs in assembly language along with their machine codes.

Program-1:Addition (Direct Addressing)

Already I have written the program for addition. The flowchart of the program is
presented below:

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

The program shows the simple addition of two numbers which are directly stored
in two temporary registers B and C of the microprocessor. The first column in the

above program shows the memory addresses where the program is stored
beginning with address 2000H.

Few more lines about memory

Since all the arithmetic and logical operations are carried out with the content of

accumulator it is customary to clear the content of accumulator at the very
beginning. Note that I could have shortened the program by putting one of the
numbers directly in the accumulator and adding the other number through any
other register, but generally we avoid this method as after addition the final
result will reside in the accumulator and thus initial data written in accumulator
will be lost forever.

Instruction written in memory addresses 2000H, 2002H and 2004H are all two
byte instructions which load the individual registers A (Accumulator) with zero
and B and C with the numbers to be added. Instruction ADD B add the content of
B register to the content of register A (which is zero)and it remains in register A.
Then in the next instruction content of register C is added with the content of

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

register A (which actually now contain the value of register B) and final result
again resides in A. We can find the answer in register A but again it is customary
to move the final result in any other register which is right now not in use (In this
case the answer is moved to register E). Finally with ‘HLT’ instruction program

terminates.

Program -2 Subtraction (Direct addressing). After the addition subtraction is
very trivial. What we have to do is simply replace the command ADDC in memory
address 2007H by SUBC. Rest of the instruction remains same.

One important point about subtraction is that if one subtract larger number from

a smaller number the answer will be displayed in 2’s complement form. The sign
flag in the flag register will indicate that the result is negative.

Program -3 Addition and subtraction (Indirect addressing) In the above two
programs the numbers to be added/ subtracted are directly stored in the
registers (register B and register C). Addition and subtraction programs can be
rewritten by storing the numbers in some memory address locations rather than
storing them directly in temporary registers.

Memory Address Mnemonics Stored content of memory address

 2000H LXI H, 2009 21
2001H 09
2002H 20
 2003H MOV A,M 7E
 2004H INX H 23

 2005H MOV B,M 46
 2006H ADD B/ SUB B 80/90
 2007H MOV E,A 5F
 2008H HLT 76
 2009H Data
 200AH Data

For subtraction again the instruction ADD B in memory location 2006 is replaced
with SUB B. The advantage of the above type of program is that the main
program is not altered. If we want to change the data for addition and subtraction
it can be changed in the memory location without interfering the main program.

Instruction LXI H is a three byte instruction where a particular memory address
(2009H in this case) is loaded to the HL register pair. In other words content of

HL register pair actually points to the memory location where data resides. So
the next instruction MOV A, M will automatically load the content of location
2009H to register A. The third instruction INX H will increment the memory
pointer (i.e., the content of HL register pair) from 2009H to 200AH. Now the
fourth instruction MOV B, M will move the data to register B from new memory
location 200AH. Above programs can be slightly modified and we can use LDA
(Load the accumulator) instead of LXI instruction. Instruction LDA 2009 will load
the content of memory location to register A. Then from register A data can be
transferred to any other register.

Program – 4 (Multiplication)

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

Any multiplication can be carried out by repeated addition, For example if we
want to multiply 4 and 3, then what we have to do is simply either add 4
repeatedly three times or add 3 four times with itself. The flow chart of the
multiplication and its assembly language program is written below:

Memory Address Mnemonics Stored content of memory address

 2000H MVI A,00 3E
2001H 00
2002H MVI B,xx 06

 2003H xx
 2004H MVI C,yy 0E
 2005H ADD B 80
 2006H DCR C 0D
 2007H JZ 200D CA
 2008H 0D

 2009H 20
 200AH JMP 2005 C3
 200BH 05
 200CH 20
 200DH MOV E,A 5F

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

 200EH HLT 76

The instruction JZ (Jump of zero) checks the zero flag of flag register and if it is

set then instruction sequence will alter and will jump to instruction location
200DH. Otherwise, simple unconditional jump instruction (JMP 2005) will
execute and addition process will be repeated.

Note that two jump instructions of 2007H (JZ) and 200A (JMP) can be combined
by a single conditional branch instruction (JNZ 2005). It is left for the reader as
an exercise.

Program 5 (Division)

 Division can be carried out by repeated subtraction. For example if we want to
divide 15 by 4, then we subtract 4 repeated from 15 until we reach a number less
than 4. The number of times 4 is subtracted gives the quotient and the remaining
residue number is the remainder.

 Dividend Divisor Counter for quotient
 15 4 0
 (15-4=) 11 4 1
 (11-4=) 7 4 2
 (7-4=) 3 4 3

The quotient is 3 and remainder is also 3.

 So what we have to do is to set a counter and increment it every time we
subtract the divisor from the dividend. The value of the counter at the end will be
the quotient.

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

Memory Address Mnemonics Stored content of memory address

2000H MV1 A, 00 3E
2001H 00

2002H MV1 B, xx 06
2003H xx
2004H MV1 D, yy 16
2005H yy
2006H MV1 C, 00 0E
2007H 00
2008H MOV A, B 78

2009H INR C 0C
200AH SUB D 92
200BH JM 2011 FA
200CH 11
200DH 20
200EH JMP 2009 C3
200FH 09
2010H 20
2011H DCR C 0D
2012H ADD D 82
2013H MOV E, A 5F
2014H HLT 76

The content of register C will give quotient and content of register E will be the
remainder. Instruction JM (Jump if minus) checks the sign flag after every
subtraction is carried out in instruction 200A. If it is not set the subtraction is
repeated again. If sign flag is set, the program comes out from the loop.
Remember, we have to stop subtraction the moment dividend is smaller than
divisor. But unfortunately we do not have any means to check it. So we carry on

the subtraction as long as the dividend does not change sign. The moment
dividend becomes negative we stop.At this juncture we actually carried out an
extra subtraction. This is rectified by adding the divisor and decrementing the
counter once as is done in the address location 2011 and 2012.

Program 6 HCF of two numbers

HCF means highest common factor. That is the largest number with which both
the numbers can be divided. The simplest way to calculate HCF of any two
numbers is given by subtraction method. What we have to do is to subtract the
smaller number from the larger number and replace the larger number by the
new number as long as the numbers are not equal.
Example : HCF of 16 and 24 can be obtained as follows :

 16 24
 16 24-16=8
 16-8=8 8
 8 8
So HCF of 16 and 24 is 8.

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

Memory Address Mnemonics Stored content of memory address

2000H MV1 A, 00 3E
2001H 00
2002H LDA 2500 3A

2003H 00
2004H 25
2005H MOV B,A 47
2006H LDA 2501 3A
2007H 01
2008H 25
2009H SUB B 90
200AH JZ 201AH CA
200BH 1A
200CH 20
200DH JM 2013H FA
200EH 13
200FH 20
2010H JMP 2009H C3

2011H 09
2012H 20
2013H ADD B 80
2014H MOV C,B 48
2015H MOV B,A 47
2016H MOV A,C 79

2017H JMP 2009H C3
2018H 09
2019H 20
201AH MOV E,B 58
201BH HLT 76

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

2500H data
2501H data

In the above program we used indirect addressing so that the initial numbers for
which we have to calculate HCF remains unchanged.

Exercise: Calculate HCF of any three number.

Program 7: LCM of two numbers

LCM of two number is that smallest number which will be perfectly divisible by
both the numbers. So the best way to calculate LCM is to multiply any one
number starting with 1 and check that whether the product is perfectly divisible
by other number or not. If it is divisible then the product is LCM; if not we repeat
the multiplication with next natural number.

Forexample: LCM of 8 and 12 can be calculated as follows:

𝟏𝟐𝑿𝟏

𝟖
=

𝟑

𝟐
 (not perfectly divisible)

𝟏𝟐𝑿𝟐

𝟖
=

𝟐𝟒

𝟖
= 3 (perfectly divisible)

SoLCM of 8 and 12 is 24.

Similarly LCM of 3 and 4 can be calculated as follows:

𝟒𝑿𝟏

𝟑
=

 𝟒

𝟑
(not perfectly divisible)

𝟒𝑿𝟐

𝟑
=

𝟖

𝟑
 (not perfectly divisible)

𝟒𝑿𝟑

𝟑
= 4 (perfectly divisible)

So LCM of 4 and 3 is 12.

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

Memory Address Mnemonics Stored content of memory address

2000H MV1 B,xx 06
2001H xx
2002H MVI D,yy 16
2003H yy
2004H MVI C,01 0E
2005H 01

2006H MOV H,C 61
2007H MVI A,00 3E
2008H 00
2009H ADD B 80
200AH DCR H 25
200BH JNZ 2009H C2

200CH 09
200DH 20
200EH MOV E,A 5F
200FH SUB D 92
2010H JM 2016H FA

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

2011H 16
2012H 20
2013H JMP 200FH C3
2014H OF

2015H 20
2016H ADD D 82
2017H JZ 201EH CA
2018H 1E
2019H 20
201AH INR C 0C
201BH JMP 2006H C3

201CH 06
201DH 20
201EH HLT 76

Exercise: Calculate LCM of three numbers.

Program 8: 16 bit addition

Intel 8085 microprocessor is an 8-bit microprocessor meaning that its data
capacity is of 8 bits. So whatever arithmetic we have done so far deals with only
one byte numbers. Now mathematics is extremely limited with 8-bit number as
its range is too small to carry out any bigger problem (range of 8-bit signed
number is from -128 to +127). To increase the range we can combine the

contents of two registers. (Range of 16-bit number is 65536). Any 16-bit number
is called a word. Two important commands, ADC (Add with carry) and SBB
(Subtract with borrow) are required.

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

Memory Address Mnemonics Stored content of memory address

 2000H MVI A,00 3E
 2001H 00

 2002H MVI B,uu 06
 2003H uu
 2004H MVI C,vv 0E
 2005H vv
 2006H MVI D, xx 16
 2007H xx
 2008H MVI E,yy 1E

 2009H yy
 200AH MOV A,C 79
 200BH ADD E 83
 200CH MOV L,A 6F
 200DH MVI A,00 3E
 200EH 00
 200FH MOV A,B 78
 2010H ADC D 8A
 2011H MOV H,A 67
 2012H HLT 76
In the above program we added one sixteen bit number uuvv with another
sixteen bit number xxyy. The result has been transferred to register pair H and L.
ADC instruction add the content of the register with accumulator along with the
carry flag (CF) which reflects the carry condition from previous addition.

In a similar way the subtraction can be carried out using SBB instruction instead
of ADC and is left as an exercise.

In 8085 microprocessor a special instruction DAD (Double addition) is available

to carry out 16 bit additions that will make the above program much easier and
shorter. But this instruction is available for addition only. For this instruction
accumulator does not play any role and the content of register pair BC and DE
can be directly added to the content of register pair HL.

Memory Address Mnemonics Stored content of memory address

 2000H MVI B,uu 06
 2001H uu
 2002H MVI C,vv 0E
 2003H vv
 2004H MVI D,xx 16
 2005H xx
 2006H MVI E, yy 1E

 2007H yy
 2008H MVI H,00 26
 2009H 00
 200AH MVI L,00 2E
 200BH 00
 200CH DAD B 09
 200DH DAD D 19
 200EH HLT 76

Addition of register pair BC and DE are added and answer will be available in HL
register pair.

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

Questions

1. How many memory locations can be identified with 20 bit address lines?

2. In the multiplication program can we interchange the instructions written
in memory locations 2005H and 2006H ? Give reasons to your answer.

3. What is the difference between LXI and LDA instruction?

4. Explain one byte, two byte and three byte instructions.

5. What is the difference between ROM and RAM?

6. Explain conditional and unconditional branching.

7. Explain the basic components of a microcomputer.

8. What is monitor program?

9. Can we perform any 16 bit operation with 8085 microprocessor? If yes
how?

10. What do you mean by peripheral devices?

11. What is the difference between MPU and CPU?

12. What is the difference between machine language and assembly language
?

13. Why hexadecimal number system is advantageous over binary number
 system?

14. Why we use the unusual hexadecimal number system rather than
conventional decimal number system?

15. What is the advantage of DAD instruction?

16. What is the significance of indirect addressing?

17. What is the difference between byte and word?

18. Why computer works only with binary numbers?

19. Can we use fractional number in 8085 microprocessor?
 Give reasons.

20. Write a program to calculate the largest number in the given array of
numbers.

21. Write a program to calculate sum of n numbers present in some memory
 location.

22. Write a program to calculate HCF of three numbers.
23. Write a program to calculate LCM of three numbers.

24. Write a program to calculate 𝑥 − 𝑦 .

Microprocessor Programming

Institute of Lifelong Learning, University of Delhi

25. Write a program to separate odd numbers and even numbers in a given
array.

Suggested Books

1. Digital Computer Electronics - An introduction to microcomputer by A.P.

Malvino, Gregg Division, McGraw-Hill, 1983, Tata McGraw hill publ. con.

Limited, 1985
2. Microprocessor Architecture, Programming and Applications with the 8085

byRamesh S. Gaonkar, Prentice Hall, 2002

