Entropy Change in an Irreversible Process

Principle of increase of entropy

Dr Mamta Physics Shivaji College

Reversible $\int \frac{dQ}{T} = \int \frac{dQ}{T} + \int \frac{dQ}{T} = 0$ For inversible cycle $9\frac{dQ}{T} = \int_{1}^{2} \frac{dQ}{T} + \int_{2}^{2} \frac{dQ}{T} < 0$ $-\int_{2}^{2} \frac{dQ}{T} + \int_{2}^{2} \frac{dQ}{T} < 0$ $\Rightarrow \int_{XB} \frac{dQ}{T} > \int_{2} \frac{dQ}{T} - 3$ path B 15 ruversble Se dQ = SdS

$$\int dS = \int dS - \int dS$$

$$\Rightarrow \int dS > \int \frac{dQ}{T}$$

$$\Rightarrow dS > \frac{dQ}{T}$$

$$\Rightarrow dS \ge \frac{dQ}{T}$$

$$\Rightarrow dS \ge \frac{dQ}{T}$$

$$\Rightarrow dS \ge \frac{dQ}{T}$$

$$\Rightarrow dS \ge \frac{dQ}{T}$$

an isolated system ds=0 => S=Const Reversible ds[universe] >0

Entropy and Second Law of Thermodynamics

$$3 \frac{dQ}{dQ} = 0$$

$$3 \frac{dQ}{dQ} + \int \frac{dQ}{dQ} = 0$$

$$3 \frac{dQ}{dQ} + \int \frac{dQ}{dQ} = 0$$

$$3 \frac{dQ}{dQ} = \int \frac{dQ}{dQ} - \frac{3}{2}$$

Temperature Entropy (T-S) Diagram

 $Q_1 = Arua ABFEA = T_1(S_2-S_1) - O$ $Q_2 = Arua \ CFEDC = T_2(S_2-S_1) - Q$., Heat energy converted into work $= Q_1 - Q_2 = Area ABCDA$ = $(T_1 - T_2)(S_2 - S_1) - (3)$ The efficiency of count ingine $\gamma = \frac{\omega}{2} = \frac{Q_1 - Q_2}{Q_1}$ $=(T_1-T_2)(S_2+S_1)$ T_1 $(S_2 + S_1)$

Thank you