VORIRAN 77 Overdiew 103
Table 5.3 Mirsd-Maodds | yalicdion

ﬁi??ﬁ?;_;.m opiression aluation T Tiewalt e
‘i:‘(pp‘(\l‘ op renl Converl (he Hilegar Ly the eoive- Jtesl - |
apotiding real vilie and evaluate the
BEPIORRION
intoger op double Convert the hiteger Lo the corre- Double precision
precigion aponding double precigion valiue and

svilinte Lhe X TEEEIOH,
penl op double Exlend Whe venl Lo o double precision
precigion value (hy ndding zeros) and evalusate
Lhe expression,

Diouble precision

"5.8 | CONTROL OF EXECUTION

BN ARG L B RIS RS TRy

Control of execution means Lhe Lrangfer of execution from one point to
another in the same program, deponding on the conditions of certiin
variables. This may involve o forward jump thug skipping s block of
statements, or o backward jump thus vepeating the exccution of 4 block
of statements. This i known au conditional cxecution of statements,
Examples of such conditionnl execution are:

1. If the value is negative, skip the following four statements,

2. If the itom is the last one, go to the end,

3. Bxecute the following ten lines 100 times,

4, Bvaluate the following statement until a given condition s satis-

fied.

FORTRAN containg two central structures which could be used to
implement such conditionnl execution of statements. They are

1. TI-ELSI structure

2. DO-WHILI structure

Block IF-ELSE Structure

The block 1F-BELSE structure (also known as selection structure) consists
of a logical expression that tests for a condition or a relation followed by
two alternative paths for the execution to follow. Depending on the test
results, one of the paths is exccuted and the other is skipped. This is

Enter Enter
“als True ™ False
T Nl T
@Jck 1 Block 2 LBI()(:}(1]
e B Y s it ancand,,_._...,_._(\ e
Continue Continue
(a) Staternents In both paths (b) Statement in only 0ne path

Fig. 5.1 Flow chart of IF-FLSE structure

Scanned by CamScanner

il

<

104 Numorical Methods

tlusteated in Fig, 6.1, . ¥ b iy
The FORTRAN statemoent to code a bloel TF-BLSE structure takey gy,

form: . >
11 (logienl exprossion) THIEN = ‘
' statomont-hlock 1 11° bloelk
| BLISE — wmens oo
‘ 3 statement-block 2 o INLSE block
i D

The statement blocks may contain zero or more statements, If the logies)
expression is true, the program executes Hl,ul.(.mwnl,~hlmtk. .l and t,l‘u:n
goes to the statement next to the BEND 11 statement; if the !u;gu:ul
expression is false, the program executes statement-block 2 (skipping
statement-block 1) and then goes to the statement next to the Eup 1, 1

Relational Expressions

|} Relational expressions are meant for comparing the values of two |
B arithmetic expressions and have logical values .TRUE. or .FALSE. as |
g } results. Arithmetic expressions may contain single variable, simple

| | constant, intrinsic function, or a complex expression. In numerical
computing, we often want our programs to test for certain relationships ;
| i and make decisions based on the outcomes. We may use the relational

i | operators given in Table 5.4 for comparing the expressions., J
| Table 5.4 Relational operators 1
|| i
L Operator Meaning =

t LT, Less than i

‘ ‘ .l:lu. Less than or equal to
B .h(g. Equal to :
| ‘ .N'Is‘. Not equal to 3
| (:‘. l‘. Greater than 3
. GE. Greater than or equal to j
- Examples of rational operators are 4
1 { <
{ |1 1. IF(X .LT. Y) THEN 1
! PRINT * ‘Small jgr |
' 4
ELSE i
| PRINT * ‘Small ig vy 1
? END IF é
o 2. IF(TOTAL .GT. 1000) THEN |
HobE TAX = 0.15 * popap |
’ ELSE |

TAX = 0.10 * popap,
END IF

PRINT * ‘GRAND_TOTAL

- \

+ TOTAL + TAX

R i i N i e b

Scanned by CamScanner

FORTRAN 77 Overview 105

3. IF(C - D .GE. A - B) THEN

X =C-0D |
ELSE !
X = A - B }

END IF |
|

a = g z |
When arithmetic expressions are used along with | |
the relational operators, arithmetic expressions are

evaluated first and then the results are compared. B

Logical Expressions

In some cases, we may need to make more than one comparison. It is
possible to combine two relational expressions using the following logical

operators:
.AND. Both relations are true
L OR. One or both of the relations are true
.NOT. Opposite is true

Such expressions are known as logical expressions.
Examples of logical expressions are:

1. IF(SUM .GT. 100 .OR. N .GT. 20) THEN

ELSE

END IF
2. IF(AGE .LT. 30 .AND. DEGREE .EQ. ‘'ME’)

ELSE

END IF
FORTRAN permits nesting of IF-ELSE blocks. That is, we can place
an IF-THEN-ELSE code within an IF block or ELSE block.

Warning!
Be careful when comparing real values. They are never
exact!

We may also use the following relational operators in
FORTRAN 90.

< Less than

<= Less than or equal to

= = KEqual to

Scanned by CamScanner

108 Nuivencal Mathads

H .)
/o Not egual e .
| se Groater than or L"]lM‘ gy

= Greatar than

DO-WHILE Structure

The DOAWHILE stractire mlsn.lmmv.n_ﬂ‘ﬁ_ /‘”fl'“’j/f {‘f'-'l‘ut‘.l Wie) b,
set of aperations repeatedly while a-certayn coniitiog g 1,1, When o

A

S b ok |
candition is pot true, the repelilion ceases. “?.’»/ ‘Mnd i e,
implemented in FORTRAN hy the NO statement. T TS s u‘
DO statement 18 .

DA i3 = ":‘I' x_ﬂ,_'_, £3

Body of the Joy,

<l
i

i CONTTNUE

where
i number of the last statement. in the loop
i laop contral variahle
<, initial value of the contral yariahle
< final value of the control variahle

<. increment value.

The control variable i may he a real or integer variahle. e parene
térs <, e, and &, may be real or integer variahles (o EADICSSIONS o
cofistiants).

The default value of . is 1, The logic of 130) loop is as follows:

L. initialise the loop control variable to the initial value -

2. test to see if the value of loop conteol variahle is Jess bhst OF &1

to the final value = 0000 s true, Continie the loon: miheryise €68

the loap a

4. execute the hody of the laap
o inerement the loop eontre i W
. P control variahle by

- 8o baclk to step 2 (heginning of the loop)
Chis can be written N pseudaeade fi rm as follows:

i = 8,
DO WHILE i <= €,
BLacue Shatemenra
1l = i *r &
EHD DO
Figure 5.2 shows a flow chart g
. S
ture, The number of times the
EXIT statement) is given by ¢

; , : () sErA
huwmg the excoutinn of the [0 #F p
v

l””..p B executed (unless porminats
he formyl,

m = f".?____:_l,_*‘f;,- t
e ——
€., i

. dn Or f.({u i‘ u"
T J I’

Scanned by CamScanner

FORTRAN 77 Overview 107

l Enter

DO n
__> .
1 e, e, e,

Body of Loop

Fig. 5.2 Flow chart for the DO loop

Examples of DO loop are
: DO 10 P = X/Y, 75, Z/10.0

10 CONTINUE

B DO 20 I = -4, 10, 0.25
20 CONTINUE

3. DO 30 N = 2, 20
30 CONTINUE

4. Do 40 J = 1, 100

IF (...) GOTO 50 (Exit from the loopj

40 CONTINUE
50

Warning ! |
Avoid the use of real variables for DO loop parameters. They §
cause roundoff errors and, therefore, cannot alwavs guarantee
the correct number of loop executions.

A DO loop can contain DO loops within its range. This is known as
~ nesting. When nesting DO loops, the inner loop must be entirely contained
Wwithin the range of the outer loop.

12 IR L A R A S TR R TS S S WP /TSI AV C VAR A G LSRN 34 FISRNEEES

Scanned by CamScanner

108 Numerical Methods

Examples of nesting DO Joops are

1. po 200 1 = 1, 10

———————
——

outer

¥
I'/’,",

. |
po 100 J = 1. 9 | |
PRINT *, I * J <-r——inner loop

s —————————

100 CONTINUE
200 CONTI1NUE
¥ po 500 1 = 1, 10 S
po 200 J = 1, 10— |outer loop
—~y—
200 CONTINUE
inner loops
O 300K = 1,9 ——
g
300 CONTINUE
500 CONTINUE
The general form of DO structure in FORTRAN 90 is:
. DO loop control
block of statements
| END DO
This is implemented in two forms:
Form 1
DO i = el’ e?" '.:_'3
END DO
Form 2
2 DO
13-l ;
(...) EzI?T S
END DO
- w—] Leave the loop
2. DO
"\
IF {vne) C¥Ctma - | Go to the beginning
END DO

B -

Scanned by CamScanner

W JANAINE L 7 iyt s ggf

One of the festures of sy tauders BTSRRI, MBS & A st aisin
for ,{!!!)l&ill)‘:fl‘_‘!me. B SUDDIOBIBa it £ bt s Bttt il ticia s
called 1t operuiion by yther Drogrmne Supup At s Asze iy e 3
,iil nl}ﬁlﬂl'&(:ﬂl ‘i'J.lif.)‘_pl,u’jnu (‘J"’ ‘uii*.r ho,i";* ik i's‘ﬂt.'!.'/'f';lﬂﬁ- < & $yat et Lrint 'i,;/.‘ o 2
multiphication, sorting, reading 2 table of wiliise . priing 4 25t #2
The concepl of glﬂ)lﬂv}'cuuu whows e W szl 4 A4 Arttiglecr 50 rid s
vy Sllbt-‘dt‘-k& 50 thal we 1Dy Cidy suu; nu«)ycw)caﬁ,; il s Wipgiads
them into 2 Sj"“lf)h" Progroas FAOWY 71 griiuse i tgia iyt ","‘f‘tﬁ;ﬁ?.
subproxramc cun he jildt;:ﬂoqgsa'ﬂ by {d'h:‘} aug, oufd . g et
Bubprograms are usuzlly called muduler st S prganntinng 23570501
umng modules is called m//dué U PIGBOACIAE,
7 PORTRAN supporis two kinds of subprugeaas, sy Junsisns 2t
subroutines. A function subprogras st % it sedisis o S it
,proordm while 2 subroutine sUDpProgram car COTUPLE ZUL 22T s
values.

Function Subprograms

A function subprogrzm (or mmp)v 2 funetion) s gy infeperul o
unit written 10 wmom 2nd return 2 siughe valus. 12 Sgins e Folaswing

form: -

(zrgumecis

type FUNCTION name
Declaration of zrgument 1ypet |

Faeoifion $sTss

A\

orifies the type of the $unrtion valne TiEr F DEInE et
and arguments are dymmy varigies “hae st be fgecmrer fur deEr
type inside the function. They may vary i pumper Fomw ZErT I TEmy
There should bz a1 jeast one statement of ine {orm

where L€

41~

o T, Ty

name = SUPIBREELDT

which assigns a value of appropriate Typs 107 “he fnmeton TETE. WIS B
in turn returned to the calling prougram.
A function czn be ¢ czalled ze folipwe:

- =
yYigple = 4

When the function is czlied. $he vaines of The argumenE I “ne ralime
statement are assigned 10 the corresponding argUIuETE ar e foneum
header. The arguments, therefore, must agz== fp prisr. MUMTET @nC
type. An argument ImaY be a varidble mame Hp STEY DEDE. O F
subprogram name. Example:

n

Scanned by CamScanner

A

110 Numerical Methods

ey }‘M'&I} Mul, =———— MUL declared in majp,
IER! Al .‘..'-. R, . MUl
T-‘!"\k‘i“ * .:'\. B ". UL
alling M
R = MUL(A, B) «——— Calling
PRINT * R
END
i S .
AEAL FUNCTION MUL(X, Y) =<————— MUL defined
| REAL X, Y
‘ M X % y

When an array is passed as an argument, then its corresponding dummy
argument should b i

S size must be declareq
properly. Note that g function may be called and used in an expression,
like any other variable. Example:

&
Subroutine Subprogrqm

A subroutine, unlike a func
\ D

tion which always returns only one value,
can r

eturn many values (or no values), Therefore, We use a subro
when either several va

lues are to be Computed and returned or

R=A*MUL(A, B)
gy 0 N B

utine
no values

SUBROUTINE name

(argumen ts)
Declaration of argum

ents

\

RETURN

END

where name is the subroutine nam

¢ and ar By
that must he declared for their ty Juments are

Wi dummy variables
;: Pe. Whep ubrout;i B
§: the ‘entheses are Omitted (not outine has ng ay gun

! ———_ JMitted

P e 0 S o Oy tlleses
B areﬁecessarywwLm are 2 T f functlon, paren
b are returned to the callM

fogram } hQQuLMs of subroutine
! . : "am : * ULS of subro
L A subroutine can he Invokeq using the CAL()f the arguments.

_ L statement as follows:
CALL name (arguments)
or

CALL name

The actual arguments in the

one manner with the order anq

alling SEateme
Example:

; Nt must agree in a one-to-
type of the gy

guments in the subroutine:

|
|

Scanned by CamScanner

| wherever possible.

FORIRAN 77 Overview 111

PROGRAM MAIN

REAL A, B, R

READ * , A , B
CALL MUL (A, R, R)

PRINT *, R l I A
END e e

y V
SUBROUTINE MUL(X, Y, XY)

REAL X, Y, XY
XY = X ¥ X
RETURN

END

The g,n_lh,ng program assigns the values of A and B to the variables

and Y in the subroutine which in turn assigns the value of Xy (computed

in the subroutine) to_the variable R. Compare this with
subprogram. ~¥ SR

the function

Note that the variables that are not passed as arguments may be

passed to the subroutine using a COMMON statement.

e

subprograms are designed as follows:

FORTRAN 90 greatly extends the power of function subprograms
by allowing the result to be an array or structure.

Function

FUNCTION name(arguments) RESULT (result

Declaration of arguments and result-variable

result-variable = expression

END FUNCTION name

variable)

that is to be returned t
a variable name that h -
with the RESULT keyword, immediatel
Both the arguments and the result-vari

as been placed like a function

Instead of function name, the result-variable is assigned the value
o the calling function. The result-variable is

ately after the function name.
able are declared for their

types.
n FORTRAN 90, all programs and subprograms use

argument

Note that, 1

am or subprogram in the END statement as

the name of the progr

follows:

END FUNCTION F

END SUBROUTINE SWAP

END PROGRAM SORT
FORTRAN 90 also includes featur

keyword-identified arguments an
powerful compared to FORTRAN 7

es such as optional arguments,
d array sizes which are very
7. These features must be used

Scanned by CamScanner

e ———

112 Numerical Methods

FORTRAN allows us to write out a fqrmula for a l‘"unct'ion and e
using the assignment statement inside tlée progx‘ahm. I5e (ingg
using an “external” function subprogram). ince suc functions 4.
line” functions, they are called statement functions. A stateme
is defined as follows:

rFllncﬁon-nﬂme (arguments) = expression

where expression is the FORTRAN expression of the formula (or function) ;
to be evaluated and arguments is a list of variables used in the eXpressigp
The arguments are simple integer or real variables. Examples:]

3.1416 * R * R

J *
R) RN

¢ “0 ‘
= f“"Ction E

AREA (R)
VALUE (P, R) « P ¥ (1.0 + q
POLY (X, ¥, M, N) = X ** M + Y #** N\
A variable which appears in the expression but is not defined g an 3
argument is called the parameter of the function. Values of such variableg
should be defined before using the function. :
The function can be used in any subsequent lines of the program by -
writing the noiae of the function with actual arguments, like :

CIRCLE = AREA(X)

FVALUE = VALUE (AMOUNT, INTEREST)
POLY] = POLY (A; 2+ B; 2)

RING = AREA(X1) - AREA(X2)

Note that the functions can be used on the right side like any other
variables. The actual arguments may be variables or constants (or even
expressions). However, they must agree in number order and type with |
the dummy arguments in the function definition statement. 1
A statement function may use other statement functions if they are
defined before it. Like function subprograms, the statement functions
must bG declared for their l-ype in the program and dcﬁned after ﬂ“ ¢
declarutions, but before the first executable statement. '

~ [8.10] INTRINSIC FUNCTIONS

In numerical computing, we use mathematical functions like lognrith“‘?ﬁ
square root, absolute value, sine, etc,, very frequently. FORTRAN suppart®
a library of such functions which can be invoked il\'()lll- rograms. Since
these functions are part of FORTRAN they are also call)lod intrinsic O 3
built-in functions. An intrinsic function can be invoked by simply typin 4
the name of the function followed by ‘the avgirise yt enclosed 1§
parentheses. Example;) BEgiiatiee = i

ABS(X) COS(THETA) SQRT(x + y . v * Y

r R 3
The most co O art
] h Oma1 4 S -a ‘ 1 3 o
; e Ins “mml) used intrinsic mathematical function® :
summarised in Table 5.5. When usi : TRLE.L e
' Sing any of these functions, 11 " %y &

practice to declare them usine : in
: . sing the INT SIC statement
declaration section. RINBIG staer o

Scanned by CamScanner

