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Icle changes with ¢

¢ Position of the osc
at th

. ; i« motio
a particle undergoing simple har momchase bi
ime as z = g cos(wt + ¢), where the p o
illator is not known. One therefore has to T

® Position of the oscillator lies between 7 and z + dZ- enzand 7+ dz. Find

s expression, determine

(a)

i : etwe
This Probability must be proportional to the time the oscillator Spen(lijssil:lg thi
the speed of the oscillator at position 7 as a function of z,w and Zo. ¥ g

® Probability p(z)dz that the position of the oscillator is between Z a0

the phase space
Let the energy of the oscillator lie between E and E + AE, where AE << E:b?ki:!d}on. l\r;ext, ‘
and the region accessible to the particle, calculating the volume of the access! e g]osit:ion of the
compute the ratio of the volume of the accessible phase space corresponding t0 the p

i - : does
particle lying between  and z + dz and the total volume of the accessible phase space. Wha
this result signify?

(b)

Problem 2: Consider an isolated system of four non-interacting spins labelled 1, 2, 3, and 4, each with
magnetic moment m, interacting with an external magnetic field B. Each spin can be parallel (‘up’) or
antiparallel (‘down’) to B, with the energy of a spin parallel to B equal to € = —mB and the energy of a
spin antiparalle] to B equal to € = +mB. Let the total energy of the system be £ = —2mB.

(2) How many microstates of the system correspond to this macrostate? Enumerate these microstates.

(b) What is the probability that the system is in a given microstate in equilibrium?

(c) What is the probability that a given spin points up? Use this probability to campute the mean
maguetic moment of a given spin in equilibrium.

(d) What is the probability that if spin 1'is ‘up’, spin 2 is also ‘up'?

Problem 3: Consider a system of four non-interacting distinguishable particles, with each particle
localised to a lattice site. The energy of each particle is is restricted to values € = 0, €0, 2€q, 3¢y, .... The
system is divided into two subsystems A and B, subsystem A consisting of particles 1 and 2, and B

consisting of particles 3 and 4 respectively. 4 and B are initially thermally insulated from each other,

with energies E4 = 5¢p and Ep = €. What are the possible microstates of the composite system? Now,
suppose the two subsystems are allowed to thermally interact with each other, so that they can exchange
energy without the total energy of the system changing. After equilibrium is attained, enumerate the

possible microstates of the composite system. In equilibrium, what is the probability that subsystem A

has encrgy Eg, for ' =0, €9, 2¢g, .., 6697 For what value of E4 is the probability maximum?

1.2 Entropy and Thermodynamic Probability

Problem 1: Consider a system of N particles (which cm_xl‘d be interacting with each other) with energy
E and occupying & volune V. The entropy of the system is known to be extensive. Suppose the energy
of the system is changed, such that the new energy is AE, where ) is a multiplicative factor. Can you say
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that the new entropy will be AS, where S is the original entropy? If not, what other changes will be

needed such that this is true?

of which can be in quantum

Problem 2: Consider a system of N >> 1 weakly i ing particles, each
Y interacting p temperature of the system

states with energies 0, €, 2¢, 3¢, .... Given the system has a certain energy, the
is given by

05

0E

AS

AE

where AS is the change in the entropy of the syStem due to the change in the energy of
AE.

4
T

the system by

(a) If the system is in its ground state, what is its entropy?
(b) If the total energy of the system is €, what is its entropy?

(c) What is the change in entropy of the system if the total energy of the system is increased from € to
2¢7?

(d) Given the above definition of temperature, what is the temperature of the system if its total energy is
€?

Problem 3: A system of four weakly interacting distinct particles is such that each particle can be in
one of four states with energies €, 2¢, 3¢ and 4e respectively. If the system has total energy 15¢, what is
the entropy of the system? For what possible values of total energy is the entropy of the system zero?

Problem 4: Consider a lattice of N non-interacting distinguishable particles, with each particle localised
to a lattice site. The energy of each particle is restricted to values € = 0, €9, 2¢€0, 3€p, .... The system is in
equilibrium.

(a) If the energy of the system is E, what is the number of microstates of the system?

(b) Find an expression for the entropy of the system as a function of energy and simplify it using
Sterling’s approximation Inn ~ nlnn —n forn>> 1.

¢) Using the relation
(c) g . B

T OE
determine a relation between the energy of the system and its temperature.

Hint: The problem of determining the number of microstates can be reduced to counting the number of
ways of arranging a certain nurnber of sticks and a certain number of dots along a line.

1.3 Maxwell Boltzmann Distribution

Problem 1: Consider atomic hydrogen in thermal equilibrium at temperature T. Estimate the ratio of
the number of atoms with energy E = —3.4 eV to the number of atoms with energy E = —13.6 eV for

T = 1000°K.
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Pl‘Ob]em 2

mal equilibrium at
t System of N weakly interacting particles, each of m
®Mperatyre T.

is in ther
asi nsl(,a top and bottom surfaces are
o}

. i , W i is set up
The system is contained in a cubical box of side L is g. A coordinate s?rstem. : tion
Paralle] to ¢pq Earth's surface, where the acceleration due to gravity ~xis along the vertical direction,
ith the OTigin at, the centre of the base of the box and the positive 2

2<z<Lf2, ~L/2SyS L/
Such that the ranges of coordinates accessible to any particle are —L/2 £ T =
0<z<1L.

d
) - nge (v::"w"Z) =
(a) What is the probability that a given particle has velocity in the rang

(2 + dug, v, + dvy, v; + dv,)?

(b)

?
What is the probability that a given particle has z coordinate between o
) . and ¥y + dy!
(c) What is the probability that a given particle has y coordinate between y ]
. d z + dz?
(d) What is the probability that a given particle has z coordinate between z an

istributi ineti otential energies of a
(¢) From the sbo probability distributions, calculate the mean kinetic and p
particle.

Problem 3: A two-dimensional solid at temperature T contains N negatively c.harged lrllllplllrfty 0ns per
unit area, the negative ions replacing some ordinary atoms of the solid: The solid as :a’w ? e l:,ith s
electrically neutral, since each negative ion with charge —e has in its vicinity one p.osmve l(?n o
+e. The positive ion, much smaller, is free to move between each of the four equidistance s.ltes 4,5, A
and D surrounding the stationary negative ion, as shown. The spacing b?.twc_cu the these sites s a a.n
the energy of interaction of the positive ion with the stationary negative ion is —¢g for cach lattice site

E

L9,

(2) What are the relative probabilities of the positive jon being found at the four lattice sites?

(b) The solid is placed in a regi » as illustrated above. Taking
the origin at the location of the negative ion, determine the interaction ener
external electric field at the four lattice sites

(the interaction energy is By = —p. E where 7 is the
dipole moment of the system).

eraturc and the external
electric field I,
(e) Calculate the expression for the polarisation at

‘high’ temperatures. What temperatures are ‘high'?

: pcnded from the spring. The
ect iy . ent which iy gt temperature T, and gets ‘kicked’ around by it, reaching
equilibrium with the environment, ; ‘
——— iy,
K‘\_ '
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1. What is the potential energy of the system if the spring is extended by z?
2. What is the probability that the spring is extended by z relative to its equilibrium lengt b
3. Calculate the mean extension 7 and the mean squared extension (z — T)2.

4. C?m}paring the square root of the mean squared extension with the mean extension, extimate the
minimum mass that can be reliably measured.

1A Paréideiae T _ar rr .~ .. — .
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