One Dimension Infinite Square Well Potential

dimenzional box Inside the box the parhicle 1= free buf expenences a sudden
large force directed towrards the ongim as 1f reaches the points x = +a. Therefore,

the potential enersy for thys problens 1=,
0 |x|l=a
Fix) = (7.1}
= |x|>a
The potenfizl 1= shown m Figure 7.1.
= .I-[,l:] o
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Figure 7.1 The one-dimensional infinite square well potential.

In order to find the sipenfimctions and enerzy ergenvalues for thus system,
we have to solve the tme-mdependent Schrdinger aquaton

&3 d!
-2 - Mwe) = Eve) 7.2)
Sm.ceﬂleputental;mtgj 1= mfimate at x == a, the probabulity of finding the
particle outzide the well 15 zero. Therefore the wave funchon W{x) must vanish
for |x| = a. Further, since the wave fimehon noist be continwous, 1f must vanish
at the walls:

wix) =10 at x=%a (7.3)
For |x| = a, the Schrodinger equation (7.2) reduces o
hE gy
S— = E

2m dx’ v

Aty 3 s ImE
— +Fy=0 = T4
or o w=0 e (7.4

The general solution' of thi= equation is
wix) =4 sin kx + F cos kx {7.5)
Apphang the boundary condition (7.3), we obtan at x = a,
Asnka+Bcoska=0
and at x = —a,
—AdAzsmka+EBcozska=1
These equations grve
Ammka=0, Beoska=1{ (7.8}

| The general solution can alse be wriften in the complex form: w = dexp(ikx) +
Eenp(-iEkx). However, in the present problem i is more comwenient to use the real
farm (7.3).



Mow we cannot allow both 4 and B to be 7ero because this would give the
phyzically unimtercsting trivial solwtion gix) =0 for all . Also, we canmot make
both s1n kg and cos ka zoro for a given valee of & Hence, there amc fwe possihble
classez of solutions:

Faor the first class,
A=10 and cos ka=1
and for the second class,
B=0 and s ka =10
These conditions are sati sfied 1f
nx
ka= =R (7.7}

whore » 15 an odd integer for the first class and an even integer for the zocond
clags, Thus, the sigenfunctions for the two classes are, respectively,

wntx}=ﬂcus?. n=135,...

i

and wn{x}=Asin"E"” o=248, .
o

In order to nomalize the agenfunctons, we apply the condition
[ vl i = 1
Thz gives
Azr sin® 228 g = .E'Er cos? E =1
-a 2a -a 2a
Sobving these mtegrals we obtam

A=B=lija (78]

Thus, the normalized cigenfunctons for the two classes ame, respectively,

1 nmw X .
i, [ ) =—=ros ., m=135.. (7.49)
md T
i L) =:|.;5:|n PR n=245,... (7.10)

[t may be notad that 1t 15 unncceszary to consider negative values of n bocause
the resulting solutions will mot be hncady indopendent of those comezsponding
to posttive values of .
From (7.7}, the only allowed valuez of & are
o

o= 0
- Eal

n=123,. (7.11)



Using (7.4} and (7.11) the energy cipenvalues for both the classes are
oiven by

B .I'.lz.ﬂ:j B matht

1 Em Er. H:],E.a...- {?I..l]

Thus, the encroy 1= guaaized. The integer » 12 called a guansem number,
There 1z an irfinie scquence of discrefe energy levels. There 15 only one
cgenfinction for cach level, =0 the encroy levels are nondegenerare,

[t can be casily shown that the agenfunctions w(x) and wlx) comespond-
ing to different eigenvalues are orthogonal:

L
[ valdy,lxd =0, men
Combinng orthogonality and normalhzaton, we have the arthonormality
condition;
S
[ waldp,inde= Gnn (713)

The first four encrgy levels, cigenfunctions and position probabihty
densitics are shown in Figures 7.2, 7.2 and 7.4, respectively,
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Figure 7.2 Enagyevel diagram.

Connection with the De Broglie Hypothesis

[t 1z interesting to note the connection between the cigenfunctions of the infimate
square well and the de Brog lic hypothesis. The de Brog hie wavcleng th for the sth
quantum state 13
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Figure 7.3 'Wave functions. Figure 7.4 Prohability densities.

This shows that the mth quartum state = obtained when n'2 de Broglie
virvelengths can fit info the box

Also note that the nth eizenfimction has (n — 1) nodes wathin the box. Ths
followes from (7.9) and (7.100.

Zero-point Energy

I 15 mportant to note that the lowest posaible energy, also called the zero-poimt
enerEy, 15 not zero. Thas fact 15 m agreement with the wecerfaimty principls. By
trappmg the particle n a bmited region, we zcquire mformation about 1ts
posthon. Therefore, s momentum cannot be known with complete precision
Thiz prevents amy possibibity of the parficle bemng at rest. Hence the lowest
enargy carmot be zero.

The posthon uncertainty 15 roughly ziven by Ax = a. Therefore the ninirmany
momentum uncertamty 1s Ap = hfg. Ths leads to a mumnmmn knefic energy of
order h%/ma’. Equation (7.12) tells us that this agrees, qualitatively, with the
value of E;



7.2 THREE-DIMENSIONAL INFINITE 5QUARE WELL

The discussions of sechon 7.1 and problem 7.3 can be easily generahized to the
case of a particle mn a three-dimensional box. This problem 15 more closely
related to actual phy=cal systems.

Lat us conmder a particle of mass m constrained to move 1o a rectangular
box shown i Figure 7.5, The ongn 015 at one commer of the box and the lengths
of the box along x — ¥ — and z — axes are a, b and ¢, respechively. Inside the
box the potenhal energy 15 zero and outside it 15 mfinite.

The time-independent Schrédinger equation mside the box 13
- = Vyix, 3. )= EW(x. 3. 2)
2m
Ty Ty Oy  ImE,_p (7.23)
dx” v = ki

whach 15 to be solved subject to the condifion that W (x, ¥, =) = 0 at the walls
of the box.

or
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Figure 7.5 Three-dimensional box.

This partial differential equation can be solved by the techmique of
separation of vanables. We assume that the fimetion ¥ (x, 3, z) can be wiitten
as a product of three funchons each of wlich depends on only one of the
coordinates:

¥ (x, ». 2} = Ax) T0) 2E) (1.24)
Substitwtimg into Equation (7.23) and drndms by X122, we get
2 2 2 -
14X 147 i£_£=|} (7.25)

Mote that each term of thos equation 1= a functon of only one of the independent
vanables x, ¥, = and the last term 15 a constant Therefore, this equation can be
vahd only if each term 15 a constant We wmte

Lt
1 d°F
?F = _kE (7.27)
1d4°2 3
zi5-8 (7.28)
where &, k,, k are constants. Equation (7.15) reduces to
E+E +k= 1;1? (7.2

Each of the three Equanions (7_28), (7.27) and (7.28) depend= on only one
of the vanables and therefore can be sohred eazly Equation (7.28) can be
rewTitten a5

d-x

d‘:’

+EX=0 (7.30)



The general solubon of ths equation 15
Xx)=4dsmEkx+Beos kx

The boundary condihon X{0) = 0 makes B = (. The boundary condition
Xia) =0 grves

ka=mnm
- BT 103 (731)
a
Thus the normahized solution to (7.30) 15
2
Xx) = (csin 20 wo=1,2,3. (7.32)
| a a
Similarly, for ) and Ziz) we have,
"I
k}.=T, ?'I'J_.= 1: 2, 3. E'."_ﬂ].}
O LA (734)
M=z 8=~ m=L2L3. -
k‘ = E M, = ].: 1, 3,... E-'I-SS:'
c
T mm:
Z= S sm="2 m,=1,23,.. (7.36)
Ve e

Combinmg (7.32), (7.34) and (7.36), we obtain the normalized eigen-
functions:

g
wﬂ.r-np-ﬂ.r EI‘ '}I‘ :}=|.
where m,, m, n, =123

Mow, substitwhng (7.31), (7.33) and (7.33) mbo (729) and rearrangms,
we get the expreszion for the enersy E as

Tr
. mgx . MAY . naz
| s sm s —=
b ¢

— T.37
o (7.37)
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E =

Ag MAypin

(7.38)

Hote that there are three quantum numbers that are necessary to describe
each quantum state. This 15 a general property of all three-dimensional systems.
For the ground state m, =n_=n, = 1. However, the set of quantum mimbers
which defines the first and the lngher states depends on the mlative magmaindes
of a, b, and c.

Let us consider the sumplest case of a cubical box. Then a =5 = ¢ and the
energy eigenvalue: become

251
= o O 1 ) (739)
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Figure 7.6 Finite square well (first type).

The square well potentizl shown m Figure 7.6 15 miven by
0
O R (7.42)
W lxl=a
Consider a particle of mass m moving in this potenfial with energy E. We
shall consider the case when F < V. The particle 1= then confined m a bound
state. In the other case, when E = Fj the particle 1= unconfined This sriuafion
15 relevant m the seattering of a particle by a potential Sweh problems wall be
discussed m the next chapter
Inside the well the tme-independant Schridinger equahon 1=

hE d’lw _ )
T 2w dx’ = £V, | = a
dzw ~ = 2mE
+ k=0, E = 743
ar = W e (7.43)
The general solution of this equation 15
Wix}) =4 sm kx + B cos kx (744
Onitzide the well the equation 1=
at dhy _
Im dxl + Fow = Ey, x| = a
d - 2 _ 2m(F,—E}
or e Ey=0 E-= &—':2 (745}

Since Fp = E, the quantity K7 is positive. Therefore, the zeneral solution of this
equation 15
wix) = O = Dgh* (7.46%
Mow, the wave fimction should not become mfinite as x — == Therefore,
we must take O =0 for x = — @ and D = 0 for x = a. So, the wave fimchon
can be wmtten as
De™ X< —a
Wix) =4 Asnkx+ Beoskx —a<x<a (7473

K
Ce x>



The requiremnent that ¥{x) and JyWdx be contmmous at x = — a gives

— 4 sin ka + B cos ka=Dg™e (7.48)
and kd cos ka + kB sin ka=EDs™ (7.49)
Sirmlarly, the contmuty of Wix) and dyw/dx at x = a gives
A sm ka + B cos ka= Ce™ (7.50)
and kA cos ka — kB sin ka=— KECa™*e (7.531)
Equations (7.48) and (7.50) grve
24 s ka = (C-D) a™* (7.52)
2B cos ka=(C+ D) g™ (7.53)
Equations (7.49) and (7.51) grve
2kd cos ka=-K(C-In) g™ (7.534)
2kB sin ka = K (C + D) &4 (7.55)
Equations (7.52) and (7.54) yeld
kcot ka=-K (7.56)
unless 4 =0 and C = D. Simmlarly, Equations (7.53) and (7.55) weld
kEtam ka=K (7.57)

unless BE=0 and O=—-D. R

Elimunating K from (7.56) and (7.57) leads to tan” ka = — 1 which 15 not
possible because both & and a are real. Therefore, these two equations cammot
be valid somultaneously. Thus, we have two classes of solufions:

For the first class

A=0C=D and kEtan ka=K (7.58)
and for the secomd class
E=0,C=-D and kcot ka=—-K (7.59)

Eigenfunctions
The sicenfimctions of the first class are given by

Ce™ X< —da
Wix)= Beoskx —a<x=<a (7.60)
Ce ™ x>a

The sigenfimctions of the second class are given by
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Figure 7.7 Graphical determination of the energy levels for a square well potential.

In the imiting case of mfinite square well, Fy — = In that case 17 — ==
The moots of Equations (7.62) and (7.63) wall then be

f=2r m=L2.
Since E=ka=(mEh""? a we get
ImEa’ _ it
i? 4
nirlht
o E= Bma’

which 15 zame as the earher result (7.13). Further, & — = when Fy — =
Therefore, the e1igenfunchons {7.60) and {7.61) will vamsh for x| = a a5 1= the
case for the mfinte square well (section 7.10

7.4 ONE-DIMENSIONAL FINITE SQUARE WELL
(SECOND TYPE)
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Figure 7.8 Finite square well (second type).

We shall diseuss the case E = Iwhich zives nise to bound states. Inside the
well the ime-independent Schradinger equation 1=

ntodw i
Im d Fow =Ey=—|Ely, |x|<a
2 » 2m(F,-|E
or ::‘f s dy=0, -E!!'=—m{::2 =D (7.66)
X

Here |E| = — E 15 the binding energy of the parbicle in the well. Smce
Fy = |E|, the quanfity o is positive. Therefore, the meneral solution of this
equation 1s

Wix) =4 s @x + B cos @x (767
Chitzide the well the equation 15
ntodty
—— =_E = — _E =
T 30 v=—|Ely, kl=a
d . 2m|E
o Xpv-o p-E (7.68)
The geperzl solufion of this equation 15
wix) = CeP*+ D )

MNow, the wave fimction should not become mfinite a5 x — = <. Therefore,
we st take =0 forx < — g and D=0 for x = a. 5o the wave fimehion can
be wrften as

D AR
Pix) =4 dsimox+ Beosilx —a<x=<a (7.7
e P T>d

Imposing the requrements that ¥{x) and 4y'dx be confmuons at x == a
and canmying cut the samse manipulations as in the previows sechon, we obtain
two classes of solufions.



The eizenfunctons of the firsr class are zven by

Cce™ X<—da
Yix) =+ Beosttx —a<x<a (7.71)
Ce ™ X>a
The eizenfunction: of the zecond clazs are Ziven by
e x<—a
pix)={Adsmox —a<x<a (7.72)

~Ce ™ x=a

The energy level: can be found by sohang the squatons
Etanf=n
E cot £ =—i

where £ = fa and 1 = Ba. These equations can be solved to obtain the energy
levels followang the same procedure as m the previous section.



