bd A Tevthook of Plusical Chemisoy

Example 1181

Saolunon

Example 1182

Solution

Problem 1.18.1

Solution

|
f ity pressure |51 full to one-half of its vy f

Determiine the molar mass of @ gas I“IE g
vertical distanee of one Kilometer ab = t ll

'|

From the given data, we wic

pep/t h=i0"m and g =9807ms

Substituting these values:in the expresgon

7=, exp —Mygl/RTY
I
Le M= H_ |;|-| _'n
gh My

(BIMIK "ol 1) (298K) [ I J = I75.)g:mol™
s 2

Wi g M= St
(807 m s " M10-m)

Caléulate the pressure of o barometer oo an aeroplane which is at an altitade of 10 km
Asume the pressare 1o be 101,325 kPa at sca level and the mean temperature 243 § |

From the given data, we have |
I

Lise the average molar mass of air (80% N5 and 20% 0.).

Py = 101325kPa, h=10km=10"m, T =243K

M =08 (0028 kg mol™") £ 0.2 (0032 kpmol™ ) = 00288 kg mot™!
Subsiituting these values in the EXPIession Prc

£ =p, expl— MplURT)

o ~1 ] 4
weget P =(101.325 kPu) expl - (L0288 kg mol " H9.807 m <2 )10 m}
(83141 K" mol™ y243 K)

= (101,325 kPa) (0.247) = 25036 kP

If the compression factor of a gas s Ap, 1), we write equaton of state as pVInRT =2
Show how this will affect the equation for the distribution of the gas in a grnmau

feld. From the differential equation for the distribution, show ihm i Z= he
distribution is broader for a real gas than for an ideal gas and converse is u'uell‘ Z< I
= =1 + bp where b is a funetion of temperature, Integrate the equation and evalume the
constant of integration to obtain the explicit form of the djs'h-ihuﬁﬁn function. |

We have dp= — gp

Since pV=ZikT =22 RT, weobtain I _m =
M ZRT v =P
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Therefore _ W2 _ Mg
p - zrr

For Z> 1 ihe 1o
™ MgiZk
an ideal gas, hepee 1}:: d'.-_r- for & real gas will be less tha the comesponding term fof
Lstribution will he broader for ihe real gas. i 7 < [F”“, Leri

Is greater for g peg)
o 2as than .
nol a8 broad gy that of an mcl:]';:_,lﬂhd gus and hence the distribution of & real e

".Zz I = bp!“'fh.n_\re

dp=——_P Mg L+ b .

sl P My
(. + bp) RT o d‘"[T "'Elul
d
or e 4 M L

P +bdﬂ-‘-"—g—dlr or i{ﬂ{?—‘+hdp=—ﬂml

RT Lplp=1 RT

w - ) A
here p® is standard unit pressure. Integrating this, we have

tﬂiﬂp':jq-bp;_.% iC

The value of constant € is oblained by substituting p = p, & h = (. Thus
C=In{p,/p°) + bp,

The resultant expression becomes

p Mgh
I, =— +Mp-p)=s ——=
i RT
Problem 1.18.2 The wemperature of air decreases linearly with altitude in accordance with the equation

T = T, — ah, where a 15 & consian, h is altitude, T, is temperature at ground level and
T is lemperature at altiude h. Denive a modified form of the barometne equation taking

into account this temperature dependence on altiude,

Solution We have dp= - pgdh
M
that is dp=—%,:sdh
dp _ i‘fijﬂ
or I"‘;" R T

Now, since T =T, -ah, we citn wrle

i = ~adh or dhedli-e)

R Iacingdhjnmnmuld'fin the above equation, we gt
epia
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-
. dr
J-r,#. I";‘:'JF_-I_ E:—ﬂi"”— T

TSR a1 ek dy T
]
el P ak i

In terms of height, we have
Pﬂ;} Mg J.“ cdh -
n,_j': 4 R Jy i?."r_ﬂ'ﬁ]

s T, —ah
i.c In £ = I'H"l In : J
: 5 Ra A

1.7 MOLECULAR COLLISIONS IN A GAS

Collision Cross-
Section of
Molecules

Fig. 1.19.1 Collision
cross-section of a
muolecule

Expression of
Number of
Collisions

molecules to be rigid, non-interacting, and spherical with diameter o 1y is ale

W

While considering collisions of the molecules among themselves We assume g

assumed that all the molecules move with the same average speed i

Two identical molecules of diameter & will Just touch each other when
distance separating their centres is o. Thus. a moving molecule will collide
other molecules whose centres come within a distance of o from its

The quantity (ro?y is called the collision cross-section for the rigid .
molecule. From Fig. 1.19.1 it is obvious that this collision CTOSs-section i _
area of an imaginary sphere of radius o around the molecule within | ;
centre of another molecule cannof penetrate. T

y Colhision Cross-section

The volume Swept by a single molecule in ypj time js

V=g

If ¥* is the number of molec

23 ules per unit voly
Within the volyme Vs Somia

- then the number of mofe
N=pne = {;r[ﬂ'zif}'},-'t
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Hence, 1h
' Cn - "
ember o collisions made by a single molecule in unit 1 ill be
me wi

£y =N = (T i) N*

So far, it
mOvemenis of o1 mul-:cu.}u owever, this is not true. In order to account for the
tine of centres of ki m"_} ane must consider the average velocity along the
single molecole. it i & 5 l INg molecules instead of the average velocity of a
15 assumed that, on an average, molecules collide while

apprlmf.‘hlng each oth 1 al

er perpendicularly then the av 14 ' '
- v, average velocity
centres 1s JZE as shown below S

Number of collisions: made by a single molecule with other miolecules
per unit time is given by

Z, =no’ (i IN* = J2notia N* (1.19.1)

The total number of himolecular collisions Z,, per unit volume per unit
time is given by

ZH

i

2 N

(1.19.2)

| s I T= i
or Z E[ﬁnazu NON® = X0 N

(Note that the division by two is essential since the simple multiplication of Z,

uld count every collision twice.) N
o N*I;v tﬁe collisions involve two unlike molecules, then the number of collisions

Z,, per unit volume per unit time is given as

8kT (1.19.3)

— ; a——_ HN-&
z}z,.*.lmﬁ( “#J B

here N, and Ny are the number of molecules per unit volume of the two
w | .
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types of molecules, &, |5 the average diameter of the 1wy Molecyley 1 X
= (o +e:)1/2) and y is the reduced mass such thal :

1 I 1

e ey Ry

4

The Mean Free Path The mean free path is the average distance travelled by

a molecule by |
weo. successive collisions. We can express it as follows: 1

4= Average distance travelled per unit time 1
" No. of collisions made by a single molecule per unit time
u ' Ex
= z
Sex
Substituting Z, from Eq. (1.19.1), we get
7 |
4 " = ! (1.19.8
Varolant ~ araine

Example 1.19.1

Calcuiate’ the values of o, A, £y and Zy for oxygen art 298.15 K s the pressure of
101.325kPa, given van der Waals constant b=3.181 x 10? dm” mor?.

Solution Number of molecules per unit volume,

101325 % 10" P z
""""="r.3h=—'* 3 %I-;xl , :'} - =246.157 2 102 m~2
AT (1380 6% 107 1K ' )/(298.15 K)

The van der Waals constant bos
4 4
h:il.“'ﬁl‘_\(inr J

35 )7 3X3UBIXI62 d i V2
Thlvlhi r:(—-—n— =[ g 2 d—'ﬂﬁ.mﬂ
167N, 16 %3.14 % 6.022 % 10° mot™

= 1467 %107 dm
Therefore

G=2r =293 10" dm =2.934 % 1070 1y
Average speed,

= [SRT _ [BB314 1K mol )20k 1550 % -
. (3.14) (0.032 kg mol )

Mean free path,

A=

|
\Eﬂﬁz.ﬂ"*

S e = 1.06 %
(1.414)(3,14)(2.934 » i m)* (246,157 x 107 m'ii T




Cravems Sterre (it

4= _\Enn'-"r, N

= (L4149 (31 (2.934 x {10

m)* ] T
=4‘IEHIUUA'I 44,25 m « quhﬁ?*lu‘]m'”

s 1

z .
1|2 =2 e = ’
21 (4.18 x ml"-!]u‘iﬁ-.l,‘??x 102 gt

1
2
=5.144 % 10 5
Evample 1.19.2 Caleulate 4, 7 and Z, . 1
i ! 1 1OF oxygen a1 298 K ang 102 mmHy, Given! o = 361 = |0
| i = x

Solution : l
From the Ewven data, we have

Ny =P H[} mmngil'!J 322 P/ mmHg)
T 03806 X107 1K Tyo0s 1y £ = 324510

I : i
7= [BRT (80314 1K mof 208 x5 1 i
'\IHM (3.14(0.032 kg mal™) i
Thus Z, =Ino’i N

={L414) (3.14) (3:61 < 107" m)® (4441 m 5700 % 10" |
= 832610757
L 10
Z, = S 4N"= (8326107 s7) (324 x10"" m ™
13.488 x 107 m~H g

i 1
VamotNE  (LAN3A4 60 % 107 Y m (324 x 107 m )
=533 % 107 m=533cm

The mean free path of the molécule of a certain gas ot 300 K s 2.6 x 107 m. The
collision diameter of the molecule is 0.26 nm. Calculate (a) pressure of the gas; and

(b) number of molecules per unit volunie of the gas.
A=26x10"m, o =026%10"m, T =30K

Example 1.19.3

" Solution Here
, 1
Since A= o
] I :

wesger, e = Drcih (1.414)03.14)(0.26 X 107 m) (2.6 % 107 m)

— 1281107 m

— N*RT-= (1281 x 107 m™) (1380 6 % 107 1 K (300 K)
Now. P 7 5 306 x 107 J o = 5,306 x 107 Pa
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Effect of Temperature and Pressure on Mean Free Path and Molecular c’“"hlnﬁ‘:

Dependence of N*
onpand T

Dependence of i
onT

Effects on Mean
Free Path

In order to discuss the effect of temperature and pressure on A, Z, and »
we express the pressure and lemperature dependence of N* and 4 | Tﬁiz:l Ef
R or

Ci

done as follows.
According to the ideal gas equation, we have

N (NY R, (N
V =nRT = —RT or =] = f| [T = | =
e for o« o (Ef )

Thus; the number of molecules per unit volume is given by

N’ o

M = = —rre—

V kT
Thus, Né o P
T

The average speed & is given as

= ||—'Ei|1:E = E{
'II:-M mwm

Thus, Ewﬁ

Now from Eq. (1.19.4), we gel

gk L
Vgl Nk

Thiis,. et
N*

Employing Eq. (1.19.6), we get

L0
=
p

Thus, AeT provided p is held constant
1 L 0
and Ao ; provided 7 is held constant.
: dl
Since, according to Ga el >
. 2 y Lussac's law, p o= T at. .
Eq.(1.19.8) under these conditions modifies 1o T ’?ﬁlm
A = (constant)

that is, there wil] be L g
is kept constang. et Of changing 7" or p on 4 if the volume



Chaseony Staty il

Effects of P and T
on Molecular
collislons

Fro by, CHI9.0), we have

2 = ama? i e
ar

HI L 1] JFqlfl

I '
"1|"’”'}"”"5'- Ly, (L 19.6) and B, (1.1

£y o f\l'rfj[ f] or

9.7). this modifics 1o

Z; w=th
! - (1.19.9
v'}.f !
Thus, 7, <
; Ay Ly o whien e Imper: o - ; .
ts held Constung, Perature 15 held constant and Z, = 1/JT when pressure

The effec amis .
fect of changing p or T at constant volume can be described by

i i af 1. ;
wking use of Gay-Lussac's law in Eq. (1.19.9), Thus, we have
b v R
R = Ji (valume constant)
and e N el
i 'v(.” {volume constant)

P

From Eq. (1.19.2), we have

| v il
Z, = —=na’id N** or Z, =i N*

i J’E

Employing Eq. (1.19.6) and Eq. (1.19.7), this modifies 1o

-
e B " p
z” u-:{ 1 ](—-}:] or _‘-f“ o T.‘E

2

Thus, Z;; = p* provided temperature is held constant and Z;; = T provided

pressure is held constant. | ,
The effect of changing p or T at constant volume can again be described

by making use of Gay-Lussac’s law. Thus

pr T T2 (volume constant)

Pl g g (volume constant)
and 2y T,w. pm

| 1.20 VISCOSITY

Introduction

The internal friction which opposes the relative. motion of adjacent layers of a
e

fluid is known s ViSCOSity.




Viscosity of Gases

Viscosity of Liquids

Definition of
Coefficient of
Viscosity

Expression of
Viscosity of Gases
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velocity o .

have just made their last collision at a distance A from the height z.

In 4 Jaminar ffow of s Auid in a cylindrical tube, layers just touching the sides g
tube are stationary, and velocities of the adjacent |3'I¢"“-’-!‘-Erﬂﬂﬁt: Towards h . %
of the tube, the layer in the centre of the fube has a maxjmum velocity,
exists a velocity gradient amongst different layers of a liquid,

In case of gases, becavse of their continuous. movement, there oucyp o
interchange of molecules between two layers, with the tesult that a l‘ﬂilmiu;.,,,s ;
momentum of one laver is passed over (o the other layer. The net effegy i
decrease the relative rate of movement of one layer with respect 1o the Other,
order to maintain a uniform velocity gradient, one has 16 apply a force along.
direction of movement of the layers. This apphied force is a measure of intemg
friction or viscosity of the fluid.

In case of liquids, this internal friction arises hecanse of intermolecular attrac ny
Molecules in a slower moving layer try to decrease the velocity of the molecules

H 4 Fig. 1
in a faster moving layer and vice versa, with the result that some tangen il S
force is required to maintain a uniform flow. helgh

The tangential force F required o maintain uniform velocity of layers w |
depend upon two factors, viz.,

(i) Area A of comact between the two ndjacent layers
(i) Velocity pradient duefdz

This; e g0 thatis F = J]Ad—l_" (1.20.1)

e

where 17 is known as the coefficient of viscosity (or simply viscosity), It is the
tangential force that must be applied in order to maintain a velocity difference
of unity hetween two parallel layers unit distance apart and having unil grea of
contact. SI unit of the coefficient of viscosity is N m™s. In CGS units, it b 5
the unit of dyn em™ s and is known as the poise unit. |
Viscosily in case of a gas arises because of transfer of momentum ACTOSS:
layers of the gas, Consider a layer P-P* at a height z. (Fig. 1.20.1), moving with!
a velocity i.. Let the velocity gradient be du/dz, Let us consider the molecules
entering and leaving this layer, We assume: i

(i) That the flow velocity n, is very small as compared with the mean gas
(1i) That the only molecules reaching P-P* are those whicli. On an- average

(i) The number of molecules passing downwards or upwards through a ur

area per unit time = N* /4, where N* is the number of molecules. ser ull
volume and u is the average speed of gaseous molecufes.! 000

t

be N*it/6 as one sixth of the molecules will be moving along each of the posi
negative directions of x-, v-, and z-axes. Hml.rﬁﬁgr,--ijm explicit expression of A

of Volume 5 of this series of hpok). ribution function (Eq.

Assuming statistical motion of molecules, the number of molecules will c



| 1.20.1 Display of
ocity gradient with the
rkghl of lnyer

g
¥
:

: In the plane P-P’, the amount of horizontal momentum coming up through
a uml area per unil Ume is

ot {28

and the amount of horizontal momentum coming down

() 4 = m[-I—H“‘E][u_ +1,'_j.£]
4 £ dz

The net downward flow of x momentum in unit ume

(muyd — (my T = %N"‘Eml%:u

Since momentum transfer in unit time 15 numerically equal to the force, therefore,
the force acting in the x-direction on a unil area of the layer is

1
2
Comparing this with Eq. (1.20.1) with A = unit arca, we get

_ ., du
F.= nu"lf*uldz

(1202

mN* A = = pii A

pd | —
| =

n=

where p is the density of the medium.

 The wrmpmusulnu}nmnsmadan the hard sphere model gives the expression
of viscosity as 1) = (SW32) mN*i 4.

e ERGAREIEET 1T
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Effect of T ol =
a 3 : e il =
on Viﬁ':u;p['ty Flmd 3 NE v 1 & 2o’ N* E

Gau_-a

Substituting these in Eq, {1,20.2), we have

L BT
s (\/;J[EHGEN'J

1 o gD g
o b
According to this equation, 7 is independent of pressure. Exﬁfﬁméﬂ_ _ ,
this is found 1o be true. When the pressure is 50 low that the mean free Pty
becomes  comparable with the dimensions of the apparatus, the collisions gf
molecules are primarily with the walls, and under such circumstances, Eq. (1,203
15 not applicable, !

Equation (1.20.3) shows thar 7} should also be independent of dfnsit}r-l
Bas and this ig jn agreement with the experimental observations, This equaltion I
also suggests that 77 = 712y a somewhat larger exponent more like 707 i :

observed for real gases; partly due 1o the fact that the cross-sectional diameter

becomes smaller higher temperatures due to increased penetration of the

potential energy barrier by gas molecules of higher velocities. In contrast with

the viscosity of idea) gases, the viscosity of liquids decreases with the rise in

lemperature.

Example 1,201 The van der Waals constant b for n-heptane is0.265 4 dm® mol™, Estimate the coefficient

of viscosity of this Bas at 298 K. Calculate o from b assuming molecules 1o be sphe cal

Solution We are given that b = 0265°4 dne® mol!

Since b=4ﬁh(;nr3)

13 ; 13
,_3'5.'_J _ | 3(0.2654 dm® mol ).
16N, 16(6.022 % 10* mol~! y(3.14)
=0.2974 % 107 g

we gol r=(

Therefore o = 2r = 0.56048 % 10 g4y
Molar mass of n-heptane = 100 & mol™ = 0.1 kg mop*!

T T mkr = 101 kg6.022 31071 380 6 % 102 K208 Ky)'?
n%G? (3.14)*%(0.594 8 107 m)?

(26138 x 107 J'2 ygly i :
- — z 11
H,Qﬁﬂﬂx]{]“’smzj =1.328 %103 1 kg e

= 132X Nm? 5= ) 398 ¢ 107%dyn em™ s = 1,328 x 104 poise.
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Example 1.20.2 Calenly
tuline the number of collisions per square metre per g, -

il -
wal T . . 2 i
L8l a pressure of 101,325 kPa and lemperature 298 K. =

1"{"””" n N = =
h i M collig b
ber of '-uul.‘-iﬂ'l'h& Per B area TRt diaL fme = — iV i
! Y

Now Ne= B _ MRS K IPNmT e pPm
KT~ (13806 = 1072 JKON208K)

3 H?_ i 1 { 2 11
o[t {ﬂ*ﬁ:ﬁﬂ IR mol MR g ms
M 3.14(0.032 kg mol ™)

Hence, Mumber of énllisions

| oz i) : 3
= GV = S2A463 107 m7 )44 msT) = 2734 X 107 m~= s

1,21 SELF DIFFUSION AND EFFUSION PROCESSES

mtrnductin_n to Movement of molecules from high-density region to low-density region

Self Diffusion constitutes the phenomenon of self diffusion. Experimentally, the self diffusion
15 given by Fick's law:

Eb de (1.21.1)

i

where J. is the net flow of matter per unit area per unit time and D is the
coefficient of diffusion.

Expression of Consider a unit area in the gaseous layer at height z (Fig. 1.21.1). The number

Coefficient of of molecules per unit volume at height £ relative Lo zero level is given by
Diffusion
o), (1212)
N = Nﬂ + [—E} 2

where Ny is the number of molecules per unit volume at z = 0.

i ‘ ;ights = — A and z + A respectively. where
Also consider two layers at the heights = :
1 is the mean frec path of gaseous molecules. Only those molecules j.'nil pass
thrzu h the layer at the height 2 who have their last collision at a distance A
from El;'his layer. Hence, the number of molecules passing downward through a

unit area at the height 2 per unit time is given by

o) 85 1 oN T
e L »|s

Similarly, the qumber of molecules coming up from the lower layer i
in g

; - . 1 aN '5—11 o
N T= ENE-:, = E[N“ +[H: }lh ]}‘
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Fig. 1L.2L1 Process of
sell difTusion zem|._

%?Jtz _-hi}”

i
= —3"']‘(71}‘} (1.21.3)

Effect of pand T We have
on the Diffusion —
Coefficient 8&r

Substituting Eqs (1.21.5) and (1.21.6) in Eq.

=3l (s

Hence, the coefficient of diffusion depends

(1.21.4), we get ‘ of V

(i). inversely on pressure

al constant temperature, and
(ii) directly on 732

al constant pressure,




