22.26 Optics .

_are constants. One can show that*

A R L s T . where €. €y

En. = Ey;: Eq = s:x

and &, = Ey (65)
Further, one can always choose a coordinate system (j.¢_ One
can always choose appropriately the directions of v, and »
axes inside the crystal) such that

D, = & Ex
" - 3 : . - Dy = E)v E_v “l(ﬂ
Fig. 22.31 Production of two orthogonally polarized beams E
e "by,aRochenpnsnL and D, =& &,
;-';m:-: :‘ "5 k*:, SIR - T This coordinate system is known as the principal axis sysie,
Thus. O, sinr s 2t sin 180 and the quantities &, , € and €, are known as the principje
B TR ’ By B dielectric permittivities of the medium. If
i “*bi?d'i uw":\*n" = % 0.309 = 0.345 : R
7 5 . E EEFE, (biaxial) (67)

we have what is known as a biaxial medium and the quani-

. ,8 ,E £,
: & 4 1 .('I"E-_—-E’-,nyz _2’..',,Z=‘/’_‘«_ (68)
riiaise . . ) € ) £

are said to be the principal refractive indices of the medium;

- in the above equation &, represents the dielectric permittivily
~ of free space (= 8.8542 x 1072 CI/N-m?). If

e e Seg= €, 2 €, (uniaxial) (69)

mhmmmhm as a uniaxial medium with the 70115

1t K M‘“&E medium. The quantities

(70)

ary refractive indices:
‘erystals are given
since £, = £, the x and ¥
as long as (hey are per-
., any two mutually
: Wﬂdlcuhr {0 lhi

(1)
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Polarization and Double Refraction 2.7
i i dices implying that D is always at right a X
Table 2241 IOr_diIn: rys\::lg ?;tan;;o;%tgsgﬁ:gﬁtngl‘ns and Silfli{arli since in a non):magnilic ;S:iil: :l(i\lrb:: E ‘(]) Bk
jor some uniaxial €Ty H will always be right angles 1o k. ‘
7). -:‘-"}rg‘ri; | Now, in the absence of any currents (i.e, J = () - (77‘)
| B ' 1.68134 1.49694 curl equations [see Egs (7) and (8) of Chapter 23 bec‘:;:les
| [calcite 5890 A 1.65835 1.48640 oB :
; 7065 A 1.65207 1.48359 VxE =-= =ioB = iouH ol

5800 A  1.54424 1.55335

quartz 6000 A 22967 2.2082 and
Lium 0022 328 A 1.50737 1.46685 UG
ﬁgg 6328 A 152166 1.47685 xH == =-io 9)
miso@pic medmm, and can choose any three \l;/hfre w;i) ha;:lfz :ssit;med the medium to be non-magnetic (j .
wetuﬂﬂy i;érpehdicular axes as the principal axis system. e ' ik - ax)
;: will assume the anisotropic medium (o be non-magnetic E=E¢
: : then
so that |
NS M T, s, 2 - [ ‘ JoF E,
i e ool S i s z .
ation of a plane electromagnetic = (iky Eq, — ik, Eq)) 70
ctors E, H, D and B would be = i(k, E, — k. E,) = i(k x E),
AR ‘ Thus
VXE =i(kxE)=iauH
= e b (g (80)
WOy
and
V xH =ik x H) =-iaoD
= D= é (H x k) (81)
ety ﬁéfﬁéﬁons (80) and (81) show that
. B H is at right angles to %, F and D ®1)
(P e B el
. implying
15 S o k, E and D will always be in the sam¢ plane.
* Further [see Eq. (76)] 5
" D s at right angles 10 ¥
" Substituting for H in Eq. (81), we g¢!
Ay (84)

Pl (k. k) E- (. E)K
TR
have used the vector identity
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where We should remember that we still do not know the Pﬂsilbl
¢ values of n,.. Indeed, for a given direction of propagatioy ;
K=o (86) for given values of k.. X, and x_ ) the ﬂoluttom of

: the two allowed values of n. It
‘ o 9237). Si Eq. (90) gives us may he
represents the unit vector along k (see Fig. 22.32). Since t ot that from Eq. (90) it appears as iy will ha\ea

D.=¢ E =¢gn’E, ¢ubic equation in n,,” which would give us three roots of 2

: f n, % will always be zero
STt . however, the coefficient of n,, Yy and htme
x-component of Eq. (85) there will be always two roots. We illustrate the gencry Pro.

g.ﬂoc '!, Ei=E - cedure by considering propagation through a unjayy
"w Kx(K‘E+K’E+KzEz) medium.
Since ¢* = 1/( Hy), we have ' 22121 Propagation in Uniaxial Crystals
RS b  In this section, we will completely restrict ourselves
(ﬁ wz *3} E’”"E’E’H‘K‘E‘ﬂ 8D niaxial crystals for which )
mnmmth +|:,+|cz—l(smcex i n.=n,=n, and n.=n, {91)
5' ' As discussed earlier, for a uniaxial crystal, the x and y direc-
tions can be arbitrarily chosen as long as they are perpendicular

(88) to the optic iﬁﬁ‘ﬂ@w for a wave propagating along an di-
, '_ ion k, we choose our y-axis in such a way that it is at righ

e, ﬁm&s is normal to the plane defined by
mme zau%;l UhM)"‘ the x-axis will lie in the same

93
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Polarization and Double Refraction

2229

o o
| ponding wave velocity 15 where the subscript € refers to the fact that the wave refrac-
tive index corresponds to the extra-ordinary wave. The

The ¢orTes
€ ;
=~ (y-polarized o-wave) (96) corresponding wave velocity would be given by

V. = Uyo
A no )
2 ?
2 _ - _ i: 2 c” .2
Upe= 3 - 2 cos” Y+ —5sin /78 (99)

n, n,
s dependent on the direction of the

we

ace the wave velocity is independent of the direction of the
Since the wave velocity i

. S . referred to as the ordinary wave (usually abbrevi-

k and the optic axis and is normal to K

)
gh Eq. (44).

| v “ﬂ:z p-wave) and hence the subscript ‘0’ on n,, and v,.

' ;;c:hisr for the 0-Wave, the D vector (and the E vector) is y- wave, it is referred to as the extra-ordinary wave and hence
| arlzcd Thus, for the o-wave, the D vector (and the E the subscript e. Of course, for the extra-ordinary wave, we

' 5:) ctor) A€ pgrpendicular to the plane containing the k vec- must have

qor and the optic axis (see Fig. 22.33). This was the recipe D,=¢E, = 0

é (hat Was given through Eq. (43). Y y . .

'g From the above equation and Eq.(81), it follows that the dis-
 gecond Solution: The second solution of Egs (92) — (94) placement vector D of the wave is normal to the y-axis and
E yill correspond to also to k implying that the displacement vecior D associated
F with the extraordinary wave lies in the plane containing the
v

E,=0,E.E#0 .
propagation vector

34). This was the recipe given throu

we use Eqs 92) - (94) to obtain (see Fig. 22.
n? 5 Figure 22.34 also shows the Poynting vector S(=ExH)
w g _52’_ —cos” ¥ : which represents the direction of energy propagation ( i.e., the
we % = - 7“{ v = — _s_lzﬂifofsl direction of the e-ray). The small dashes on the extraordinary
R }" sin L\ M _in’y ray in Figs 22.21(a) and (b) represent the directions of the D
s RIS Bt £ | n,, vector. Let ¢ and 6 represent the angles that the S vector
Simple manipulations would give us makes with the k vector and the optic axis respectively (see
A 2 @ y Fig. 22.33). In order to determine the angle ¢ we noi¢ that
b 1 1 heos y  sinoyY o
B (98) I
V 4 i EI EX . DX P W
and since
El
E =—tan (¢ + Y) (100)
3 X
Kk, S Ordinary wave we get
n2 .
Tpeatet y) =tan ¥
a
——» z(optic axis) 5 5
' : s Extraordinary wave
E
k
L v e 5
" —» 7 (optic axis)

» iy g 22.34 ::; the extra-ordinary wave (in uniaxial crys-
ooyl ; );E,Dn5=3§ﬁ!k_gecmrswouldlieinther—:
e plane and H also el e
%P e A it : md}-I,D is at right angles to k
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Thus Eg. (102) becomes
0 wS * [} e Vi .
] 4 U~ kS8 kcosp coso (105
' . where @ is the mglewm k and § (see Fig. 2234) 13,
Obviously, for negative crystals n, > n, and @ will be positive .y ofractive index 1, is defined as

or,

i
¢ = tan’' [f',—mw

3

implving that direction is further away from the optic axis
umugnu. "r";c""‘éc"“”’z"-‘“’“’ (106)
~ Conversely, for positive crystals n, < 1, and ¢ will be AN :

; muhw&uﬁ;ﬂn{hmm mmmmtmmoﬂ),werefermﬁg.23.34-;..;;

optic axis. ‘ write

. We consider alcite for which (st A = 5893 A D=(D.&)é +(D.5)s
st o £ e : wher é is a unit vector along the direction of the electric 7. -
A E. Thus

N

D-(D.35) 3 =(D.é)é=(Dcos¢)%— (1)

0 H'._-_&:_.’f@ . a) a +(E. x) x (108)

{ 109}

- Mg
“ﬂ%) Taking the !
here x represents ¢
we obtain

(ﬂﬂ)

PRy B
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. Pcrlanza{um and Double Refraction

-
g,mllﬂr‘)’
nh Lighy
s b B AR Tl g e XMty ™0 (1)
y
(112)

2
| P - X ! ,
,,s,D,+s,5,.Dy" [;T"x ""_v) D=0
Z

previous section, the above set of equations form a

As in the
set of three homogenous equations. For non-trivial solutions,
we must have
2
AR S
...!i..-sy =S, S8y 5y 8,
ny
‘ 2
‘ T . it -0 13
| 3; 8y B e 5, 5y (113)
: 2
| : n
| 3 2
[ A 5, 8y =8 -8y
L n:

Il do not know the possible values of n, . Indeed for a
direction (i.e., for given values of 5, , s,and s, ) the
m@an equation gives us the two allowed val-

and hence two possible values of the ray velocities,

this by considering propagation through

" normal to the surface, However,

2.5
Obviously, one of the roots is given by
Rl P A
with D, = 0= D, (y-polarized) (119)
The corresponding ray velocity is given by
0., £ (ordinary ray) (120

144

nlﬂ ”l-
Since the ray velocity is independent of the direction of the
ray, it is referred to as the ordinary ray and hence the sub-

script ‘o’ on v, and n,.
In order to obtain the other solution we use Eqs (116) and

(118) to obtain

n "
r . cos’ 0
D, n, sin @ cos 8
D, sin @ cos 6 oo,
Lo —gin” @

F

n

(/]

and obviously,
D, =0
Simple manipulations give us

; o) ‘
n}=nl= n’ cos’0+n,’ sin” @

(extra-ordinary ray) (121)
with
pin: B
DM - Zx = 1an 6, (D, = 0) (122)
Dx/nr/ E-'
The corresponding ray velocity is given by [cf Eq. (37)]
2 2 . 2
1 | nZ, _ cos 6  sin” 0
—_= - = —— (123)
v’ ;,5: ¢ c? In} ¢ In?

which corresponds to the extra-ordinary ray and hence the
subscript ‘¢’ on v, and #, . As discussed in Sec. 22.5, the
above equation represents an ellipse and if we rotalc
it around the z-axis (i.e., the optic axis) we will get an
ellipsoid of revolution. These ray velocity surfaces are used
in constructing Huygens’ secondary wavelets while discuss-
ing propagation in uniaxial crystals. For example, in
Fig. 22.21(a) we have 4 plane wave incident normally. The
extraordinary wave also propagates in a direction which is
the extraordinary rays travel
the directions BE and DE’ with EE’ representing the
-front for the extraordinary wave. Returning to Eq. (120),

we obtain [see Fig. 22.34]
oo - Dy M: n? _
D, Inl 2 ;% g ey
= L WAL ; i3
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Optics

4
Thus when the wave propagates alomg a direction which  Let us next consider a phase retarder like a QWP o 4 Hwp
makes an angle w with the optic asis, then the ray will propa-  or even an elliptic core fiber. As discussed in earlier soc

lﬁhﬁﬁm the ‘modes’ of such a device are linearly polarizeq al](:nh‘
f 3 the fast and slow axes as shown in Fig.22.24. The e|¢c":1g

LR {ﬁ;-vi 128y fields along these directions are denoted by E,and - .'";

_ A, subscripts f and s denote the fast and slow axes respe |

Ax un exampie. for oulcine As an example, we consider a calcite QWP for whc, , t

s The extra-ordinary wave is z-polarized (i.c.. |
L - € AONE the o
we dain “i;’m." .m ey axis) and its velocity (= c/n,) is more than the vek%c:w '“‘P::-:
Proctey Then the ray direction is further away ©WA¥E (= c/n,). Thus (for calcite) the fast-axis is ajon,
iy Sonwisten with what is shown in  direction and the slow-axis is along the y-direction B8 v
‘ isee Example 22.3) hl';nu |
slow and fast components are the mode s
m *l § of the re1ye
“(‘ ' “.‘ “ m mﬂ‘ the retardat
thickness d), the fields would be given b,

: “ &.‘ -25 R,

LS ‘\0
s O u R, w4864
N ' 'M"t‘ " of

and fast av
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