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(b) as the sum of a real matrix R and an imaginary matrix I;

{C) as the sum of a Hermitian matrix H and a skew-Hermitian matrix K.

xProblem 3.12 Prove Equations 3.52, 3.53, and 3.58. Show that the product of two
unitary matrices is unitary. Under what conditions is the product of two Hermitian
matrices Hermitian? Is the sum of two unitary matrices unitary? Is the sum of two
Hermitian matrices Hermitian?

Problem 3.13 In the usual basis (7, 7, k), construct the matrix T, representing a
rotation through angle @ about the x-axis, and the matrix T, representing a rotation
through angle @ about the y-axis. Suppose now we change bases,to i’ = 7, j =
-1, k =k Construct the matrix S that effects this change of basis, and check that
ST,S™! and ST S are what you would expect.

Problem 3.14 Show that similarity preserves matrix multiplication (that is if
A°B¢ = C¢, then A’B/ = C/). Similarity does nor, in general, preserve symmetry,
reality, or Hermiticity; show, however, that if S is unitary, and H® is Hermitian, then
H/ is Hermitian. Show that S carries an orthonormal basis into another orthonormal
basis if and only if it is unitary.

s«Problem 3.15 Prove that Tr(T,T;) = Tr(T,T,). It follows immediately that
Te(T T, T3) = Tr(T,T5T)), but is it the case that Tr(T | T,T3) = Tr(T,T, T;), in gen-
eral? Prove it, or disprove it. Hint: The best disproof is always a counterexample—
and the simpler the better!

Problem 3.16 Show that the rows and columns of a unitary matrix constitute
orthonormal sets.

3.1.4 Eigenvectors and Eigenvalues

Consider the linear transformation in three-space consisting of a rotation, about some
specified axis, by an angle . Most vectors will change in a rather complicated way
(they ride around on a cone about the axis), but vectors that happen to lie along the
axis have very simple behavior: They don’t change at all (T o)y = |a)). If 6 is 180°,
then vectors which lie in the the “equatorial” plane reverse signs ( Tla) = —la)). Ina
complex vector space,'! every linear transformation has “special” vectors like these,
which are transformed into simple multiples of themselves:

Tle) = Ala); [3.68]

"' This is not always true in a real vector space (where the scalars are restricted to real values). See
Problem 3.17.
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they are called eigenvectors of the transformation, and the (complex) number A is
their eigenvalue. (The null vector doesn’t count, even though, in a trivial sense, it
obeys Equation 3.68 for any T and any A; technically, an eigenvector is any nonzero
vector satisfying Equation 3.68.) Notice that any (nonzero) multiple of an eigenvector
is still an eigenvector with the same eigenvalue.

With respect to a particular basis, the eigenvector equation assumes the matrix

form
Ta=)a [3.69]

(for nonzero a), or

(T—Ala=0. [3.70]
(Here 0 is the zero matrix, whose elements are all zero.) Now, if the matrix (T — A1)
had an inverse, we could multiply both sides of Equation 3.70 by (T — A1)~!, and

conclude that a = 0. But by assumption a is not zero, so the matrix (T — A1) must
in fact be singular, which means that its determinant vanishes:

(T —A) Ty 1y,
I Tz —2) ... I3,
det(T — A1) = . . . =0. [3.71]
Tnl Tn2 (Tnn_)\)
Expansion of the determinant yields an algebraic equation for A:
CoA'+ Crs WV CIA+ Cp =0, [3.72]

where the coefficients C; depend on the elements of T (see Problem 3.19). This is
called the characteristic equation for the matrix; its solutions determine the eigen-
values. Notice that it’s an nth-order equation, so it has n (complex) roots.'> However,
some of these may be duplicates, so all we can say for certain is that an #n X » matrix
has at least one and at most n distinct eigenvalues. To construct the corresponding
eigenvectors it is generally easiest simply to plug each A back into Equation 3.69 and
solve “by hand” for the components of a. I’ll show you how it goes by working out
an example.

Example. Find the eigenvalues and eigenvectors of the following matrix:

2 0 -2
M= <—2i i 2i ) [3.73]
1 0 -1
The characteristic equation is
Q2=% 0 -2
—2i (- 2i = +A+DA—ir=0, [3.74]
1 0 (=1-2)

12t is here that the case of real vector spaces becomes more awkward, because the characteristic
equation need not have any (real) solutions at all. See footnote 11 and Problem 3.17.
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and its roots are 0, 1, and i. Call the components of the first eigenvector (a1, a2, a3);

2 0 -2 a) a 0
1 0 -1 ajs ajs 0

which yields three equations:

2a1 - 2613 = 0,
—2ia1 +iay + 2ia3 =0,
a —az = 0.

The first determines a3 (in terms of a;): a3 = ay; the second determines a;: a; = 0;
and the third is redundant. We may as well pick ¢; = 1 (since any multiple of an
eigenvector is still an eigenvector):

1
al) = <O) , for Ay = 0. [3.75]
1

For the second eigenvector (recycling the same notation for the components)

2 0 -2 ai ap ai
<—2i i 2i)<a2)=1<a2)=<a2),
1 0 -1 as as as
which leads to the equations

2&1 - 203 =4ap,
—2iay + iay + 2iaz = as,
a) —as = as,

with the solution as = (1/2)ay, a; = [(1 — i)/2]ay; this time we’ll pick a; = 2, so
that

2
a® = ((1 - i)), for Ay = 1. [3.76]
1

Finally, for the third eigenvector,

2 0 =2 @ a ia
<—2i I 21')<a2)=i<a2)=<ia2),
1 0 -1 as as ias

which gives the equations

2611 - 203 = ial,
—2iay +iay + 2iaz = iay,
ay — a3 = ias,
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whose solutionis a; = a; = 0, with a; undetermined. Choosing a; = 1, we conclude

0
a® = (1) for A3 = i. [3.77]
0

If the eigenvectors span the space (as they do in the preceding example), we
are free to use them as a basis:

TIfy = MlA),
TIhY = hlp),

TS = halfi).

The matrix representing T takes on a very simple form in this basis, with the eigen-
values strung out along the main diagonal and all other elements zero:

A0 000
0 x» ... 0
T=]| . . ) [3.78]
0 0 ... A
The (normalized) eigenvectors are equally simple:
1 0 0
0 1 0
aV»=10] a®=}0]| ... ,a®=]0]. [3.79]
0 \O 1

A matrix that can be brought to diagonal form (Equation 3.78) by a change
of basis is said to be diagonalizable. The similarity matrix that accomplishes the
transformation can be constructed by using the eigenvectors (in the old basis) as the
columns of §7!:

™ = @), [3.80]

Example (cont’d). In the example,

1 2 0
s—1=<o 1= 1),
1 1 0

so (using Equation 3.57)
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and you can check for yourself that

00 0
SMS‘1=(O 1 o).

0 0 i

There is a great advantage in bringing a matrix to diagonal form—it’s much easier to
work with. Unfortunately, not every matrix can be diagonalized—the eigenvectors
have to span the space. For an example of a matrix that cannor be diagonalized, see
Problem 3.18.

xProblem 3.17 The 2 x 2 matrix representing a rotation of the xy-plane is
T = { €°8 # —siné
“ \sin® cosf J°
Show that (except for certain special angles—what are they?) this matrix has no real
eigenvalues. (This reflects the geometrical fact that no vector in the plane is carried
into itself under such a rotation; contrast rotations in three dimensions.) This matrix
does, however, have complex eigenvalues and eigenvectors., Find them. Construct

a matrix S which diagonalizes T. Perform the similarity transformation (STS™)
explicitly, and show that it reduces T to diagonal form.

Problem 3.18 Find the eigenvalues and eigenvectors of the following matrix:
11
we () 1)

Problem 3.19 Show that the first, second, and last coefficients in the characteristic
equation (Equation 3.72) are

Can this matrix be diagonalized?

C,=(-1)", Co_i = (—1)"'T(T), and Cy = det(T). [3.81]

For a 3 x 3 matrix with elements T;;, what is C;?

Problem 3.20 It is pretty obvious that the trace of a diagonal matrix is the sum of
its eigenvalues, and its determinant is their product (see Equation 3.78). It follows
(from Equations 3.64 and 3.67) that the same holds for any diagonalizable matrix.
Prove that

det(T) = Ajhz Ay, Te(T)=Xxi+A2+ -+ Ay [3.82]

for any matrix. (The A’s are the n solutions to the characteristic equation—in the case
of multiple roots, there may be fewer linearly independent eigenvectors than there
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are solutions, but we still count each A as many times as it occurs.) Hint: Write the
characteristic equation in the form

M =NA2=2) (A= 2) =0,

and use the result of Problem 3.19.

3.1.5 Hermitian Transformations

In Equation 3.48 I defined the Hermitian conjugate (or “adjoint”) of a matrix as its
transpose conjugate: Tt = T*. Now I want to give you a more fundamental definition
for the Hermitian conjugate of a linear transformation: 1t is that transformation Tt
which, when applied to the firsr member of an inner product, gives the same result as
if T itself had been applied to the second vector:

(T1alB) = («IT B) (3.83]

(for all vectors |a) and |8))."* [I have to warn you that although everybody uses it, this
is lousy notation. For o and B are not vectors (the vectors are |ar) and |B)), they are
labels—serial numbers (“F43A-9GT™), or names (“Charlie”), or bar codes—anything
you care to use to identify the different vectors. In particular, they are endowed with no
mathematical properties at all, and the expression “f B is literally nonsense: linear
transformations act on vectors, not labels. But it’s pretty clear what the notation
means: |fﬂ) means f"|ﬂ), and (T 1a|B) means the inner product of the vector THa)
with the vector |B). Notice in particular that

(alcB) = clalp), (3.84]

but
(calB) = c*(a|B) [3.85]

for any scalar c.] If you’re working in an orthonormal basis (as we always shall),
the Hermitian conjugate of a linear transformation is represented by the Hermitian
conjugate of the corresponding matrix (so the terminology is consistent); for (using
Equations 3.50 and 3.53),

(|TB) = alTb = (Tta)'b = (T1x|B). [3.86]

In quantum mechanics, a fundamental role is played by Hermitian transforma-
tions (T f =7 ). The eigenvectors and eigenvalues of a Hermitian transformation
have three crucial properties:

B31f you're wondering whether such a transformation necessarily exists, you should have been a
math major, Still, it’s a good question, and the answer is yes. See, for instance, Halmos, (footnote 1),
Section 44.
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1. The eigenvalues of a Hermitian transformation are real.
Proof: Let A be an eigenvalue of 7: T|a) = A|e), with &) # |0). Then
(@|Ta) = (a)ra) = Aa|a).
Meanwhile, if 7 is Hermitian, then
(@|Ta) = (Tale) = (lala) = A (a]a).
But (o]} # 0 (Equation 3.20), so A = A*, and hence A is real. QED

2. The eigenvectors of a Hermitian transformation belonging to dis-
tinct eigenvalues are orthogonal.

Proof: Suppose T'|a) = Alar) and T'|8) = u|B), with A # u. Then
(@|TB) = (alup) = ullB),
and if T is Hermitian,

(| 7B) = (Talf) = (ra|B) = 4" (@|B).
But A = A* (from property 1), and A # pu, by assumption, so {¢|8) = 0. QED

3. The eigenvectors of a Hermitian transformation span the space.

Comment: If all the » roots of the characteristic equation are distinct, then (by
property 2) we have n mutually orthogonal eigenvectors, so they obviously span the
space. But what if there are duplicate roots (or, as they are called, in this context,
degenerate eigenvalues)? Suppose A is m-fold degenerate; any linear combination
of two eigenvectors belonging to the same eigenvalue is still an eigenvector (with
the same eigenvalue)—what we must show is that there are m linearly independent
eigenvectors with eigenvalue A. The proof is given in most books on linear algebra,"
and I shall not repeat it here. These eigenvectors can be orthogonalized by the Gram-
Schmidt procedure (see Problem 3.4), so in fact the eigenvectors of a Hermitian
transformation can always be taken to constitute an orthonormal basis. It follows, in
particular, that any Hermitian matrix can be diagonalized by a similarity transfor-
mation, with S unitary. This rather technical result is, in a sense, the mathematical
support on which much of quantum mechanics leans. As we shall see, it turns out to
be a thinner reed than one might have hoped.

141 ike the treatment in F. W. Byron, Jr., and R. W. Fuller, Mathematics of Classical and Quantum
Physics (Reading, MA: Addison-Wesley, 1969), Vol. 1, Section 4.7.
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Problem 3.21 A Hermitian linear transformation must satisty (o|T8) = (f"a[ B)
for all vectors |) and |B). Prove that it is (surprisingly) sufficient that (y|T Yy =
(Ty|y) for all vectors |y). Suppose you could show that (e,,IT e) = (T enley,) for
every member of an orthonormal basis. Does it necessarily follow that T is Hermitian?
Hint: First let |y) = |a) + |B8), and then let |y) = |a) + i|B).

11—
T_(1+i 0)'

(a) Verify that T is Hermitian.

sProblem 3.22 Let

(b) Find its eigenvalues (note that they are real).
(c) Find and normalize the eigenvectors (note that they are orthogonal).

(d) Construct the unitary diagonalizing matrix S, and check explicitly that it diag-
onalizes T.

(e) Check that det(T) and Tr(T) are the same for T as they are for its diagonalized
form.

*xxProblem 3.23 Consider the following Hermitian matrix:

2 i 1
T=<_,- 2 )
1 =i 2

(a) Calculate det(T) and Tr(T).

(b) Find the eigenvalues of T. Check that their sum and product are consistent with
(a), in the sense of Equation 3.82. Write down the diagonalized version of T.

(c) Find the eigenvectors of T. Within the degenerate sector, construct two linearly
independent eigenvectors (it is this step that is always possible for a Hermitian
matrix, but not for an arbitrary matrix—contrast Problem 3.18). Orthogonalize
them, and check that both are orthogonal to the third. Normalize all three
eigenvectors.

(d) Construct the unitary matrix S that diagonalizes T, and show explicitly that the
similarity transformation using S reduces T to the appropriate diagonal form.

Problem 3.24 A unitary linear transformation is one for which UtU = 1.

@) Show that unitary transformations preserve inner products, in the sense that
(Uoleﬂ) (| B), for all vectors |a), |8).
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(b) Show that the eigenvalues of a unitary transformation have modulus 1.

(c) Show that the eigenvectors of a unitary transformation belonging to distinct
eigenvalues are orthogonal.

3.2 FUNCTION SPACES

We are ready now to apply the machinery of linear algebra to the interesting and
important case of function spaces, in which the “vectors” are (complex) functions of
x, inner products are integrals, and derivatives appear as linear transformations.

3.2.1 Functions as Vectors

Do functions really behave as vectors? Well, is the sum of two functions a function?
Sure. Is addition of functions commutative and associative? Indeed. Is there a “null”
function? Yes: f(x) = 0. If you multiply a function by a complex number, do you
get another function? Of course. Now, the set of all functions is a bit unwieldy—we’ll
be concerned with special classes of functions, such as the set of all polynomials of
degree < N (Problem 3.2), or the set of all odd functions that go to zero at x = 1, or
the set of all periodic functions with period . Of course, when you start imposing
conditions like this, you’ve got to make sure that you still meet the requirements for
a vector space. For example, the set of all functions whose maximum value is 3
would rnot constitute a vector space (multiplication by 2 would give you functions
with maximum value 6, which are outside the space).
The inner product of two functions [ f(x) and g(x)] is defined by the integral

(flg) = / F()e(x) dx [3.87]

(the limits will depend on the domain of the functions in question). You can check
for yourself that it satisfies the three conditions (Equations 3.19, 3.20, and 3.21) for
an inner product. Of course, this integral may not converge, so if we want a function
space with an inner product, we must restrict the class of functions so as to ensure that
(flg) is always well defined. It is clearly necessary that every admissible function
be square integrable:

/If(x)lzdx < [3.88]

(otherwise the inner product of f with itself wouldn’t even exist). As it turns out,
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Table 3.1: The first few Legendre polynomials, P, (x).

Py=1
Pr=x
P=303x -1

Py=3(5x% —3x)
Py = £(35x% — 30x2 + 3)
Ps = 1(63x% —70x3 + 15x)

this restriction is also sufficient—if f and g are both square integrable, then the
integral in Equation 3.87 is necessarily finite.'
For example, consider the set P(N) of all polynomials of degree < N:

p(x) =ao+ax +ax* + - +ay_1x¥ 7, [3.89]

on the interval —1 < x < 1. They are certainly square integrable, so this is a bona
fide inner product space. An obvious basis is the set of powers of x:

ler) =1, |e2) =x, les) =x2, ..., |ex) =x"71; [3.90]

evidently it’s an N-dimensinal vector space. This is not, however, an orthonormal
basis, for

1 1
(e1|e1)=/ ldx =2, (e1|e3)=/ x?dx =2/3,

1 1

and so on. If you apply the Gram-Schmidt procedure, to orthonormalize this ba-
sis (Problem 3.25), you get the famous Legendre polynomials, P,(x) (except that
Legendre, who had other things on his mind, didn’t normalize them properly):

ey =+vn—A/2)P_1(x), (m=12,...,N). [3.91]
In Table 3.1 I have listed the first few Legendre polynomials.

*Problem 3.25 Orthonormalize the powers of x, on the interval —1 < x < 1, to
obtain the first four Legendre polynomials (Equation 3.91).

«Problem 3.26 Let T(N) be the set of all trigonometric functions of the form

N-1

fx) = Z[a,, sin(nmrx) + b, cos(nmx)], [3.92]

n=0

I5There is a quick phoney “proof” of this, based on the Schwarz inequality (Equation 3.27). The
trouble is, we assumed the existence of the inner product in proving the Schwarz inequality (Problem 3.5),
so the logic is circular. For a legitimate proof, see F. Riesz and B. Sz.-Nagy, Functional Analysis (New
York: Unger, 1955), Section 21.



Sec. 3.2: Function Spaces 97
on the interval —1 < x < 1. Show that

ley) = %em’”, (n=0,%1,...,£(N —-1) [3.93]

constitutes an orthonormal basis. What is the dimension of this space?

Problem 3.27 Consider the set of all functions of the form p(x)e™*"/2, where p(x)
is again a polynomial of degree < N in x, on the interval —oo < x < 0. Check that
they constitute an inner product space. The “natural” basis is

3272 —x2n _2 1 g2
le)) = e 72, ley) = xe™ 2, les) =x%e ™72, ..., len) = xV"leT /2,

Orthonormalize the first four of these, and comment on the result.

3.2.2 Operators as Linear Transformations

In function spaces operators (such as d/dx, d*/dx?, or simply x) behave as linear
transformations, provided that they carry functions in the space into other functions
in the space and satisfy the linearity condition (Equation 3.29). For example, in the
polynomial space P(N) the derivative operator (D = d/dx) is a linear transforma-
tion, but the operator X (multiplication by x)'® is not, for it takes (N — 1)th-order
polynomials into Nth-order polynomials, which are no longer in the space.

In a function space, the eigenvectors of an operator T are called eigenfunctions:

Tf(x) = Af(x). [3.94]
For example, the eigenfunctions of D are
filx) = A& [3.95]

Evidently this operator has only one eigenfunction (the one with A = 0) in the space
P(N).
A Hermitian operator is one that satisfies the defining condition (Equation 3.83):

(f1Tg) = (T fg), [3.96]

for all functions f(x) and g(x) in the space. Is the derivative operator Hermitian?
Well, using integration by parts, we get

dr* )
dfx gdx = ([*[. — (Dflg). 3.97]

. b d b
(ibg = [ riEa= ol - [

16For consistency, I’ll put a hat on x when I’'m emphasizing its role as an operator, but you're
welcome to ignore it if you think I’m being too fastidious.
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It’s close, but the sign is wrong, and there’s an unwanted boundary term. The sign is
easily disposed of: D itself is (except for the boundary term) skew Hermitian, so i D
would be Hermitian—complex conjugation of the i compensates for the minus sign
coming from integration by parts. As for the boundary term, it will go away if we
restrict ourselves to functions which have the same value at the two ends:

fb) = f(a). [3.98]

In practice, we shall almost always be working on the infinite interval (a = —o0, b =
+00), where square integrability (Equation 3.88) guarantees that f(a) = f(b) =0,
and hence that i D is Hermitian. But i D is not Hermitian in the polynomial space
P(N).

By now you will realize that when dealing with operators you must always keep
in mind the function space you’re working in—an innocent-looking operator may not
be a legitimate linear transformation, because it carries functions out of the space;
the eigenfunctions of an operator may not reside in the space; and an operator that’s
Hermitian in one space may not be Hermitian in another. However, these are relatively
harmless problems—they can startle you, if you're not expecting them, but they don’t
bite. A much more dangerous snake is lurking here, but it only inhabits vector spaces
of infinite dimension. I noted a moment ago that ¥ is not a linear transformation in
the space P(N) (multiplication by x increases the order of the polynomial and hence
takes functions outside the space). However, it is a linear transformation on P(00),
the space of all polynomials on the interval —1 < x < 1. In fact, it’s a Hermitian
transformation, since (obviously)

1 1
/l[f(X)]*[xg(X)]dx = /][xf(x)]*[g(X)] dx.

But what are its eigenfunctions? Well,
x{ag + aix + a2x2 + -y = Alag + a1x + a2x2 + 1),

for all x, means

0= )»a(),
ap = Aay,
a; = Aay,

andso on. If A = 0, then all the components are zero, and that’s not a legal eigenvector;
but if A # 0, the first equation says ayp = 0, so the second gives a@; = 0, and the third
says a = 0, and so on, and we’re back in the same bind. This Hermitian operator
doesn’t have a complete set of eigenfunctions—in fact it doesn’t have any af all! Not,
at any rate, in P{00).

What would an eigenfunction of x look like? If

xg(x) = Ag(x), [3.99]
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where A, remember, is a constant, then everywhere except at the one point x = A we
must have g(x) = 0. Evidently the eigenfunctions of % are Dirac delta functions:

g.(x) = Bé(x — 1), [3.100]

and since delta functions are certainly not polynomials, it is no wonder that the
operator x has no eigenfunctions in P(c0).

The moral of the story is that whereas the first two theorems in Section 3.1.5
are completely general (the eigenvalues of a Hermitian operator are real, and the
eigenvectors belonging to different eigenvalues are orthogonal), the third one (com-
pleteness of the eigenvectors) is valid (in general) only for finite-dimensional spaces.
In infinite-dimensional spaces some Hermitian operators have complete sets of eigen-
vectors (see Problem 3.32d for an example), some have incomplete sets, and some (as
we just saw) have no eigenvectors (in the space) at all.'” Unfortunately, the complete-
ness property is absolutely essential in quantum mechanical applications. In Section
3.3 I’ll show you how we manage this problem.

Problem 3.28 Show that exp(—x2/2) is an eigenfunction of the operator 0=
(d?/dx*) — x?, and find its eigenvalue.

xProblem 3.29

(@) Construct the matrix D representing the derivative operator D = d/dx with
respect to the (nonorthonormal) basis (Equation 3.90) in P(N).

(b) Construct the matrix representing D with respect to the (orthonormal) basis
(Equation 3.93) in the space T () of Problem 3.26.

(c) Construct the matrix X representing the operator X = x with respect to the basis
(Equation 3.90) in P(oo). If this is a Hermitian operator (and it is), how come
the matrix is not equal to its transpose conjugate?

x«Problem 3.30 Construct the matrices D and X in the (orthonormal) basis (Equa-
tion 3.91) for P(oc). You will need to use two recursion formulas for Legendre
polynomials:

1
xPy(x) = (2n—+1—)[(n + D Pry1(x) +n Py (x)]; [3.101]
dp,
= Z(Zn — 4k — 1) Py_gj_1(x), [3.102]
k=0

7In an n-dimensional vector space, every linear transformation can be represented (with respect
to a particular basis) by an n x n matrix, and as long as » is finite, the characteristic Equation 3.71 is
guaranteed to deliver at least one eigenvalue. But if n is infinite, we can’t take the determinant, there is no
characteristic equation, and hence there is no assurance that even a single eigenvector exists.
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where the sum cuts off at the first term with a negative index. Confirm that X is
Hermitian but ;D is not.

Problem 3.31 Consider the operator D* = d?/dx?. Under what conditions (on the
admissable functions) is it a Hermitian operator? Construct the matrix representing
D?in P(N) (with respect to the basis Equation 3.90), and confirm that it is the square
of the matrix representing D (Problem 3.29a).

Problem 3.32

(@) Show that iD is Hermitian in the space T (N) of Problem 3.26.
(b) What are its eigenvalues and (normalized) eigenfunctions, in 7'(N)?
() Check that your results in (b) satisfy the three theorems in Section 3.1.5.

(d) Confirm that iD has a complete set of eigenfunctions in T (co) (quote the perti-
nent theorem from Fourier analysis).

3.2.3 Hilbert Space

To construct the real number system, mathematicians typically begin with the integers,
and use them to define the rationals (ratios of integers). They proceed to show that the
rational numbers are “dense,” in the sense that between any two of them (no matter
how close together they are) you can always find another one (in fact, infinitely many
of them). And yet, the set of all rational numbers has “gaps” in it, for you can easily
think of infinite sequences of rational numbers whose limit is not a rational number.

For example,
Ay=l—i b 1o 1 [3.103]
NEIT3T3Tg N '
is a rational number for any finite integer N, but its limit {as N — ©0) is In2, which
is not a rational number. So the final step in constructing the real numbers is to “fill in
the gaps”, or “complete” the set, by including the limits of all convergent sequences
of rational numbers. (Of course, some sequences don’t have limits, and those we do
not include. For example, if you change the minus signs in Equation 3.103 to plus
signs, the sequence does not converge, and it doesn’t correspond to any real number.)
The same thing happens with function spaces. For example, the set of all
polynomials, P{oc), includes functions of the form

2 x3 x4 xN

x

(for finite N), but it does not include the limit as N — oc:

2 3 oo x"
1+x+—+—+ — =", [3.105]
3! = n!
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For ¢* is not itself a polynomial, although it is the limit of a sequence of polynomials.
To complete the space, we would like to include all such functions. Of course, some
sequences of polynomials don’t have limits, or have them only for a restricted range
of x. For example, the series

1

1—x

l+x+x2+x>+-

converges only for |x| < 1. And even if the sequence does have a limit, the limit
function may not be square integrable, so we can’t include it in an inner product space.
To complete the space, then, we throw in all square-integrable convergent sequences
of functions in the space. Notice that completing a space does not involve the intro-
duction of any new basis vectors; it is just that we now allow linear combinations
involving an infinite number of terms,

o) =) " ajle), [3.106]
=1

provided (x|} is finite—which is to say (if the basis is orthonormal), provided

o0

> laj < oo [3.107]

=1

A complete'® inner product space is called a Hilbert space."” The completion
of P(o0) is easy to characterize: It is nothing less than the set of all square-integrable
functions on the interval —1 < x < +1; we call it L,(—1, +1). More generally,
the set of all square-integrable functions on the interval @ < x < b is L(a, b). We
shall be concerned primarily with the Hilbert space L,(—00, 4+00) (or Lz, for short),
because this is where quantum mechanical wave functions live. Indeed, to physicists
L, is practically synonymous with “Hilbert space”.

The eigenfunctions of the Hermitian operators iD =id/dx and X = x are of
particular importance. As we have already found (Equations 3.95 and 3.100), they
take the form

filx) = 47, and g (x) = BuS(x — 1),

respectively. Note that there is no restriction on the elgenvalues—every real number
is an eigenvalue of iD, and every real number is an eigenvalue of x. The set of
all eigenvalues of a given operator is called its spectrum,; iD and % are operators
with continuous spectra, in contrast to the discrete spectra we have encountered

18Note the two entirely different uses of the word “complete”: a set of vectors is complete if it spans
the space; an inner product space is complete if it has no “holes” in it (i.e., it includes all its limits).

19Every finite-dimensional inner product space is trivially complete, so they re all technically Hilbert
spaces, but the term is usually reserved for infinite-dimensional spaces.
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heretofore. Unfortunately, these eigenfunctions do not lie in Hilbert space, and hence,
in the strictest sense, do not count as vectors at all. For neither of them is square-
integrable:

o0

/ L) fix)dx = IAAIZ/ MM gy — |AA|2/ ldx — oo,

—0o0
and
o0 o0
/ ax)'omx)dx = |BA|2/ 8(x — M8(x — A)dx = |B[*6(A — 1) = 0.
—00 —00
Nevertheless, they do satisfy a kind of orthogonality condition:

o0

/ L) fu(x)dx = A;A#/ M eI dx = | 4,221 8(A — )

—00

(see Equation 2.126), and

[ eerads= 85, [ ax s - wdr = 1BLG~ w.

o0

It is customary to “normalize” these (unnormalizable) functions by picking the con-
stant so as to leave an unadorned Dirac delta function on the right side (replacing the
Kronecker delta in the usual orthonormality condition; Equation 3.23).® Thus

1
V21

are the “normalized” eigenfunctions of iD, and
&.(x) = 8(x — A), with (g:lg,) = 8(A — ), [3.109]

are the “normalized” eigenfunctions of £ 2!
What if we use the “normalized” eigenfunctions of i D and £ as bases for L, 7%
Because the spectrum is continuous, the linear combination becomes an integral:

Sulx)y = e, with (ful fu) = 8(h — ), [3.108]

lﬂ=/ mﬁwhlﬂ=/ blgy) d. [3.110]

o0 o0

2011 call this “normalization” (in quotes) so you won’t confuse it with the real thing.

21'we are engaged here in a dangerous stretching of the rules, pioneered by Dirac (who had a kind
of inspired confidence that he could get away with it) and disparaged by von Neumann (who was more
sensitive to mathematical niceties), in their rival classics (P. A. M. Dirac, The Principles of Quantum
Mechanics, first published in 1930, 4™ ed., Oxford (Clarendon Press) 1958, and J. von Neumann, The
Mathematical Foundations of Quantum Mechanics, first published in 1932, revised by Princeton Univ.
Press, 1955). Dirac notation invites us to apply the language and methods of linear algebra to functions
that lie in the “almost normalizable” suburbs of Hilbert space. It turns out to be powerful and effective
beyond any reasonable expectation.

22That’s right: We’re going to use, as bases, sets of functions none of which is actually in the space!
They may not be normalizable, but they are complete, and that’s all we need.
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Taking the inner product with | f,,}, and exploiting the “orthonormality” of the basis
(Equation 3.108), we obtain the “components” ay:

an= [ atimir= [ asu-ndi=a,

oc

So

a.={fA1N) = M fx)ydx = F(=M); [3.111]

1 o0
—_— e
evidently the — A “component” of the vector | f), in the basis of eigenfunctions of i ﬁ,
is the Fourier transform (Equation 2.85) of the function f(x). Likewise,

oc
by = (gl f) = / $(x — 1) fx)dx = f(b), [3.112]
-0

so the A “component” of the vector | f) in the position basis is f(A) itself. [If
that sounds like double-talk, remember that | f) is an abstract vector, which can be
expressed with respect to any basis you like; in this sense the function f(x) is merely
the collection of its “‘components” in the particular basis consisting of eigenvectors of
the position operator.] Meanwhile, we can no longer represent operators by matrices
because the basis vectors are labeled by a nondenumerable index. Nevertheless, we
are still interested in quantities of the form

(HIT1f),

which, by force of habit, we shall call the A, 1 matrix element of the operator T.

s+xProblem 3.33

(a) Show that any linear combination of two functionsin Ly (a, b) is stillin L (a, b).
If this weren’t true, of course, Lo(a, b) wouldn’t be a vector space at all.

(b) For what range of (real) v is the function f(x) = |x|" in La(—1, +1)?

(c) For what range of a is the function f(x) =1 —x +x2—x3+4...in Ly(—a, +a)?

(d) Show that the function f(x) = ¢ " isin L;, and find its “components” in the
basis (Equation 3.108).

(e) Find the matrix elements of the operator D? with respect to the basis (Equation
3. 108) of Lz.

Problem 3.34 L,(-1, +1)includes discontinuous functions [such as the step func-
tion, 6(x), Equation [2.125], which are not differentiable. But functions expressible
as Taylor series (f(x) = ao + a1x + a>x* + ---) must be infinitely differentiable.
How, then, can 6(x) be the limit of a sequence of polynomials? Note: This is not a
difficult problem, once you see the light, but it is very subtle, so don’t waste a lot of
time on it if you're not getting anywhere.
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3.3 THE GENERALIZED STATISTICAL

INTERPRETATION

My next project is to recast the fundamental principles of quantum mechanics (as
developed in Chapters 1 and 2) into the more elegant language of linear algebra.
Remember that the state of a particle is represented by its wave function, W (x, 1),
whose absolute square is the probability density for finding the particle at point x, at
time ¢. It follows that W must be normalized, which is possible (by dividing off a
constant) if and only if it is square integrable. Thus

1. The state of a particle is represented by a normalized vector (|¥)) in the
Hilbert space L,.

Classical dynamical quantities (such as position, velocity, momentum and ki-
netic energy) can be expressed as functions of the “canonical” variables x and p
(and, in rare cases, t): O(x, p, t). To each such classical observable we associate a
quantum-mechanical operator, Q, obtained from Q by the substitution

p—> ——. [3.113]
i 0x

The expectation value of Q, in the state ¥, is
(0) =f\IJ<x,t>*Q\IJ<x,r>dx,

which we now write as an inner product:®
(Q) = (V] 00). [3.114]

Now, the expectation value of an observable quantity has got to be a real number
(after all, it corresponds to actual measurements in the laboratory, using rulers and
clocks and meters), so

(W0W) = (V| QW)* = (OW|W), [3.115]

for all vectors |W). Tt follows (see Problem 3.21) that Q must be a Hermitian operator.
Thus

2. Observable quantities, O(x, p, t), are represented by Hermitian opera-
tors, Q(x, 52 1); the expectation value of (O, in the state | W), is (V| QW).

iax?

23The “Jousy notation” I warned you about on page 92 is not so bad in this context, for we are using
the function W itself to label the vector | W), and the expression QW is perfectly self-explanatory.
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In general, identical measurements on identically prepared systems (all in the
same state W) do not yield reproducible results; however, some states are determi-
nate, for a particular observable, in the sense that they always give the same result.
[A competent measurement of the total energy of a particle in the ground state of
the harmonic oscillator, for example, will always return the value (1/2)hw.] For a
determinate state of observable (, the standard deviation is zero:

0=05 = (0~ (2D = (¥|(Q — (Q)*¥)
= (0~ (ONWIQ — (W) = (@~ (NIW)I*.  [3.116]

[I used the fact that the operator (Q — (@)) is Hermitian to peel it off the second
member of the inner product and attach it to the first member.] But the only vector
with norm zero is the null vector (Equation 3.20), so (Q — (O)|¥) =0, or

O|w) = (O)| ). [3.117]

Evidently determinate states are eigenvectors of Q Thus

3. A measurement of the observable O on a particle in the state |W) is
certain to return the value A if and only if |¥) is an eigenvector of O, with
eigenvalue A.

For example, the time-independent Schridinger equation (Equation 2.11),
HY = EY,

is nothing but an eigenvalue equation for the Hamiltonian operator, and the solutions
are states of determinate energy (as we noted long ago).

Up to this point I have added nothing new to the statistical interpretation; I
have merely explored its implications in the language of linear algebra. But there is
a missing part to the story: Although we can calculate the average result of any mea-
surement, we still cannot say what the probability of getting a particular result would
be if we were to measure a given observable ( on a particle in an arbitrary state | V)
(except for the special case of position for which the original statistical interpretation
supplies the answer). To finish the job, we need the following generalized statistical
interpretation, which is inspired by postulate 3 above, and subsumes it as a special
case:

3. If you measure an observable O on a particle in the state |V), you
are certain to get one of the eigenvalues of Q The probability of getting the
particular eigenvalue A is equal to the absolute square of the A component of
| W), when expressed in the orthonormal basis of eigenvectors.”

Z4Notice that we could calculate from this the expectation value of , and it is important to check
that the result is consistent with postulate 2 above. See Problem 3.35(c).
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To sustain this postulate, it is essential that the eigenfunctions of Q span the
space. As we have seen, in the finite-dimensional case the eigenvectors of a Hermi-
tian operator always span the space. But this theorem fails in the infinite-dimensional
case—we have encountered examples of Hermitian operators that have no eigenfunc-
tions at all, or for which the eigenfunctions lie outside the Hilbert space. We shall
take it as a restriction on the subset of Hermitian operators that are observable, thar
their eigenfunctions constitute a complete set (though they need not fall inside L,).»

Now, there are two kinds of eigenvectors, which we need to treat separately. If
the spectrum is discrete (with the distinct eigenvalues separated by finite gaps), we
can label the eigenvectors with an integer #:

Olen) = Ailey), withn=1,2,3,...; [3.118]
the eigenvectors are orthonormal (or rather, they can always be chosen so):
(enlem) = Sum; [3.119]

the completeness relation takes the form of a sum:

W) =) calen); [3.120]
n=1

the components are given by “Fourier’s trick™;
cn = (e | V), (3.121]

and the probability of getting the particular eigenvalue 4, is

lcal?® = I{enl W) . [3.122]

On the other hand, if the spectrum is continuous, the eigenvectors are labeled
by a continuous variable (k):

Olex) = Adlex), with — oo < k < 00; [3.123]

the eigenfunctions are nof normalizable (so they do notlie in L,, and do not themselves
represent possible particle states), but they satisfy a sort of “orthonormality” condition

(exler) = 8(k = 1) [3.124]

25 Some authors, following Dirac, take this to be an axiom of quantum mechanics, but it seems to
me peculiar to use that term for something that is provable in many particular instances; [ prefer to regard
it as a part of what it means to be “observable”.
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(or rather, they can always be chosen s0); the completeness relation takes the form of
an integral:

W) = foo crlex) dk; [3.125]

o

the “components” are given by “Fourier’s trick”:
ok = (e W), [3.126]

and the probability of getting an eigenvalue in the range dk about Ay is

el dk = |(ex|W)|* dk. [3.127]

The generalized statistical interpretation makes no reference to the observable
x; it treats all observables on an equal footing. But it includes the “original” form
(Equation 1.3) as a special case. The “orthonormal” eigenfunctions of the position
operator are
ex(x) =8(x —x'), [3.128]
and the eigenvalue (x') can take on any value between —oo and +oc. The x’ “com-
ponent” of |W) is

cr = {ex|W) = / S(x —x"HYW(x,t)ydx = W(x', 1), [3.129]

o

so the probability of finding the particle in the range dx’ about x’ is
lew P dx’ = W', P dx’, [3.130]

which is the original statistical interpretation of W.
A more illuminating example is provided by the momentum operator. Its “or-
thonormal” eigenfunctions are (see Problem 3.37)

1.
= —— P/, 3.131
ep(x) me [ ]

and the eigenvalue (p) can take on any value in the range —o0 < p < 00. The p
“component” of W) is

cp = (e,| W) = iy (x, 1)y dx = d(p, 1). [3.132]

1 (o0}
\/27'[7! ~/;ooe

We call ®(p, t) the momentum-space wave function—it is (apart from the factors
of i) the Fourier transform of the “position-space” wave function W (x, ¢). Evidently
the probability of getting a momentum in the range dp is

|®(p, 1)* dp. [3.133]
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xProblem 3.35

(@) Show that Y |c,|*> = 1, in Equation 3.120.
(b) Show that [ |cx|* dk = 1, in Equation 3.125.
(c) From postulate 3’ it follows that

(Q) =3 dalenl?, or (Q) = / Mlerl? dk, [(3.134]

for discrete and continuous spectra, respectively. Show that this is consistent
with postulate 2: (Q) = (V|QW).

xProblem 3.36

(a) Refer to Problem 2.6. If you measured the energy of this particle, what values
might you get, and what is the probability of each? Use the answer to calculate
the expectation value of H, and compare the answer you got before.

(b) Do the same for Problem 2.8. Hint: To sum the series, look in a math table
under “Sums of Reciprocal Powers” or “Riemann Zeta Function.”

Problem 3.37 Confirm that e, (x) (in Equation 3.131) is the “orthonormal” eigen-
function of the momentum operator, with eigenvalue p.

Problem 3.38 Find the momentum-space wave function, ®(p, t), for a particle in
the ground state of the harmonic oscillator. What is the probability (to two significant
digits) that a measurement of p on a particle in this state would yield a value outside
the classical range (for the same energy)? Hint: Look in a math table under “Normal
Distribution” or “Error Function” for the numerical part.

3.4 THE UNCERTAINTY PRINCIPLE

I stated the uncertainty principle (in the form 0,0, > %/2) back in Section 1.6, and
you have checked it several times in the problems. But we have never actually proved
it. In this section I shall prove a more general version of the uncertainty principle and
explore some of its implications. The argument is beautiful, but rather abstract, so
watch closely.

3.4.1 Proof of the Generalized Uncertainty Principle

For any observable A, we have (quoting Equation 3.116)
of = (A~ (ADW|(A — (ADW) = (f11),
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where | f) = (/AI — (A4))|W). Likewise, for any other observable B,
op = (glg), where|g) = (B — (B))|W).
Therefore (invoking the Schwarz inequality, Equation 3.27),

olo} = (f1Nglg) = 1S [3.135]

Now, for any complex number z,
21> = (Re(2))* + (Im(2))* > (Im(2))* = [—(z - P [3.136]

Therefore, letting z = ( f|g),

2
0505 > (—[ (flg) — glf)]) . [3.137]
But
(f1g) = (A — (ANW|(B — (B)W) = (¥|(4 — (4))(B — (B))W)
= (W|(AB — A(B) — B(4) + (A)(B))W)
= (U|ABW) — (B)(W|AW) — (4)(W|BY) + (4)(B)(¥|¥)
= (AB) — (B)(A) — (4)(B) + (A)(B)
= (AB) — (4)(B)
Similarly, .
(glf) = (BA) — (4)(B),
SO . o A
(f1g) — {glf) = (4B) — (BA) = ([4, BY),
where

[4, Bl= AB - BA [3.138]

is the commutator of the two operators. Conclusion:

2
oj05 > (%([/f, é])) : [3.139]

This is the uncertainty principle in its most general form. (You might think the i
makes it trivial—isn’t the right side negative? No, for the commutator carries its own
factor of i, and the two cancel out.)

For example, suppose the first observable is position (A = x), and the second
is momentum (B (h/i)d/dx). To determine the commutator, we use an arbitrary



110 Chap. 3 Formalism

“test function”, f(x):

. hd hd nl df df .
[X,P]f(x)=xf—(f)‘T—(xf)=T x——(f+x=) =ihf,
i dx i dx i| dx dx
SO
} [x, pl = ih. [3.140]
Accordingly,
1.\ [\
olar>=in) =(=) ,
p 2i 2
or, since standard deviations are by their nature positive,
h
0:0, > o [3.141]

That proves the original Heisenberg uncertainty principle, but we now see that
it is just one application of a far more general theorem: There will be an “uncertainty
principle” for any pair of observables whose corresponding operators do not com-
mute. We call them incompatible observables. Evidently, incompatible observables
do not have shared eigenvectors—at least, they cannot have a complete set of common
eigenvectors. Matrices representing incompatible observables cannot be simultane-
ously diagonalized (that is, they cannot both be brought to diagonal form by the
same similarity transformation). On the other hand, compatible observables (whose
operators do commute) share a complete set of eigenvectors, and the corresponding
matrices can be simultaneously diagonalized (see Problem 3.40).

xProblem 3.39 Prove the famous “(your name) uncertainty principle,” relating the
uncertainty in position (4 = x) to the uncertainty in energy (B = pPr2m + V)
0xOH = 2—|(p)|-
m
For stationary states this doesn’t tell you much—why not?

Problem 3.40 Prove the following:

(a) If two matrices commute ([A, B] = 0), and you apply the same similarity
transformation to both of them (A’ = SAS™!, B' = SBS™!), the resulting
matrices also commute ([A’, B'] = 0).

(b) Diagonal matrices always commute. (It follows from this that simultaneously
diagonalizable matrices must commute. Conversely, if two Hermitian matrices
commute, then they are simulatneously diagonalizable—i.e., they have a com-
plete set of common eigenvectors. This is not so easy to prove® unless you
happen to know that the spectrum of one of them is nondegenerate.)

268ee Byron and Fuller (footnote 14), Theorem 4.22.
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(c) If matrices A and B commute, and |«) is an eigenvector of A, and the spectrum
of A is nondegenerate, then |«) is also an eigenvector of B. (In that case the
matrix S that diagonalizes A also diagonalizes B.)

xProblem 3.41
(a) Prove the following commutator identity:
[AB,C1= A[B,C]1+ 1[4, C15. [3.142]

(b) Using Equations 3.140 and 3.142, show that
%", pl = ihnk"".
(c) For any function f(x) that can be expanded in a power series, show that

Lf(R), pl =ik f' (%),

where the prime denotes differentiation.

3.4.2 The Minimum-Uncertainty Wave Packet

We have twice encountered wave functions that hit the position-momentum uncer-
tainty limit (0,0, = %/2): the ground state of the harmonic oscillator (Problem 2.14)
and the Gaussian wave packet for the free particle (Problem 2.22). This raises an
interesting question: What is the most general minimum-uncertainty wave packet?
Looking back at the proof of the uncertainty principle, we note that there were two
points at which inequalities came into the argument: Equation 3.135 and Equation
3.136. Suppose we require that each of these be an equality, and see what this tells
us about ¥. The Schwarz inequality becomes an equality when the angle between
the two vectors (Equation 3.28) is zero—that is, when one is a multiple of the other:
|g) = c| f), for some scalar c. (Study the proof of the Schwarz inequality in Problem
3.5 if you’re not convinced.) Meanwhile, in Equation 3.136 I threw away the real part
of z; equality results if Re(z) = 0, which is to say, if Re(f|g) =Re(c(f|f)) = 0.
Now ( f| /) is certainly real, so this means the constant ¢ must be purely imaginary—
let’s call it ia. The necessary and sufficient condition for minimum uncertainty, then,
is

|g) =ia|f), wherea isreal. [3.143]

In particular, for the position-momentum uncertainty principle this criterion
becomes

(7—.'i - <p>) W =ia(x — (x))V, (3.144]
idx
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which is a differential equation for W as a function of x, with the general solution
(see Problem 3.42)
W(x) = de 0N B HpIx/m, [3.145]

Evidently the minimum-uncertainty wave packet is a Gaussian—and sure enough,
the two examples we encountered earlier were Gaussians.”

Problem 3.42 SolveEquation 3.144 for W (x). (Note that (x) and ( p) are constants,
as far as x is concerned.)

3.4.3 The Energy-Time Uncertainty Principle

The position-momentum uncertainty principle is usually written in the form

/]
AxAp> . [3.146]
Ax (the “uncertainty” in x) is sloppy notation (and sloppy language) for the standard
deviation in the results of repeated measurements on identically prepared systems.
Equation 3.146 is often paired with the energy-time uncertainty principle,

h
At AE > 3 [3.147]

Indeed, in the context of special relativity the energy-time form might be thought of as
a consequence of the position-momentum version, because x and ¢ (or rather, cz) go
together in the position-time four-vector, while p and E (or rather, E/c) go together
in the energy-momentum four-vector. So in a relativistic theory Equation 3.147
would be a necessary concomitant to Equation 3.146. But we’re not doing relativistic
quantum mechanics—the Schrddinger equation is explicitly nonrelativistic: It treats
¢ and x on a very unequal footing (as a differential equation it is first-order in 7,
but second-order in x), and Equation 3.147 is emphatically not implied by Equa-
tion 3.146. My purpose now is to derive the energy-time uncertainty principle, and
in the course of that derivation to persuade you that it is really an altogether different
beast, whose similarity in appearance to the position-momentum uncertainty principle
is quite misleading.

Afterall, position, momentum, and energy are all dynamical variables—measur-
able characteristics of the system, at any given time. But time itself is not a dynamical
variable (not, at any rate, in a nonrelativistic theory): You don’t go out and measure
the “time” of a particle, as you might its position or its energy. Time is the indepen-
dent variable of which the dynamical quantities are functions. In particular, the Az

27Note that it is only the dependence of W on x that is at issue here—the “constants” 4, a, {x}, and
{p) may all be functions of time, and as time goes on W may evolve away from the minimal form. AllI'm
asserting is that if, at some instant, the wave function is Gaussian in x, then (at that instant) the uncertainty
product is minimal.
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in the energy-time uncertainty principle is not the standard deviation of a collection
of time measurements; roughly speaking (I'll make this more precise in a moment),
itis the time it takes the system to change substantially.

As a measure of how fast the system is changing, let us compute the time
derivative of the expectation value of some observable, Q(x, p, 1):

d d . oV ., 30 A QW
—(Q) = — (V| QW) = (— | QW) + (V| = W Oo—).
dz(Q> dt< QW) (BIIQ )+ Iat‘ll)+( lQat)
Now the Schrédinger equation says
W .
ih— = HV
3t
(where H = p?/2m + V is the Hamiltonian). So
d 1 oA s 1 s 30
;;(Q)——E(HWIQW)+E(WIQHW)+(¥)-
But A is Hermitian, so (HW|QW) = (¥|H OW), and hence
d i A oa 30
0y = (A =y, 3.148
dt<Q> h([ ,Q])+(at) [ )

This is an interesting and useful result in its own right (see Problems 3.43 and 3.53).
In the typical case, where the operator does not depend explicitly on ¢, it tells us
that the rate of change of the expectation value is determined by the commutator of
the operator with the Hamiltonian. In particular, if O commutes with H, then (Q) is
constant, and in this sense Q is a conserved quantity.

Suppose we pick 4 = H and B = (), in the generalized uncertainty principle
(Equation 3.139), and assume that Q does not depend explicitly on :

2 a1, o A N (1RO (R (d(O))
Ho0 > (z“”’ Q”) —(577) —<5) (T,) ~

Or, more simply,

h|d{Q)

> = —]. 3.149
OHO0 = 3 ‘ dt [3.1491
Let’s define AE = oy (with A as the usual sloppy notation for standard deviation),

and
Ar=_—22 [3.150]
|d(Q)/dt|

B Asan example of explicit time dependence, think of the potential energy of a harmonic oscillator
whose spring constant is changing (perhaps the temperature is rising, so the spring becomes more flexible):

0 = (1/2ymlw(t)?x2.
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Then

AEAt > -, [3.151]

[NSEER

and that’s the energy-time uncertainty principle. But notice what is meant by A¢ here:
Since

0p = ‘-d—(d?—) At,

At represents the amount of time it takes the expectation value of Q to change by one
standard deviation. In particular, A¢ depends entirely on what observable (Q) you
care to look at—the change might be rapid for one observable and slow for another.
But if AE is small, then the rate of change of all observables must be very gradual.
and conversely, if any observable changes rapidly, the “uncertainty” in the energy
must be large.

Example 1. In the extreme case of a stationary state, for which the energy is
uniquely determined, all expectation values are constant in time (A? = 00)—as, in
fact, we noticed some time ago (see Equation 2.8). To make something happen, you
must take a linear combination of at least two stationary states—for example,

W(x,1) = ay(x)e B 4 by (x)e 2R,
If a, b, ¥, and yr, are real,
E,—-F
W (x, )2 = a® (Y1 (x))? + B> (Y2 (x))* + 2abyr (x) Y (x) cos (—2,1—‘:) :

The period of oscillation is T = 27k /(E, — E1). Roughly, then, AE = E; — E7 and
At = 1 (for the exact calculation, see Problem 3.44), so

h
AE At =27h > 3

Example 2. How long does it take a free particle wave packet to pass by a
particular point (Figure 3.1)? Qualitatively (an exact version is explored in Problem
3.45), At = Ax/v =mAx/p,but E = p*/2m,so AE = pAp/m. Therefore,

Example 3. The A particle lasts about 1072* seconds before spontancously
disintegrating. If you make a histogram of all measurements of its mass, you get
a kind of bell-shaped curve centered at 1232 MeV/c?, with a width of about 115
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fe———— AX ————|

A x
Figure 3.1: A free particle wave packet approaches the point 4 (Example 2).

MeV/c?. Why does the rest energy (mc?) sometimes come out higher than 1232, and
sometimes lower? Is this experimental error? No, for

115
AE At = (5 MeV) (1072 sec) = 6 x 10722 MeV sec,

whereas 7/2 = 3 x 10722 MeV sec. So the spread in m is about as small as the
uncertainty principle allows—a particle with so short a lifetime just doesn’t have a
very well-defined mass.”

Notice the variety of specific meanings attaching to the term Af in these exam-
ples: In Example 1 it’s a period of oscillation; in Example 2 it’s the time it takes a
particle to pass a point; in Example 3 it’s the lifetime of an unstable particle. In every
case, however, At is the time it takes for the system to undergo substantial change. It
is often said that the uncertainty principle means that energy is not strictly conserved
in quantum mechanics—that you’re allowed to “borrow” energy A E, as long as you
“pay it back” in a time At ~ h/2AE; the greater the violation, the briefer the period
over which it can occur. There are many legitimate readings of the energy-time un-
certainty principle, but this is not one of them. Nowhere does quantum mechanics
license violation of energy conservation, and certainly no such authorization entered
into the derivation of Equation 3.151. But the uncertainty principle is extraordinar-
ily robust: It can be misused without leading to seriously incorrect results, and as a
consequence physicists are in the habit of applying it rather carelessly.

*Problem 3.43 Apply Equation 3.148 to the following special cases: (a) Q = 1;
(b) 0 = H; (¢) Q = x; (d) Q = p. In each case, comment on the result, with
particular reference to Equations 1.27, 1.33, 1.38, and 2.35.

»xxProblem 3.44 Test the energy-time uncertainty principle for the wave function in
Problem 2.6 and the observable x by calculating o', 0y, and d(x) /dt exactly.

29 Actually, Example 3 is a bit of a fraud. You can’t measure 1023 sec on a stop-watch, and in
practice the lifetime of such a short-lived particle is inferred from the width of the mass plot, using the
uncertainty principle as input. However, the point is valid even if the numbers are suspect. Moreover, if
you assume the A is about the same size as a proton (~ 107!1° m), then 10~23 sec is roughly the time it
takes light to cross the particle, and it’s hard to imagine that the lifetime could be much less than that.
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sxxProblem 3.45 Test the energy-time uncertainty principle for the free particle wave
packet in Problem 2.40 and the observable x by calculating o, 0y, and d{(x)/dt
exactly.

Problem 3.46 Show that the energy-time uncertainty principle reduces to the “your
name” uncertainty principle (Problem 3.39) when the observable in question is x.

FURTHER PROBLEMS FOR CHAPTER 3

x+Problem 3.47 Functions of matrices are defined by their Taylor series expansions;
for example,

1

3
3!M + - [3.152]

1
ele+M+§M2+

(a) Find exp(M), if

01 3
) . 0 6
(1)M=<0 0 4); (i1)M=( )

00 0 —6 0

(b) Show that if M is diagonalizable, then
det (M) = ™™, [3.153]

(This is actually frue even if M is not diagonalizable, but it’s harder to prove in
the general case.)

(c) Show that if the matrices M and N commute, then
MHN = MN, [3.154]

Prove (with the simplest counterexample you can think up) that Equation 3.154
is not true, in general, for noncommuting matrices.

(d) If H is Hermitian, show that ¢’ is unitary.

xProblem 3.48 A particle of mass m is in the ground state of the infinite square well
(Equation 2.15). Suddenly the well expands to twice its original size—the right wall
moving from a to 2a—Ileaving the wave function (momentarily) undisturbed. The
energy of the particle is now measured.

(a) What is the most probable result? What is the probability of getting that result?
(b) What is the next most probable result, and what is its probability?
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(c) What is the expectation value of the energy? (If you find yourself confronted
with an infinite series, try another method.)

Problem 3.49 A harmonic oscillator is in a state such that a measurement of the
energy would yield either (1/2)hw or (3/2)hw, with equal probability. What is the
largest possible value of (x) in such a state? If it assumes this maximal value at time
t =0, whatis W(x,1)?

*xxProblem 3.50 Find the matrix elements (r|x|n’) and (n|p|n’) in the (orthonormal)
basis consisting of stationary states for the harmonic oscillator (here |r) refers to the
state ¥, Eq.2.50). [You already calculated the diagonal elements (n = »’)in Problem
2.37; use the same technique for the general case.] Construct the corresponding
(infinite) matrices, X and P. Show that (1 /2m)P2 + (ma?/2)X? = His diagonal, in
this basis. Are its diagonal elements what you would expect? Partial answer:

h
(nlxin'y =\ 5— (VWbn 1 + Va1 ) [3.155]
2mw
sx+«Problem 3.51 Show that

(x)= / ¢* (—Ei) D dp, [3.156]
idp

where ®(p, ) is the momentum-space wave function. In general,

Sw*Q (x, B2 1) wdx, in position space;
/ "0 <—E %, D, t) ®dp, in momentum space.

i

(Qx,p,n) = l (3.157]

Hint: Notice that x exp(ipx /h) = —ih(d/dp) exp(ipx /h).

xxProblem 3.52 Find the momentum-space wave function ®, (p, ) for the nth sta-
tionary state of the infinite square well. Construct |®,|? (it’s simplest to write separate
formulas for odd and even n). Show that |®,|? is finite at p = +n7h/a.

xProblem 3.53 Use Equation 3.148 to show that

d, o Y
7P =2T) = {x—

where T is the kinetic energy (H = T + V). In a stationary state the left side is zero
(why?), so

), [3.158]

dv
—
dx
This is called the virial theorem. Use it to prove that (T) = (V) for stationary states

of the harmonic oscillator, and check that this is consistent with the results you got
in Problems 2.14 and 2.37.

2T) = ( ). [3.159]
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Problem 3.54 What would it mean for an observable Q to be conserved, in quan-
tum mechanics? At a minimum, the expectation value of Q should be constant in
time, for any state W. The criterion for this (assuming @ has no explicit time de-
pendence) is that Q commute with the Hamiltonian (Equation 3.148). But we’d like
something more: The probability [c,|* of getting any particular eigenvalue (A,) of
O should be independent of ¢. Show that this, too, is guaranteed by the condition
[H, Q] = 0. (Assume that the potential energy is independent of z, but do nor assume
W is a stationary state.) Hint: Q and H are compatible observables, so they have a

complete set of simultaneous eigenvalues.

«xProblem 3.55

(a) For a function f(x) that can be expanded in a Taylor series, show that
Fx+x0) = P f(x)

(where x, is any constant distance). For this reason, p/h is called the generator
of translations in space. (See Problem 3.47 for the meaning of an operator in
the exponent.)

(b) If W(x, t) satisfies the (time-dependent) Schridinger equation, show that
W(x,t+1t) = e_iﬁto/h\ll(x, 1)

(where 1o is any constant time); — H /A is called the generator of translations
in time.

(c) Show that the expectation value of a dynamical variable Q(x, p,?), at time
t + 29, can be written

(Q)esry = (U (x, )] H D%, Bt + tg)e™ Ho0/ W (x, 1)),

Use this to recover Equation 3.148. Hint: Let ty = dt, and expand to first order
in dt.

Problem 3.56 In an interesting version of the energy-time uncertainty principle*
At = t/m, where 7 is the time it takes W(x,?) to evolve into a state orthogo-
nal to W(x,0). Test this out, using a wave function that is an equal admixture
of two (orthonormal) stationary states of some (arbitrary) potential: W(x,0) =

(1/vV2)[¥1 (x) + Y2 (x)]-

»xxProblem 3.57 Dirac proposed to peel apart the bracket notation for an inner prod-

uct, («|B), into two pieces, which he called bra ({(«|) and ket (|8)). The latter is
a vector, but what exactly is the former? It’s a linear function of vectors, in the
sense that when it hits a vector (to its right) it yields a (complex) number—the inner

30See Lev Vaidman, Am. J. Phys. 60, 182 (1992) for a proof.
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product.® (When an operator hits a vector, it delivers another vector; when a bra hits
a vector, it delivers a number.) Actually, the collection of all bras constitutes another
vector space—the so-called dual space.

The license to treat bras as separate entities in their own right allows for some
powerful and pretty notation (though I shall not exploit it further in this book). For
example, if |o) is a normalized vector, the operator

P = |a) (x| [3.160]
picks out the component of any other vector that “lies along” |a):
PiB) = (lB)la);

we call it the projection operator onto the one-dimensional subspace spanned by
lor).

(@) Show that P? = P. Determine the eigenvalues of P, and characterize its
eigenvectors.
(b) Suppose |e;) is an orthonormal basis for an n-dimensional vector space. Show
that
n
D e el = 1. [3.161]
i=1

This is the tidiest statement of completeness.

(c) Let Q be an operator with a complete set of orthonormal eigenvectors:

~

Ole;) =xjle) (j=1,2,3,...n).

Show that Q can be written in terms of its spectral decomposition:
n
0= Z,\j|ej)(ej;. [3.162]
j=1

Hint: An operator is characterized by its action on all possible vectors, so what
you must show is that

Ola) = {Z xjieﬂ(ej!} [
j=1

for any vector |a).

3'In a function space, the bra can be thought of as an instruction to integrate

(f|=/f*[---]dx,

with the “hole” [ - -] waiting to be filled by whatever function the bra encounters next.
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«Problem 3.58 Imagine a system in which there are just two linearly independent

states:
1 0
|1):(0) and |2):(1).

The most general state is a normalized linear combination:

W) =al|l) +bJ2) = (Z) with |a)? + |b]? = 1.

Suppose the Hamiltonian matrix is

_(h g
H'<g h)’

where g and 4 are real constants. The (time-dependent) Schrodinger equation says
d
H|V) = ih—|¥).
W) priad

(a) Find the eigenvalues and (normalized) eigenvectors of this Hamiltonian.

(b) Suppose the system starts out (at = 0) in state |1). What is the state at time ¢?

Answer: (
_ —inin [ cos(gt/h)
9 (@)) =™ (—i sin(gt /h) )

Note: This is about the simplest nontrivial quantum system conceivable. It is
a crude model for (among other things) neutrine oscillations. In that case 1)
represents the electron neutrino, and |2) the muon neutrino; if the Hamiltonian
has a nonvanishing off-diagonal term g, then in the course of time the electron
neutrino will turn into a muon neutrino, and back again. At present this is
highly speculative—there is no experimental evidence for neutrino oscillations;
however, a very similar phenomenon does occur in the case of neutral K-mesons
(K° and K9).




CHAPTER 4

QUANTUM MECHANICS IN
THREE DIMENSIONS

4.1 SCHRODINGER EQUATION IN SPHERICAL

COORDINATES
The generalization to three dimensions is straightforward. Schrodinger’s equation
says
ov
h— = HY; 4.1
th— [4.1]

the Hamiltonian operator' H is obtained from the classical energy
LI L, 2 2
My +V = %(px+py+pz)+V

by the standard prescription (applied now to y and z, as well as x):
h o ho ha

- ——, — - -,
Pr= o P Pz Tz

A 4.2
iady’ 421
or

h
p—)TV
i

[4.3]

’

Where confusion might otherwise occur, I have been putting “hats” on operators to distinguish
them from the corresponding classical observables. I don’t think there will be much occasion for ambiguity
in this chapter, and the hats get to be cumbersome, so I am going to leave them off from now on.

191
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for short. Thus

EY n?
ih— =

—— VU 4V, 4.4
dat 2m + [4.4]

where 5 5 5
3 ] d
Ve — 4 — + — 4.5
9x? + 9y? + 8z2 [45]
is the Laplacian, in Cartesian coordinates.
The potential energy ¥ and the wave function ¥ are now functions of r =
(x, y,z) and t. The probability of finding the particle in the infinitesimal volume
d’r = dx dydx is |¥(r, 1)|* d°r, and the normalization condition reads

/|\I/|2d3r= 1, [4.6]

with the integral taken over all space. If the potential is independent of time, there
will be a complete set of stationary states,

W, (r, 1) = Yy(r)e B/t (4.7)

where the spatial wave function v, satisfies the time-independent Schrédinger equa-
tion:

h2
— — VY + VY, = Entn. [4.8]
2m

The general solution to the (time-dependent) Schrodinger equation is

() =Y cnPn(r)e B, [4.9]

with the constants ¢, determined by the initial wave function, W (r, 0), in the usual
way. (If the potential admits continuum states, then the sum in Equation 4.9 becomes
an integral.)

«Problem 4.1

(@) Work out all of the canonical commutation relations for components of the
operators r and p: [x, ¥, [x, p,], [x, p:], [Py, p], and so on. Answer:

[ri, pil = —[pi, rj1 =ihdy;, [ri,r;] =1[p:i, pj1=0. [4.10]
(b) Show that
i(l')_l( ), and i( ) = (—=VF) (4.11]
PTAL ar = ’ :

(Each of these, of course, stands for three equations—one for each component.)
Hint: Note that Equation 3.148 is valid in three dimensions.
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(¢) Formulate Heisenberg’s uncertainty principle in three dimensions. Answer:
0x0p, Z1/2, 0y0p, Z1/2, 0z0p ZH/2, [4.12]

but there is no restriction on, say, 0,0,

4.1.1 Separation of Variables

Typically, the potential is a function only of the distance from the origin. In that case
it is natural to adopt spherical coordinates, (r, 0, ¢) (see Figure 4.1). In spherical
coordinates the Laplacian takes the form?

10 (,8 13 3 1 ¥
Vz - 22 - in @ — —{—]. [4.13
r2 dr (r ar) + r2sin6 36 (sm 39) * 72 sin’ (ad’z) S

In spherical coordinates, then, the time-independent Schrédinger equation reads

R[1d [ ,00 18 /. oy 1 %y
_— == —_ — - —  { =
2m [:r2 or (r ar ) 2 sin0 56 (sm a0 ) * r2sin® @ <8¢2 )]

+Vy = Ey. [4.14]
We begin by looking for solutions that are separable into products:
Y(r,0,¢) = R)Y(O, d). [4.15]

Putting this into Equation 4.14, we have

WYy d/,dR N R_3 (. ¥ N R %Y
——— | — — | sInf— —_—
2m | r?dr \' dr ) r%sin6 39 36 ) r2sin® g d¢?

+V RY = ERY.

z

Figure 4.1: Spherical coordinates: radius r, polar angle 8, and azimuthal angle ¢.

2In principle, this can be obtained by change of variables from the Cartesian expression (Equation
4.5). However, there are much more efficient ways of getting it; see, for instance, M. Boas, Mathematical
Methods in the Physical Sciences, 2nd ed. (New York: John Wiley and Sons, Inc., 1983) Chapter 10,
Section 9.
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Dividing by Y R and multiplying by —2mr?/h*:

1d ,dR 2mr?
(72 (") - S o)

+1 1 3 _08Y N 1 9%y 0
-y nf— — 1 =0.
Y |sin8 06 5t a0 sin® 6 d¢?

The term in the first curly bracket depends only on r, whereas the remainder depends
only on @ and ¢; accordingly, each must be a constant. For reasons that will appear
in due course, I will write this “separation constant” in the form /(/ + 1):*

1d (,dR\ 2mr?

R (r dr) ) Vr)y—El=I10+1); [4.16]
11 a Y 1 %Y
—{—~—(sind— — ==l +1). 4.1
Y {sin@ 36 (S“’ 80)+sin20 a¢2} ¢+D [4.17]

xProblem 4.2 Use separation of variables in Cartesian coordinates to solve the
infinite cubical well (or “particle in a box™):

V(x,y.z) = 0, ifx,y, zare all between 0 and a;
Y2 =100, otherwise.

(a) Find the stationary state wave functions and the corresponding energies.

(b) Call the distinct energies Eq, E», F3, ..., in order of increasing energy. Find
E\, E», E;, E4, Es5, and Eg. Determine the degeneracy of each of these energies
(that is, the number of different states that share the same energy). Recall
(Problem 2.42) that degenerate bound states do not occur in one dimension, but
they are common in three dimensions.

(€c) What is the degeneracy of E|4, and why is this case interesting?

4.1.2 The Angular Equation

Equation 4.17 determines the dependence of v on € and ¢; multiplying by Y sin? @,
it becomes

3 3 3’y
sin@ — (sine—) + e = —I(l + 1)sin®6Y. [4.18]

3Note that there is no loss of generality here—at this stage / could be any complex number. Later
on we’ll discover that / must in fact be an integer, and it is in anticipation of that result that I express the
separation constant in a way that looks peculiar now.
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You may have encountered this equation already—it occurs in the solution to Laplace’s
equation in classical electrodynamics. As always, we try separation of variables:

Y6, ¢) =0(0)D(p). [4.19]

Plugging this in, and dividing by ®®, we find
1 d d 1 d*®
{6[sin0‘—ig<sin0£>:|+l(l+1)sin20} 5%:0

The first term is a function only of 6, and the second is a function only of ¢, so each
must be a constant. This time I'll call the separation constant m?:*

17. d (. d® .2 2.
) Iism@% <51n0%>] +I(d +1)sin“6 =m~; [4.20]
1 d?® 2
— = 4.21
The ¢ equation is easy:
qu) 2 im¢
= > 2@y = [4.22]

[Actually, there are two solutions: exp(ime) and exp(—im¢), but we’ll cover the latter
by allowing m to run negative. There could also be a constant factor in front, but we
might as well absorb that into ®. Incidentally, in electrodynamics we would write the
azimuthal function (®) in terms of sines and cosines, instead of exponentials, because
electric potentials must be real. In quantum mechanics there is no such constraint,
and the exponentials are a lot easier to work with.] Now, when ¢ advances by 2m,
we return to the same point in space (see Figure 4.1), so it is natural to require that’

Q@ +2m) = D(9). (4.23]

In other words, exp[im(¢ + 27)] = exp(im¢), or exp(2zim) = 1. From this it
follows that m must be an integer:

m=0,%1,%£2,.... [4.24]

4 Again, there is no loss of generality here since at this stage m could be any complex number;
in a moment, though, we will discover that m must in fact be an integer. Beware: The letter m is now
doing double duty, as mass and as the so-called magnetic quantum number. There is no graceful way to
avoid this since both uses are standard. Some authors now switch to M or u for mass, but I hate to change
notation in midstream, and I don’t think confusion will arise as long as you are aware of the problem.

S5This is a more subtle point than it looks. After all, the probability density (| ®|2) is single valued
regardless of m. In Section 4.3 we’ll obtain the condition on m by an entirely different—and more
compelling—argument.
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The 6 equation,

d de
sin6—- (sin025> +[Id + 1)sin® 6 — m?]® =0, [4.25]

may not be so familiar. The solution is
®@) = AP (cos0), {4.26]

where P” is the associated Legendre function, defined by®

|2
P (x) = (1 - xH)"? (%) P(x), [4.27)

and P;(x) is the [th Legendre polynomial. We encountered the latter (Equation 3.91)
as orthogonal polynomials on the interval (—1, +1); for our present purposes it is
more convenient to define them by the Rodrigues formula:

P(x) = L (4 1(2 15 (4.28)
=g\ ) & ‘ '
For example,
1d
Po(x) =1, Pi(x) = EE(XZ_I)ZX’

1 /d)\* 1
P(x) = 7— (5) -1 = 5<3x2 - 1),

and so on. The first few Legendre polynomials were listed in Table 3.1. As the name
suggests, P;(x) is a polynomial (of degree /) in x, and is even or odd according to the
parity of . But P/ (x) is not, in general, a polynomial—if m is odd it carries a factor

of V1 —x2:

PY(x) = %(3;(2 -1, Rx)=(0- xz)l/zdi B(z;x2 - 1)} = 3xv/1— x2,
X

PAx) = (1 - x) (%) B(ﬁuz - 1)} =301 -2,

etc. [On the other hand, what we need is P"(cos8), and /1 — cos*f = sind, so
P["(cos 0) is always a polynomial in cos 6, multiplied—if m is odd—Dby sin 6. Some
associated Legendre functions of cos 6 are listed in Table 4.1.]

Notice that P™ = P". Some authors adopt a different sign convention for negative values of
m; see Boas (footnote 2) p. 505.
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Table 4.1: Some associated Legendre functions, P/ (cos#).

P! =sin6

P} = 15sin6(1 — cos*6)
P = cos b

P} = 15sin* 6 cos 8
P} = 3sin’6

P} = 3sin6(5cos?6 — 1)
P} =3sinf cos b

P} = 1(5cos’ 6 — 3cos )
P} = 1(3cos’6 — 1)

Notice that / must be a nonnegative integer for the Rodrigues formula to make
any sense; moreover, if [m| > /, then Equation 4.27 says A" = 0. For any given /,
then, there are (2/ + 1) possible values of m:

I=0,1,2,...;om=-l,-1+1,...,-1,0,1,..., 0 = 1,1 [4.29]

But wait! Equation 4.25 is a second-order differential equation: It should have two
linearly independent solutions, for any old values of / and m. Where are all the other
solutions? Answer: They exist, of course, as mathematical solutions to the equation,
but they are physically unacceptable because they blow up at & = 0 and/or 6 = 7,
and do not yield normalizable wave functions (see Problem 4.4).

Now, the volume element in spherical coordinates’ is

d’r =r’sinfdrdode, [4.30]

so the normalization condition (Equation 4.6) becomes
/ W 2r2sinbdrdf dp = / |R|2r2dr/ |Y|*sin6d6d¢ = 1.
It is convenient to normalize R and Y individually:
oo 27 b3
/ IR1%¥*dr =1 and/ / |Y|*sinf df dep = 1. [4.31]
0 0 0

The normalized angular wave functions® are called spherical harmonics:

7See, for instance, Boas, (footnote 2), Chapter 5, Section 4.

8The normalization factor is derived in Problem 4.47. The € factor is chosen for consistency with
the notation we will be using in the theory of angular momentum; it is reasonably standard, though some
older books use other conventions. Notice that

Y;m = (=D Ylm
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Table 4.2: The first few spherical harmonics, Y;" (8, ¢).

0 1 1/2 »
YO = (E) YZ
3 172
0 _ 0
YI = (E) cosé Y3
+1 3 172 : i +1
We=x (g) sin get’® Y

0 5 172 2 +2
Y2=(16_7'[) (3COS 9—1) Y3

15 172 )
= (f) sinz Geim’
T

7 1/2
= (E) (5cos> @ — 3cos 6)

21 \ V2 2 »
=F (—) sin@(5cos? 6 — 1)et’®
64m

105\1/2 ;
= (37) sin” @ cos fer ¢
T

+1 15\'/* tip  pa3 SN2 5
Y, =% - sin @ cos fe YU =7 P sin” fe

[4.32]

wo e D A= mD! e o
Y,(@,(p)_e\/ y (l+|m|)!e P/ (cos9),

where € = (—1)" form > 0 and € = 1 for m < 0. As we shall prove later on, they
are automatically orthogonal, so

2w T
/ / (Y8, )Y B, $)]sin 6 d6 dp = 81 8pm- [4.33]
0 0

In Table 4.2 T have listed the first few spherical harmonics.

«Problem 4.3 Use Equations 4.27, 4.28, and 4.32 to construct Y, and ¥, . Check
that they are normalized and orthogonal.

Problem 4.4 Show that
©(0) = Aln[tan(6/2)]

satisfies the # equation (Equation 4.25) for / = m = 0. This is the unacceptable
“second solution”—what’s wrong with it?

xProblem 4.5 Using Equation 4.32, find Y/ (6, ¢) and Y2(8, ¢). Check that they sat-
isfy the angular equation (Equation 4.18), for the appropriate values of the parameters
[ and m.

xxProblem 4.6 Starting from the Rodrigues formula, derive the orthonormality con-
dition for Legendre polynomials:

! 2
/—1 Pi(x)Pr(x)dx = (m) Sypr.

Hint: Use integration by parts.

[4.34]
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4.1.3 The Radial Equation
Notice that the angular part of the wave function, Y (6, ¢), is the same for all spherically

symmetric potentials; the actual shape of the potential, V (r), affects only the radial
part of the wave function, R(»), which is determined by Equation 4.16:

d ( ,dR 2mr? _
4 (r E) -2 Ve) - EIR =10+ DR, [4.35]

This equation simplifies if we change variables: Let
u(r)y =rR(r), [4.36]

sothat R = u/r, dR/dr = [r(du/dr) —ul/r?, (d/dr)[r*(dR/dr)] = rd*u/dr?,
and hence

B? d2u {V ﬁ1(1+1)

B du - Eu. 4.37
2m dr? 2 ]" . [4.37]

2m  r

This is called the radial equation’; it is identical in form to the one-dimensional
Schrodinger equation (Equation 2.4), except that the effective potential,

210+ 1)
2m  r?

Ver =V + , [4.38]
contains an extra piece, the so-called centrifugal term, (A /2m)[1(14+1)/r*]. Ittends
to throw the particle outward (away from the origin), just like the centrifugal (pseudo-)
force in classical mechanics. Meanwhile, the normalization condition (Equation 4.31)
becomes

/ lu>dr = 1. [4.39]
0

We cannot proceed further until a specific potential is provided.

Example. Consider the infinite spherical well,

0, ifr<a;
Vir = [oo, ifr > a. [4.40]
Outside the well the wave function is zero; inside the well the radial equation says
d’u +1) 5
—_— = —k“u, 441
dr? [ 2 [4.41]

9Those m’s are masses, of course—the radial equation makes no reference to the quantum
number m.
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where
2mE

h £l
as usual. Our problem is to solve this equation, subject to the boundary condition
u(a) = 0. The case [ = 0 is easy:

k [4.42]

d*u

— =—ku = u(r) = Asin(kr) + B cos(kr).
dr?

But remember, the actual radial wave function is R(r) = u(r)/r, and [cos(kr)]/r
blows up as  — 0. So0'° we must choose B = 0. The boundary condition then
requires sin(ka) = 0, and hence ka = nx, for some integer n. The allowed energies
are evidently
n2n2h2
2ma? "’
the same as for the one-dimensional infinite square well (Equation 2.23). Normalizing
u(r) yields A = +/2/a; inclusion of the angular part (constant, in this instance, since
Y96, ¢) = 1/+/4m), we conclude that

E, = n=1273,..), [4.43]

1 sin(nmr/a)

Ynoo = (4.44]

2na r
[Notice that the stationary states are labeled by three quantum numbers, », [, and
m: Yo (7, 6, ¢). The energy, however, depends only onn and I: E,;.]
The general solution to Equation 4.41 (for an arbitrary integer /) is not so
familiar:
u(ry = Arjiy(kr) + Brni(kr), [4.45]

where j;(x) is the spherical Bessel function of order /, and »,(x) is the spherical
Neumann function of order /. They are defined as follows:

! . !
j,mE(_xy(li) Slzx; n,<x>s—<—x>’(li) SX  l4.46)

xdx x dx x

For example,

. sinx COS X
Jo(x) = ——; molx) = — ;
X X

. 1 d (sinx sinx  cosx
o= ot (22) .
x dx

X x? x

10 Actually, all we require is that the wave function be normalizable, not that it be finite: R(r) ~ 1/r
at the origin would be normalizable (because of the r2 in Equation 4.31). For a more compelling proof
that B = 0, see R. Shankar, Principles of Quantum Mechanics (New York: Plenum, 1980), p. 351.
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ni(x) = —-(—x);a

’

1d (cosx) cosx  sinx

x x? x

and so on. The first few spherical Bessel and Neumann functions are listed in

Table 4.3. Notice that for small x (where sinx ~ x — x3/3! + x°/5! — ... and
cosx & 1 —x2/24+x*/41 — .. ),
. 1 ) x 1
SR nx)x = H) R M) R -
X 3 X

etc. The point is that the Bessel functions are finite at the origin, but the Neumann
functions blow up at the origin. Accordingly, we must have B; = 0, and hence

R(r) = Aji(kr). [4.47]

There remains the boundary condition, R(a) = 0. Evidently k£ must be chosen
such that

Ji(ka) = 0; [4.48]
that is, (ka) is a zero of the /M-order spherical Bessel function. Now the Bessel
functions are oscillatory (see Figure 4.2); each one has an infinite number of zeros.
But (unfortunately, for us) they are not located at nice sensible points (such as #, or

n7, or something); they have to be computed numerically.!! Atany rate, the boundary
condition requires that

1
k= —Bu, [4.49]
a

Table 4.3: The first few spherical Bessel and Neumann functions, ji(x) and n;(x).

X sin x cosx
Jo= ng = —
X X
X sinx  COSx cosx  sinx
N=TF T e
X X P X
. (3 1) . 3 3 1) 3 .
=|——~])sinx— —<cosx np=—{-— ——}cosx — —sinx
2 x3  x x2 z 2 x)° x2
i x! Q@ -Dnn " <1
- —_—, > ——— or X .
A= @ M P r

11 Abramowitz and Stegun, eds., Handbook of Mathematical Functions (New York: Dover, 1965),
Chapter 10, provides an extensive listing.
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\ 12

L4 x
A

Figure 4.2: Graphs of the first four spherical Bessel functions.

where B8, is the n™ zero of the /™

then, are given by

spherical Bessel function. The allowed energies,

n®o,
Ey=——8, 4.50
I 2ma2 ﬁnl [ ]
and the wave functions are
wnlm (ry 6’ ¢) = Anl]l (ﬂnlr/a)Y]m (67 ¢)7 [4'51]

with the constant 4,; to be determined by normalization. Each energy levelis (2/+1)-
fold degenerate, since there are (2! + 1) different values of m for each value of / (see
Equation 4.29).

Problem 4.7

(@) From the definitions (Equation 4.46), construct j>(x) and n(x).

(b) Expand the sines and cosines to obtain approximate formulas for j>(x) and
na(x), valid when x « 1. Confirm that j;(x) is finite at the origin but n,(x)
blows up.

Problem 4.8

(@) Check that Arj, (kr) satisfies the radial equation (Equation 4.37) with V' () = 0
and/ = 1.
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(b) Determine graphically the allowed energies for the infinite spherical well when
[ = 1. Show that for large n, E,; ~ (h>m%/2ma®)(n + 1/2)%.

+xProblem 4.9 A particle of mass m is placed in a finite spherical well:

0, ifr<a;
Vo, ifr > a.

V(ry= {

Find the ground state by solving the radial equation with / = 0. Show that there is
no bound state at all if Vya? < w2h%/8m.

4.2 THE HYDROGEN ATOM

The hydrogen atom consists of a heavy, essentially motionless proton (we may as
well put it at the origin) of charge e, together with a much lighter electron (charge
—e) that circles around it, held in orbit by the mutual attraction of opposite charges
(see Figure 4.3). From Coulomb’s law, the potential energy (in SI units) is

e’ 1
Vr)=-— -, [4.52]
4 €y r
and the radial equation (Equation 4.37) says
n? d’u 21 RIg+D
-t - -+ — = Eu. 4.53
2m dr? [ dmegr  2m  r? ] ! ! [4.53]

Our problem is to solve this equation for u(r) and determine the allowed electron
energies E. The hydrogen atom is such an important case that I’m not going to hand
you the solutions this time—we’ll work them out in detail by the method we used
in the analytical solution to the harmonic oscillator. (If any step in this process is
unclear, you may wish to refer back to Section 2.3.2 for a more complete explana-
tion.) Incidentally, the Coulomb potential (Equation 4.52) admits continuum states
(with E > 0), describing electron-proton scattering, as well as discrete bound states,
representing the hydrogen atom, but we shall confine our attention to the latter.

+e

(proton)

Figure 4.3: The hydrogen atom.
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4.2.1 The Radial Wave Function

Our first task is to tidy up the notation. Let
v=2mE
P
(For bound states, £ < 0, so « is real.) Dividing Equation 4.53 by E, we have

1 d*u _ me? 1 Ia+1
k2 dr2 2megh’ic (kr) (ker)?

K [4.54]

This suggests that we let

2

nme
=k, d = 4.55
p=kr, and pg P edie [4.55]
so that P
u o 10+ 1)
~ =112 4.56
dp? [ o - P 14.56]

Next we examine the asymptotic form of the solutions. As p — oo, the constant
term in the brackets dominates, so (approximately)

d’u
21? =Uu.
The general solution is
u(p) = Ae™® + Be”, [4.57]

but e” blows up (as p — 00), so B = 0. Evidently,
u(p) ~ Ae™* [4.58]

for large p. On the other hand, as p — 0 the centrifugal term dominates'?; approxi-
mately, then,

d*u 10+ 1)

_—=—u.

dp? 02
The general solution (check it!) is

u(p) = Cp'*' + Dp”,

but o~/ blows up (as p — 0),s0 D = 0. Thus

u(p) ~ Cp"t! [4.59)

2This argument does not apply when [ = 0 (although the conclusion, Equation 4.59, is in fact
valid for that case too). But never mind: All T am trying to do is provide some motivation for a change of
variables (Equation 4.60.)
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for small p.
The next step is to peel off the asymptotic behavior, introducing the new function
v(p):
u(p) = p'*'e™"v(p), [4.60]

in the hope that v(p) will turn out to be simpler than u(p). The first indications are
not auspicious:

du_ I —p dv
and
d’u I+ dv  d*v
— =pe”{|-21-2 20+ 1—p)y— — 1.
7 o'e {[ +p+ ]v+(+ p)dp+pdp2}

In terms of v(p), then, the radial equation (Equation 4.56) reads

d*v

d
PEZ L2041 — P+ Ipo— 20+ D]y =0. [4.61]
dp dp

Finally, we assume the solution, v(p), can be expressed as a power series in p:
00 s
v(p) =Y a;p’. [4.62]
7=0

Our problem is to determine the coefficients (ao, ai, a2, . . .). Differentiating term by
term,

dp =

dU o . j-1 >, . j
— = Z]ajp = Z(J + Dajy1p0”.
=0

[In the second summation I have renamed the “dummy index”: j — j + 1. If this
troubles you, write out the first few terms explicitly, and check it. You might say that
the sum should now begin at j = —1, but the factor (j + 1) kills that term anyway,
so we might as well start at zero.] Differentiating again,

v & .
i ZJ'(J' + Dajip’™"
Inserting these into Equation 4.61, we have

o0 o0
3G+ Dajp’ + 2041 Y G+ Dajyip?
j=0 7=0

00

o0
2% jagp! + 1o — 20 + D) Y _a;p’ =0.

j=0 j=0
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Equating the coefficients of like powers yields
JU + Dajpr + 20+ DG + Dajyr — 2ja; +po — 2+ Dla; = 0,

or

2 4+1+1) -
H]:{ U+14+1D~po }aj [4.63]

G+DG+204+2)

This recursion formula determines the coefficients, and hence the function v(p):
We start with ag = A (this becomes an overall constant, to be fixed eventually by
normalization), and Equation 4.63 gives us a; putting this back in, we obtain a5, and
so on.!

Now let’s see what the coefficients look like for large j (this corresponds to
large p, where the higher powers dominate). In this regime the recursion formula
says

~ 2 2
dit a4 = a,
MEGGED Y T Y
SO ,
2J
J!

Suppose for a moment that this were the exact result. Then

5 2/ J 2p
v(p) =AY —pl = 4e¥,
=0 I

and hence
u(p) = Ap'*'e, [4.65]

whichblows up at large p. The positive exponential is precisely the asymptotic behav-
ior we didn’t want in Equation 4.57. (It’s no accident that it reappears here; after all.
it does represent the asymptotic form of some solutions to the radial equation—they
justdon’t happen to be the ones we’re interested in, because they aren’t normalizable. )
There is only one way out of this dilemma: The series must terminate. There must
occur some maximal integer, jmax, such that

a,.+1=0 [4.66]
(and beyond which all coefficients vanish automatically). Evidently (Equation 4.63)

2(jmax +1+1) = po=0.

3You might wonder why I didn’t use the series method directly on u(p)—why factor out the
asymptotic behavior before applying this procedure? The reason for peeling off p'*! is largely aesthetic:
Without this, the sequence would begin with a long string of zeroes (the first nonzero coefficient being
ai41); by factoring out p/*! we obtain a series that starts out with p°. The e~ factor is more critical—if
you don’t pull that out, you get a three-term recursion formula involving a;42, a;+1, and a; (#ry it!), and
that is enormously more difficult to work with.
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Defining
n= jmax+ 1+ 1 (4.67]

(the so-called principal quantum number), we have
Po = 2n. [4.68]
But pg determines E (Equations 4.54 and 4.55):

B2k2 met
E=-— = - , 4.69
2m 8n2eln’pd 14.69]

so the allowed energies are

m e\ 1 E
Eoe— | (Y| L 2B 2 470
[2712 (47Tfo> :|”2 w2 " 70

This is the famous Bohr formula—by any measure the most important result in
all of quantum mechanics. Bohr obtained it in 1913 by a serendipitous mixture
of inapplicable classical physics and premature quantum theory (the Schrodinger
equation did not come until 1924).

Combining Equations 4.55 and 4.68, we find that

me® 1 1
‘= S [4.71]
dwegh?) n  an
where
degh?
a= 0 —0529%10°m [4.72]
me

is the so-called Bohr radius. It follows (again, from Equation 4.55) that

-
p=—. [4.73]
an
Evidently the spatial wave functions for hydrogen are labeled by three quantum num-
bers (n, [, and m):
Yoim (7, 0,¢) = Ry(r) Ylm (9’ ), [4.74]

where (referring back to Equations 4.36 and 4.60)

1
Ru(r) = ;p’“e‘pv(p), [4.75]
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and v(p) is a polynomial of degree jn.x = n —/ — 1 in p, whose coefficients are

determined (up to an overall normalization factor) by the recursion formula

2+ +1-n) .
G+DG+2+2) 7

aj_H [476]

The ground state (that is, the state of lowest energy) is the case n = 1; putting
in the accepted values for the physical constants, we get

m 62 2
B = {_2 <___> } — _136eV. [4.77]
2h° \dmep

Evidently the binding energy of hydrogen (the amount of energy you would have to
impart to the electron in order to ionize the atom) is 13.6 eV. Equation 4.67 forces
{ = 0, whence also m = 0 (see Equation 4.29), so

Vioo(r, 0. ¢) = Rio(" Y56, ). [4.78]

The recursion formula truncates after the first term (Equation 4.76 with j = 0 yields
a; = 0), so v(p) is a constant (ap) and

Rio(r) = ?e“’/“. [4.79]

Normalizing it, in accordance with Equation 4.31,

® 2.2 laol* [ ) 24
[Rlolrdr=—2— e redr =lagl"= =1,
0 as Jo 4

50 ag = 2/+/a. Meanwhile, Y{ = 1/+/47, so

1
Vioo(r, 0, ¢) = ——=e "% [4.80]
Va3
If n = 2 the energy is
—13.6 eV
Ey = —4—° = 34eV: [4.81]

this is the first excited state—or rather, states, since we can have either / = 0 (in
which case m = 0) or [ = 1 (with m = —1, 0, or +1), so there are actually four
different states that share this energy. If / = 0, the recursion relation (Equation 4.76)
gives

a, = —ap (using j =0), anda; =0 (using j = 1),
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so v(p) = ag(1 — p), and hence

% (TN e
Rao(r) = 5 (1 Za) el [4.82]

If / = 1 the recursion formula terminates the series after a single term, so v(p) is a

constant, and we find
a
Ry(r) = —=re /%, [4.83]
4q?

(In each case the constant ag is to be determined by normalization—see Problem
4.11)
For arbitrary n, the possible values of / (consistent with Equation 4.67) are

[=0,1,2,...,n— 1. [4.84]
For each /, there are (2/ + 1) possible values of m (Equation 4.29), so the total

degeneracy of the energy level E,, is

n—1

dinmy=) @ +1)=n" [4.85]

=0

The polynomial v(p) (defined by the recursion formula, Equation 4.76) is a function
well known to applied mathematicians; apart from normalization, it can be written as

v(p) = LiAL (2p), [4.86]
where N
Li_,(x)=(=1)? <d—x> Ly(x) [4.87]
is an associated Laguerre polynomial, and
d\?
Lyx)=¢€" (-CE) (e_"xq) [4.88]

is the gth Laguerre polynomial.'* (The first few Laguerre polynomials are listed in
Table 4.4; some associated Laguerre polynomials are given in Table 4.5. The first
few radial wave functions are listed in Table 4.6 and plotted in Figure 4.4.) The
normalized hydrogen wave functions are'®

2N m=r=nt N o (20N,
vfnlm—\/(;b‘> me (n—a) Ln—l—l(E)Yl (9,¢) [489]

lapg usual, there are rival normalization conventions in the literature; I have adopted the most nearly
standard one.

I5If you want to see how the normalization factor is calculated, study (for example), L. Schiff,
Quantum Mechanics, 2nd ed. (New York: McGraw-Hill, 1968), page 93.
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Table 4.4: The first few Laguerre polynomials, L, (x).

Lo=1 |
Li=—x+1

Ly=x>—4x 42

Ly=—x34+9%2 - 18x+6

Lg=x*—16x3 +72x2 — 96x + 24

Ls = —x% 4+ 25x* — 200x% + 600x2 — 600x + 120

Lo = x% — 361" +450x* — 2400x> + 5400x2 — 4320x + 720

Table 4.5: Some associated Laguerre polynomials, L5_ Jean

Ly=1 L}=2

Li=—x+1 L} = —6x+18

L) =x%—4x +2 L3 = 12x% — 96x + 144
Li=1 L}=6

Ll=-2x+4 L} =—-24x +96
L}=3x2—18x +18 L3} = 60x% — 600x + 1200
2 2

They are not pretty, but don’t complain—this is one of the very few realistic systems
that can be solved at all, in exact closed form. As we will prove later on, they are
mutually orthogonal:

/ Uitm Ut 72 SN0 dr dO ded = 8,811 Sy [4.90]

xProblem 4.10 Work out the radial wave functions Rsg, R3;, and Rj;, using the
recursion formula (Equation 4.76). Don’t bother to normalize them.

*Problem 4.11

(a) Normalize Ry (Equation 4.82), and construct the function 9.
(b) Normalize R,; (Equation 4.83), and construct 1, /210, and ¥r2;_;.

+xProblem 4.12

(a) Using Equation 4.88, work out the first four Laguerre polynomials.
(b) Using Equations 4.86, 4.87, and 4.88, find v(p) for the case n = 5, = 2.
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Table 4.6: The first few radial wave functions for hydrogen, R, (r).

Rio = 2a72 exp(—r/a)

_ 1 —3/2( _Ir -
Rzo_ﬁa 1 3 )exp( r/2a)

a

—3n27

Ry = ——a - exp (—r/2a)

2 2r 2 /r\?
R = = o T34 —(—) -
30 ma 1 37 T\ exp (~r/3a)
8 1r r
Ry = ——a 3? (1 - = —) (—) exp (—r/3a
31 e 62\ p (—r/3a)

R 4 -3/2 (r)z ( /3 )
= —d - €X] -r/aa
R TWECT a) P
3

__1 —32 r 1 /r\? 1 r\3
Ry = 4(1 1 12 + 3 (;) 192 (a) exp (—r/4a)

NG 1r 1 /r\2\ r
Ry = gL I P —(-) - —r/4
4 16ﬁa 4a+80 a aexp( r/4a)
1 1 r r\?
tomgi (- ) )
42 64\/§a T A AR d r/4a)

1 r\?
Ryz = —a_3/2( ) exp (—r/4a
43 763753 p (—r/4a)

Q|

Ru(r)

]
]
]
08
[}
]

10
]
]
o.sl :.
izo:
[ 1
0.5—‘. E
04 —‘. :i
L3
0.3 ‘ \
30, /Nt
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Figure 4.4: Graphs of the first few hydrogen radial wave functions, R, ().
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(c) Again, find v(p) forthe case n = 5,/ = 2, but this time get it from the recursion
formula (Equation 4.76).

«Problem 4.13

(a) Find {r) and (#?) for an electron in the ground state of hydrogen. Express your
answers in terms of the Bohr radius a.

(b) Find (x) and {x?) for an electron in the ground state of hydrogen. Hint: This
requires no new integration—note that 7> = x% 4+ y* + z2, and exploit the
symmetry of the ground state.

(c) Find (x?) inthe state n =2,/ = 1, m = 1. Hinr. This state is nor symmetrical
inx, y,z Usex =rsinfcos¢.

Problem 4.14 What is the probability that an electron in the ground state of hy-
drogen will be found inside the nucleus?

(a) First calculate the exact answer, assuming that the wave function (Equation
4.80) is correct all the way down to » = 0. Let b be the radius of the nucleus.

(b) Expand your result as a power series in the small number & = 2b/a, and show
that the lowest-order term is the cubic: P ~ (4/3)(b/a). This should be a
suitable approximation, provided that b < a (which it is).

(c) Alternatively, we might assume that i () is essentially constant over the (tiny)
volume of the nucleus, so that P &~ (4/3)wb*|y(0)|?. Check that you get the
same answer this way.

(d) Use b ~ 100" manda ~ 0.5 x 107'%m to get a numerical estimate for

P. Roughly speaking, this represents the “fraction of its time that the electron
spends inside the nucleus”.

Problem 4.15

(a) Use the recursion formula (Equation 4.76) to confirm that when / = n — 1 the
radial wave function takes the form

Rn(n‘l) — Nnrn—le—r/na,

and determine the normalization constant N, by direct integration.
(b) Calculate () and (#?) for states of the form ¥, (,—1ym-

(c) Show that o, = (r)/~/2n + 1 for such states. Note that the fractional spread in
r decreases with increasing # (in this sense the system “begins to look classical”
for large n). Sketch the radial wave functions for several values of n to illustrate
this point.
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4.2.2 The Spectrum of Hydrogen

In principle, if you put a hydrogen atom into some stationary state W,,,, it should
stay there forever. However, if you tickle it slightly (by collision with another atom,
say, or by shining light on it), then the atom may undergo a transition to some other
stationary state—either by absorbing energy and moving up to a higher-energy state,
or by giving off energy (typically in the form of electromagnetic radiation) and moving
down.'® In practice such perturbations are always present; transitions (or, as they are
sometimes called, “quantum jumps”) are constantly occurring, and the result is that
a container of hydrogen gives off light (photons), whose energy corresponds to the
difference in energy between the initial and final states:

1 1
E, = E, — Ef = —13.6eV (—2 - —2>. [4.91]
n;  n;
Now, according to the Planck formula,"’ the energy of a photon is proportional

to its frequency:
E, =hv. [4.92]

Meanwhile, the wavelength is given by A = ¢/v, so

1—R ! ! [4.93]
o\ TR |

where
2 N2
m e 7
=— <— =1.097x 10'm™". [4.94]
dmch’ \4meg

R is known as the Rydberg constant, and Equation 4.93 is the Rydberg formula for
the spectrum of hydrogen. It was discovered empirically in the nineteenth century,
and the greatest triumph of Bohr’s theory was its ability to account for this result—
and to calculate R in terms of the fundamental constants of nature. Transitions to the
ground state (n, = 1) lie in the ultraviolet; they are known to spectroscopists as the
Lyman series. Transitions to the first excited state (n, = 2) fall in the visible region;
they constitute the Balmer series. Transitions to n, = 3 (the Paschen series) are in
the infrared, and so on (see Figure 4.5). (At room temperature, most hydrogen atoms
are in the ground state; to obtain the emission spectrum, you must first pump them
up into the various excited states; typically this is done by passing an electric spark
through the gas.)

6By its nature, this involves a time-dependent interaction, and the details will have to wait for
Chapter 9; for our present purposes the actual mechanism involved is immaterial.

7The photon is a quantum of electromagnetic radiation; it’s a relativistic object if there ever was
one, and therefore outside the scope of nonrelativistic quantum mechanics. It will be useful in a few places
to speak of photons and to invoke the Planck formula for their energy, but please bear in mind that this is
external to the theory we are developing.
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0

1oL [
10 YVY
—20 bk Paschen
series

W RO

-30

40 Balmer
series

50
—-6.0
-7.0
-8.0 [~

Energy (eV)

—90
-10.0 —
-11.0 I~
-120
-13.0 —

—14.0 = Lyman series

Figure 4.5: Energy levels and transitions in the spectrum of hydrogen.

Problem 4.16 Consider the earth-sun system as a gravitational analog to the hy-
drogen atom.

(a) What is the potential energy function (replacing Equation 4.52)? (Let m be the
mass of the earth and M the mass of the sun.)

(b) What is the “Bohr radius” for this system? Work out the actual numerical value.

(c) Write down the gravitational “Bohr formula”, and, by equating E, to the clas-
sical energy of a planet in a circular orbit of radius ro, show that n = /ro/a.
From this, estimate the quantum number » of the earth.

(d) Suppose the earth made a transition to the next lower level (n — 1). How much
energy (in Joules) would be released? What would the wavelength of the emitted
photon (or, more likely, graviton) be?

xProblem 4.17 A hydrogenic atom consists of a single electron orbiting a nucleus
with Z protons. (Z = 1 would be hydrogen itself, Z = 2 is ionized helium, Z = 3 is
doubly ionized lithium, and so on.) Determine the Bohr energies £, (Z), the binding
energy E1(Z), the Bohr radius a(Z), and the Rydberg constant R(Z) for a hydrogenic
atom. (Express your answers as appropriate multiples of the hydrogen values.) Where
in the electromagnetic spectrum would the Lyman series fall, for Z = 2 and Z = 3?
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4.3 ANGULAR MOMENTUM

In classical mechanics, the angular momentum of a particle (with respect to the origin)
is given by the formula

L=rxp, [4.95]

which is to say,
Li=yp.—zpy, Ly=2zp—xp,, and L;=xp,— ypx. [4.96]

The corresponding quantum operators are obtained by the standard prescription
(Equation 4.2):

L_h . _L_h NEAY
=i\ By’ »= 7Gx T Y%z)¢

L_h 0 3
P ay yax

In the following sections we will deduce the eigenvalues and eigenfunctions of these
operators.

[4.97]

4.3.1 Eigenvalues

L, and L, donot commute; in fact [providing a test function, f(x, y, z), for them to
act upon]:

Lo L)f = (5)2
(5 —5) (3 -3) )
n\? af af
- (1) ba (50) 5 ()
5) 5 () =5 (%)
)

Z ]
dy \ 0
] a ] a 3

+z— z—j—{ +x— y—f —X— f

dx \ 0y dz \” 0z az ay

AN 3 f ?2f LS 3 f

= - + yz —yX——z zX
i ax 9z0x 822 dydx dydz

i Bxaz Tz 0xay +xy8_zz— B 8y 0z0y

P L0 Pf o aZf)
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All the terms cancel in pairs (by virtue of the equality of cross-derivatives) except

two:
[Lx’Lv]f: N Y— — X lehLz_f,
’ i 0x dy

and we conclude (dropping the test function)

l [L,.L,]=ihL.. [4.98

By cyclic permutation of the indices it follows also that
[Ly,L,]=ihLl, and [L., L,]=ihL,. [4.99]

From these fundamental commutation relations the entire theory of angular momen-
tum can be deduced.

Evidently L,, L,, and L, are incompatible observables. According to the
generalized uncertainty principle (Equation 3.139),

2 2 ! PR,
00, = (2_i(ihLZ)> = —4—<Lz) )
or

B
0r,0L, = EI(LZH. [4.100]

It would therefore be futile to look for states that are simultaneously eigenfunctions
of L, and of L,. On the other hand, the square of the total angular momentum,

L’=Ll+L+1L2 [4.101]

does commute with L,:

(L3, L+ (L3, Ll + [L2, L]

= Ly[Ly’ Lx]+[Lya Lx]Ly'f'Lz[Lz’ L]+ I[L:, Ly]L,
Ly(—ihLs) + (—ihL)L, + L.GhL,) + GRL,)L.

0.

(L% L,]

(I used Equation 3.142 and the fact that any operator commutes with irself.'®) Tt
follows, of course, that L? also commutes with L yand L

[L? L,0=0, [L* L,]=0, [L*L,]=0, [4.102]

18Note that all the operators we encounter in quantum mechanics (see footnote 8, Chapter 1) are
linear, in the sense that Af+g = A S+ A 1g, and therefore distributive with respect to addition:
A(B + C) AB+ AC. In particular, [A B+ C] [4, B] +[4, C]
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or, more compactly,
[L?, L] =0. [4.103]

So L? is compatible with each component of L, and we can hope to find simultaneous
eigenstates of L2 and (say) L,:

L*f=xf and L,f=uf [4.104]

We’ll use a “ladder operator” technique, very similar to the one we applied to
the harmonic oscillator back in Section 2.3.1. Let

Li=L,+il,. [4.105]
Its commutator with L, is
[L:, Li)=1[L;, Ly)%i[L;, L] =ihL, +i(—ihLl,) = +h(L, £ iLy),

SO
(L, Ly]=2hL,. [4.106]

And, of course,
[L%, L] =0. [4.107]

Iclaim that if £ is an eigenfunction of L? and L., so also is L+ f. For Equation 4.107
says
L2 Lif) = La(L f) = Ly(Af) = A(L+ f), [4.108]

so Ly f is an eigenfunction of L2, with the same eigenvalue A, and Equation 4.106
says

L(Lif)=(LLs—Lal)f+LiLl.f=%hLy f+ Li(uf)
=(uxr(Lsf),

so L4 f is an eigenfunction of L, with the new eigenvalue p = %. L is called the
“raising” operator because it increases the eigenvalue of L, by %, and L_ is called
the “lowering” operator because it lowers the eigenvalue by 7.

For a given value of A, then, we obtain a “ladder” of states, with each “rung” sep-
arated from its neighbors by one unit of 7% in the eigenvalue of L, (see
Figure 4.6). To ascend the ladder we apply the raising operator, and to descend,
the lowering operator. But this process cannot go on forever: Eventually we’re going
to reach a state for which the z-component exceeds the foral, and that cannot be (see
Problem 4.18). So there must exist a “top rung,” f£;, such that

{4.109]

L,f,=0. [4.110]

lgActually, all we can conclude is that L. f; is not normalizable—its norm could be infinite, instead
of zero. Problem 4.19 eliminates this alternative.
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I fr
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u+3h

Ly

n+24 2

p+h L f
n f

u-Hh L f

p-24 L%f

w3k L3
U

I P Figure 4.6: The “ladder” of angular
b momentum states.

Let %l be the eigenvalue of L, at this top rung (the appropriateness of the letter
|—sometimes called the azimuthal quantum number—will appear in a moment):

L.f, =hlfy; L%*f, =Af,. [4.111]
Now

LiLly = (L, £iL)(Ly FiLly) =L+ L2 Fi(LLy — L,Ly)
=L* - L}Fi(inL,),

or, putting it the other way around,
L*=LiLi+L2FhL, [4.112)
It follows that
L*f,=(L_Ly + L2+ 8L f, = O+ + 12D f, = K11+ 1) f;,

and hence
A =nd+ 1. [4.113)

This tells us the eigenvalue of L? in terms of the maximum eigenvalue of L.
Meanwhile, there is also (for the same reason) a bottom rung, f,, such that

L_f,=0. [4.114]
Let 1l be the eigenvalue of L, at this bottom rung:
L.fy=nlfy; L*f, =Arfs. [4.115)
Using Equation 4.112, we have
L*fy = (LiL_+ L2 —nL) fo = O+ 11> =0 D) fo = 1*1d — 1) fo,
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and therefore o
A=rAd - 1. [4.116]

Comparing Equations 4.113 and 4.116, we see that /(I + 1) = I — 1), so either
{ =1+ 1 (which is absurd—the bottom rung is higher than the top rung!), or else

I=—1 [4.117]

Evidently the eigenvalues of L, are mh, where m (the appropriateness of this
letter will also be clear in a moment) goes from —! to +/ in N integer steps. In
particular, it follows that / = —/ + N, and hence [ = N/2, so ! must be an integer or
a half-integer. The eigenfunctions are characterized by the numbers [ and m:

LY =110+ D f";  Lf" =hmf", (4.118]

where
1=0,1/2,1,3/2,...; m=-1,-1+1,....,1—-1,1 [4.119]

For a given value of /, there are 2/ + 1 different values of m (i.e., 2/ + 1 “rungs” on
the “ladder™).

I hope you’re impressed: By purely algebraic means, starting with the fun-
damental commutation relations (Equations 4.98 and 4.99), we have determined the
eigenvalues of L? and L,—without ever seeing the eigenfunctions themselves! We
turn now to the problem of constructing the eigenfunctions, but I should warn you
that this is a much messier business. Just so you know where we’re headed, I'1l tell
you the punch line before we begin: f* = ¥;"—the eigenfunctions of L? and L, are
nothing but the old spherical harmonics, which we came upon by a quite different
route in Section 4.1.2 (that’s why I chose the letters / and m, of course).

Problem 4.18

(@) Prove that if f is simultaneously an eigenfunction of L2 and of L, (Equa-
tion 4.104), the square of the eigenvalue of L, cannot exceed the eigenvalue of
L?. Hint: Examine the expectation value of L2.

(b) Asitturnsout(see Equations 4.118 and 4.119), the square of the eigenvalue of L,
never even equals the eigenvalue of L? (except in the special case | = m = 0).
Comment on the implications of this result. Show that it is enforced by the
uncertainty principle (Equation 4.100), and explain how the special case gets
away with it

*xProblem 4.19 The raising and lowering operators change the value of m by one
unit:
Lyifi" = A", [4.120]

where A]' is some constant. Question: What is A]', if the eigenfunctions are to be
normalized? Hint: First show that L is the Hermitian conjugate of L. (since L,
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and L , are observables, you may assume they are Hermitian, but prove it if you like .
then use Equation 4.112. Answer:

m=hJIl+1)—mm=£1). [4.121°
Note what happens at the top and bottom of the ladder.

«Problem 4.20

(a) Starting with the canonical commutation relations for position and momentum.
Equation 4.10, work out the following commutators:
[L:, x]=ihy, [L;, y] = —ihx, [L;,z]=0

] . 4,122
(Lo pd = ifipy, (Lo pl = —ihpe, Ly pal =0. H15=

(b) Use these results to obtain [L,, L] = ik L, directly from Equation 4.96.
(c) Evaluate the commutators [L,,r?] and [L,, p?] (where, of course, r’> =
x*+ 3 + 22 and p* = p} + p + p).

(d) Show that the Hamiltonian H = (p?/2m) 4+ V commutes with all three com-
ponents of L, provided that ¥ depends only on r. (Thus H, L?, and L, are
mutually compatible observables.)

sxProblem 4.21

(a) Prove that for a particle in a potential ¥ (r) the rate of change of the expectation
p p
value of the orbital angular momentum L is equal to the expectation value of
the torque:
d
—(L)y=(N
i (L) = (N),
where
N=rx (-VV).
(This is the rotational analog to Ehrenfest’s theorem.)

(b) Show that d(L)/dt = 0 for any spherically symmetric potential. (This is one
form of the quantum statement of conservation of angular momentum.)

4.3.2 Eigenfunctions

First of all we need to rewrite L., L,, and L, in spherical coordinates. Now L =
(n/i)(r x V), and the gradient, in spherical coordinates, is*

0 ~1 0 ~ 1 9
V=it b+ ¢

—_— 123
or r a9 rsinf 9¢’ [4.123]

DGeorge Arfken, Mathematical Methods for Physicists, 3rd ed. (Orlando, FL: Academic Press.
1985), Section 2.5.
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meanwhile, r = r#, so
L=2 [ x D+ (x4 (F x D)o
=—|rFxAH—+(Fx0)—+ F x — .
i or 06 sinf 3¢

But (r x 7) =0, (F x 6) = qg, and (F x ¢) = —6 (see Figure 4.1), and hence

h(~0 ~ 1 9
L=-(¢——6——). 4.124
i (¢ a6 sin6 8¢> [ ]
The unit vectors § and (;3 can be resolved into their Cartesian components:
6 = (cos @ cos )i + (cos @ sing)j — (sin 0)k: [4.125)

¢ = —(sin @) + (cos P)]. [4.126]
Thus

B .1 8
L =- |:(— sin ¢1 + cos ¢j)8—9 — (cosf cos @i + cosfsingj — sinbk) :I .
i

sinf 3¢
Evidently,

I, =" inqs8 — cos¢cotf 0 [4.127]

x = - sing - — cos¢co 5% ) i

h d d
L,= n <+cos¢£ - sin¢cot9%), [4.128]
and

= h [4.129]

RS '

We shall also need the raising and lowering operators:

h d 0
Ly=L,xilL,= n l:(— sin ¢ :i:icos¢)£ — (cos ¢ :tisintp)coteﬁ].
But cos ¢ £ ising = e*'?, s0

. 9
Ly = +he™™® (i :ticot@—) .

% o0 [4.130]

We are now in a position to determine f" (8, ¢) (I'll drop the subscript and
superscript for now). It’s an eigenfunction of L, with eigenvalue 7im:

_hdf _
S = % =hmf,
SO )
f=g®)em.

[4.131]
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[Here g(8) is a constant of integration, as far as ¢ is concerned, but it can still depend
on4.] And f is also an eigenfunction of L? (which we’ll write in terms of L. and
L., using Equation 4.112), with eigenvalue A%/(/ + 1):

Lf=(LiL_+L*~nhL)f

et (O icote D) (— _,.¢(8_f_, AN 20 B
= he (89+zcot98¢ (—re™?) 20 zcot98¢ h8¢2 96

=rUI+ 1)1

But in view of Equation 4.131, 3£/36 = ¢™%dg/df and 3 /3¢ = ime™? g, so

" 3\, d . .
_? (% +i cot9%> (em71?) (ﬁ +mg00t9> +m?ge™ — mge'™?

. d (d d
= e””"’[—% (d—‘g +mgcot9> + (m — 1) cotd (d_‘g +mgcot9)

+m(m — l)g] =1+ 1)ge'™.
Canceling ™%,

d? d d
—ﬁ —md—‘g cotf +mgcs029 + (m — l)cotGd—‘eg +m(m — 1)1 + cot? O)g
d? d
= —ﬁf —coteﬁ +migesc?f = I( + g,

or, multiplying through by — sin®§:
d? d
sinZGﬁ + siné cos9£ —m?g=—I(+ 1)sin*fg.
This is a differential equation for g(8); it can be written in a more familiar form:

sin@fe— (mej-i) +[Id + 1)sin®6 — m?*]g = 0. [4.132)
Butthis is precisely the equation for the §-dependent part, ®(9), of Y;" (6, ¢) (compare
Equation 4.25). Meanwhile, the ¢-dependent part of f (to wit, ¢'™?) is identical
to P(¢) (Equation 4.22). Conclusion: The spherical harmonics are precisely the
(normalized) eigenfunctions of L and L,.

When we solved the Schrodinger equation by separation of variables, in Section
4.1, we were inadvertantly constructing simultaneous eigenfunctions of the three
commuting operators H, L?, and L,:
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Hy =Ey, L% =m0+ 1)y, L, =hmy. [4.133]

But there is a curious twist to this story, for the algebraic theory of angular momentum
permits / (and hence also m) to take on half-integer values (Equation 4.119), whereas
the analytic method yielded eigenfunctions only for infeger values (Equation 4.29).
You might reasonably guess that the half-integer solutions are spurious, but it turns
out that they are of profound importance, as we shall see in the following sections.

«Problem 4.22

(@) Whatis L, Y/? (No calculation allowed!)

(b) Use the result of (a), together with the fact that L,¥; = hlY/, to determine
Y}(8, ¢), up to a normalization constant.

(c) Determine the normalization constant by direct integration. Compare your final
answer to what you got in Problem 4.5.

Problem 4.23 In Problem 4.3 you showed that

Y} (8, ) = —/15/87 sin cose®.

Apply the raising operator to find Y22 (4, ¢). Use Equation 4.121 to get the normal-
ization.

Problem 4.24

(a) Prove that the spherical harmonics are orthogonal (Equation 4.33). Hinr: This
requires no calculation, if you invoke the appropriate theorem.

(b) Prove the orthogonality of the hydrogen wave functions ¥, (r, 8, ¢) (Equa-
tion 4.90).

Problem 4.25 Two particles of mass m are attached to the ends of a massless rigid
rod of length a. The system is free to rotate in three dimensions about the center (but
the center point itself is fixed).

(a) Show that the allowed energies of this rigid rotor are

K@ +1)

E, = , for n=0,1,2,...

ma?
Hint: Firstexpress the (classical) energy in terms of the total angular momentum.,

(b) What are the normalized eigenfunctions for this system? What is the degeneracy
of the nth energy level?
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4.4 SPIN

In classical mechanics, arigid object admits two kinds of angular momentum: orbital
(L = r x p), associated with the motion of the center of mass, and spin (S = Jw).
associated with motion abour the center of mass. For example, the earth has orbital
angular momentum attributable to its annual revolution around the sun, and spin
angular momentum coming from its daily rotation about the north-south axis. In
the classical context this distinction is largely a matter of convenience, for when
you come right down to it, S is nothing but the sum total of the “orbital” angular
momenta of all the rocks and dirt clods that go to make up the earth, as they circle
around the axis. But an analogous thing happens in quantum mechanics, and here
the distinction is absolutely fundamental. In addition to orbital angular momentum.
associated (in the case of hydrogen) with the motion of the electron around the nucleus
(and described by the spherical harmonics), the electron also carries another form
of angular momentum, which has nothing to do with motion in space (and which is
not, therefore, described by any function of the position variables r, 8, ¢) but which
is somewhat analogous to classical spin (and for which, therefore, we use the same
word). It doesn’t pay to press this analogy too far: The electron (as far as we know) is
a structureless point particle, and its spin angular momentum cannot be decomposed
into orbital angular momenta of constituent parts (see Problem 4.26).?' Suffice it to
say that elementary particles carry intrinsic angular momentum (S) in addition to
their “extrinsic” angular momentum (L).

The algebraic theory of spin is a carbon copy of the theory of orbital angular
momentum, beginning with the fundamental commutation relations*:

(S, Sy1=ihS., [S,,S)=ihS., [S:, S]=IihS,. [4.134]
It follows (as before) that the eigenvectors of S? and S, satisfy*
S sm) = h2s(s + Dlsm);  S.|sm) =hm|sm); [4.135]

and

Selsm) =hys(s + 1) —m(m £ 1) |s (m £ 1)), [4.136]

21For a contrary interpretation, see Hans C. Ohanian, “What is Spin?”, Am. J. Phys. 54, 500 (1986).

22we shall take these as postulates for the theory of spin; the analogous formulas for orbital angular
momentum (Equations 4.98 and 4.99) were derived from the known form of the operators (Equation 4.97).
In a more sophisticated treatment they can both be obtained from the rotational invariance of the three-
dimensional world [see, for example, Leslie E. Ballentine, Quantum Mechanics (Englewood Cliffs, NJ:
Prentice Hall, 1990), Section 3.3]. Indeed, these fundamental commutation relations apply to all forms
of angular momentum, whether spin, orbital, or the combined angular momentum of a composite system.
which could include some spin and some orbital.

23 Because the eigenstates of spin are not functions, I revert to the “ket” notation for them. (I could
have done the same in Section 4.3, writing |/ m) in place of ¥”, but in that context the function notation
seems more natural.) By the way, I'm running out of letters, so I'll use m for the eigenvalue of S, just as
I did for L, (some authors write m; and m at this stage, just to be absolutely clear).
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where S. = S, £¢5,. But this time the eigenvectors are not spherical harmonics
(they’re not functions of 6 and ¢ at all), and there is no a priori reason to exclude the
half-integer values of s and m:
1 3
= 1L, = ..
2 2

It so happens that every elementary particle has a specific and immutable value
of s, which we call the spin of that particular species: pi mesons have spin 0; electrons
have spin 1/2; photons have spin 1; deltas have spin 3/2; gravitons have spin 2; and so
on. By contrast, the orbital angular momentum quantum number / (for an electron in a
hydrogen atom, say) can take on any (integer) value you please, and will change from
one to another when the system is perturbed. But s is fixed, for any given particle,
and this makes the theory of spin comparatively simple.?*

s=0, m=-—-s,—s+1,...,5—1,s. [4.137]

Problem 4.26 If the electron is a classical solid sphere, with radius

P

re [4.138]

" dmegmc?’
(the so-called classical electron radius, obtained by assuming that the electron’s
mass is attributable to energy stored in its electric field, via the Einstein formula
E = mc?), and its angular momentum is (1 /2)h, then how fast (in m/s) is a point on
the “equator” moving? Does this model for spin make sense? (Actually, the radius
of the electron is known experimentally to be much less than 7., but this only makes
matters worse.)

4.4.1 Spin 1/2

By far the most important case is s = 1/2, for this is the spin of the particles that
make up ordinary matter (protons, neutrons, and electrons), as well as all quarks and
all leptons. Moreover, once you understand spin 1/2, it is a simple matter to work
out the formalism for any higher spin. There are just rwo eigenstates: |% %), which
we call spin up (informally, 1), and |3 (—1)), which we call spin down ({). Using
these as basis vectors, the general state of a spin-1/2 particle can be expressed as a
two-element column matrix (or spinor):

X = (‘,j) =ax, +bx-, [4.139]

*Indeed, in a mathematical sense, spin 1/2 is the simplest possible nontrivial quantum system, for
it admits just two possible states. In place of an infinite-dimensional Hilbert space, with all its subtleties
and complications, we find ourselves working in an ordinary two-dimensional vector space; in place of
unfamiliar differential equations and fancy functions, we are confronted with 2 x 2 matrices and two-
component vectors. For this reason, some authors begin quantum mechanics with a treatment of the
spin-1/2 system. But the price of mathematical simplicity is conceptual abstraction, and I prefer not to do
it that way.
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X4 = (é) (4.140)

X- = (?) [4.141]

for spin down. Meanwhile, the spin operators become 2 x 2 matrices, which we can
work out by noting their effect on x, and x_: Equation 4.135 says

with

representing spin up, and

Sx+ = %hz)(+; S’ x- = %hzx_; S:x+ = 2X+; S:x- = —%x_: [4.142]

and Equation 4.136 gives
Six- =hxy; S_x+=hx—; Six+=S8_x-=0. [4.143]

Now, Sy = S £S5, s0
S = %(S+ +S8.) and S, = %(&L ~ 8, [4.144]

and it follows that

A A A A
Six+ = SX- Sx- = S X+ Syx+ = T X Syx- = 2 X+ [4.145]

3,(10 0 1 00
2 _ T32 . — . — .
§=n (o 1>’S+‘h<o o)’S“ (1 o)’ [4.146)

n(0 1 R0 —i\. o _h(1 0
Sx_§<1 O),Sy_§<i O),SZ_E<O _1>. [4.147]

It’s a little tidier to divide off the factor of /2: S = (% /2)o, where

(0 1\,  _ (0 =i\, _{(1 0

These are the famous Pauli spin matrices. Notice that S, S,, S., and $? are all
Hermitian (as they should be, since they represent observables). On the other hand,
S, and S_ are not Hermitian—evidently they are not observable.

The eigenspinors of S, are (of course)

Thus

while

h h
X4 = ((1)>, (eigenvalue + 5); X_ = <?>, (eigenvalue — E). [4.149]
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If you measure S, on a particle in the general state y (Equation 4.139), you could get
+7/2, with probability |a|?, or — /2, with probability |b|. Since these are the only
possibilities,

la|® + 1b]* = 1 [4.150]

(i.e., the spinor must be normalized).”

But what if, instead, you chose to measure S,? What are the possible results,
and what are their respective probabilities? According to the generalized statisti-
cal interpretation, we need to know the eigenvalues and eigenspinors of S,. The
characteristic equation is

2
A h/2| 2_(h _.h
a2 0 (1) sansh

Not surprisingly, the possible values for S, are the same as those for S,. The eigen-
spinors are obtained in the usual way:

hio 1 o hf« B o

_— = :I:— = ZI: )

(1 0)(5)-+3(5)=(0) -+ (3)
so B = £a. Evidently the (normalized) eigenspinors of S, are

i 1

1 h —= h

X = ( V2 ) (eigenvalue + 5): x& = ( va ) (cigenvalue — 3). [4.151]
V2 T2

As the eigenvectors of a Hermitian matrix, they span the space; the generic spinor x

can be expressed as a linear combination of them:

a+b\ <a—b> ® al
= —_— . 152
X (ﬁ)’” + 7 pa [ ]

If you measure S, the probability of getting +%/2 is (1/2)|a + b|?, and the prob-
ability of getting —%/2 is (1/2)|a — b|*>. (You should check for yourself that these
probabilities add up to 1.)

Example. Suppose a spin 1/2 particle is in the state

1 (1 + i)

x=7l, )
If you measure S;, the probability of getting +%/2 is |(1 + )/+/6]> = 1/3, and the
probability of getting —%/2 is |2/+/6]* = 2/3. If you measure S,, the probability of

ZPeople often say that |a|? is the “probability that the particle is in the spin-up state”, but this
is sloppy language; the particle is in state y—not x4 —and what the speaker really means is that if you
measured S;, |a|? is the probability you'd get /2, which is an entirely different assertion.
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getting +#/2 is (1/2)|(3 + i)/+/6]*> = 5/6, and the probability of getting —7/2 is
(1/2)|(—=1 + i)/+/6]*> = 1/6. Evidently the expectation value of S is

AV AN
6\ 2 6\ 2) 3

which we could also have obtained more directly:
1—i 2 0 h/2)<(1+i)/f6) h
S)y=xSx=— — =—.
) = x5 (Jé ﬁ)(h/z 0 2//6 3

I"d like now to walk you through an imaginary measurement scenario involving
spin 1/2, because it serves to illustrate in very concrete terms some of the abstractideas
we discussed back in Chapter 1. Let’s say we start out with a particle in the state y . If
someone asks, “What is the z-component of that particle’s spin angular momentum?".
we could answer unambiguously: +7 /2. For a measurement of S; is certain to return
that value. But if our interrogator asks instead, “What is the x-component of that
particle’s spin angular momentum?”, we are obliged to equivocate: If you measure
S, the chances are 50-50 of getting either /2 or —%/2. If the questioner is a
classical physicist, or a “realist” (in the sense of Section 1.2), he will regard this as an
inadequate—not to say impertinent—response: “Are you telling me that you don't
know the true state of that particle?”” On the contrary; I know precisely what the state
of the particle is: x. “Well, then, how come you can’t tell me what the x-component
of its spin is?” Because it simply does not have a particular x-component of spin.
Indeed, it cannot, for if both S, and S, were well defined, the uncertainty principle
would be violated.

At this point our challenger grabs the test tube and measures the x-component
of its spin; let’s say he gets the value +7/2. “Aha!” (he shouts in triumph), “You
lied! This particle has a perfectly well-defined value of S;: 1t’s %/2.” Well, sure—it
does now, but that doesn’t prove it had that value, prior to your measurement. “You
have obviously been reduced to splitting hairs. And anyway, what happened to your
uncertainty principle? I now know both S, and S,.” I'm sorry, but you do not: In
the course of your measurement, you altered the particle’s state; it is now in the state
Xi"), and whereas you know the value of S;, you no longer know the value of S..
“But I was extremely careful not to disturb the particle when I measured S, ."* Very
well, if you don’t believe me, check it our: Measure S,, and see what you get. (Of
course, he may get +% /2, which will be embarrassing to my case—but if we repeat
this whole scenario over and over, half the time he will get —%/2.)

To the layperson, the philosopher, or the classical physicist, a statement of
the form “this particle doesn’t have a well-defined position” (or momentum, or

26Neils Bohr was anxious to track down the mechanism by which the measurement of S, inevitably
destroys the value of S;, in gedanken experiments of this sort. His famous debates with Einstein include
many delightful examples, showing in detail how experimental constraints serve to enforce the uncertainty
principle.
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x-component of spin angular momentum, or whatever) sounds vague, incompetent,
or (worst of all) profound. It is none of these. But its precise meaning is, I think,
almost impossible to convey to anyone who has not studied quantum mechanics in
some depth. If you find your own comprehension slipping, from time to time (if
you don’t, you probably haven’t understood the problem), come back to the spin-1/2
system: It is the simplest and cleanest context for thinking through the conceptual
paradoxes of quantum mechanics.

Problem 4.27

(a) Check that the spin matrices (Equation 4.147) obey the fundamental commuta-
tion relation for angular momentum: [S, S,] = i%S;.

(b) Show that the Pauli spin matrices satisfy

O'jO'k = Ojk + i Z Ejklals [4153]
!

where the indices stand for x, y, or z, and €}y, is the Levi-Cirita symbol: +1 if
Jjkl = 123,231, or 312; —1if jkI = 132,213, or 321; 0 otherwise.

xProblem 4.28 An electron is in the spin state

X=A<34i).

(@) Determine the normalization constant A,
(b) Find the expectation values of S,, Sy, and S,.
(c) Find the “uncertainties” o, , o,, and a7, .

(d) Confirm that your results are consistent with all three uncertainty principles
(Equation 4.100 and its cyclic permutations—only with S in place of L, of
course).

xProblem 4.29 For the most general normalized spinor x (Equation 4.139), com-
pute (S,), (Sy), (S.), ($2), (52), and (S2). Check that (S7) + (S2) + (S2) = (§?).

xProblem 4.30

() Find the eigenvalues and eigenspinors of S,.

(b) If you measured S, on a particle in the general state x (Equation 4.139), what
values might you get, and what is the probability of each? Check that the
probabilities add up to 1.

(c) If you measured 5;2, what values might you get and with what probability?
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sxxProblem 4.31 Construct the matrix S, representing the component of spin angular
momentum along an arbitrary direction 7. Use spherical coordinates, so that

7 =sinfcosdi +sindsing j + cos b k. [4.154]
Find the eigenvalues and (normalized) eigenspinors of S,. Answer:
o _  cos0/2y \. o _ sin(0/2)
X+ = (e”’ sin@/2) )7 X~ T\ —e®cos(6/2) ) [4.155)

Problem 4.32 Construct the spin matrices (S, Sy, and ) for a particle of spin 1.
Hint: How many eigenstates of S, are there? Determine the action of S;, S, and S_
on each of these states. Follow the procedure used in the text for spin 1/2.

4.4.2 Electron in a Magnetic Field

A spinning charged particle constitutes a magnetic dipole. Its magnetic dipole
moment y is proportional to its spin angular momentum S:

u= yS; [4.156]

the proportionality constant y is called the gyromagnetic ratio.”” When a magnetic
dipole is placed in a magnetic field B, it experiences a torque, g x B, which tends
to line it up parallel to the field (just like a compass needle). The energy associated
with this torque is*®

so the Hamiltonian of a spinning charged particle, at rest” in a magnetic field B.
becomes
H=—-yB-8S, [4.158]

where S is the appropriate spin matrix (Equation 4.147, in the case of spin 1/2).

Example: Larmor precession. Imagine a particle of spin 1/2 at rest in a
uniform magnetic field, which points in the z-direction:

B = Byk. [4.159]

278ee, for example, D. Griffiths, Introduction to Electrodynamics, 2nd ed. (Englewood Cliffs, NJ:
Prentice Hall, 1986), page 239. Classically, the gyromagnetic ratio of a rigid object is g /2m, where g is
its charge and m is its mass. For reasons that are fully explained only in relativistic quantum theory, the
gyromagnetic ratio of the electron is almost exactly twice the classical value.

2Griffiths, (footnote 27), pages 246 and 268.

21f the particle is allowed to move, there will also be kinetic energy to consider; moreover, it will
be subject to the Lorentz force (¢v x B), which is not derivable from a potential energy function and hence

does not fit the Schriidinger equation as we have formulated it so far. I'll show you later on how to handle
this problem, but for the moment let’s just assume that the particle is free to rotate, but otherwise stationary.
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The Hamiltonian matrix is

_ _ yBh (1 0
H=—yBS. =~ (0 _1>. [4.160]

The eigenstates of H are the same as those of S,:

X+, withenergy £, = —(y Boh)/2, [4.161]
X-, withenergy E_ = +(y Boh)/2. )

Evidently, the energy is lowest when the dipole moment is parallel to the field—just
as it would be classically.

Since the Hamiltonian is time independent, the general solution to the time-
dependent Schrodinger equation,

9
ih—a-’ti — Hy, [4.162]

can be expressed in terms of the stationary states:

~iEst/h —iE_t/h ae'vHo!/?
x(®) =axie™ +t/ +by_e B = (be—inot/Z .

The constants a and b are determined by the initial conditions; say

x@)=<§),

where |a|? + |b|> = 1. With no essential loss of generality® I'll write a = cos(ct/2)
and b = sin(cr/2), where « is a fixed angle whose physical significance will appear

in a moment. Thus B2
cos(a/2)e'r o
x(t) = (Sin (@/2eivBoir2 ) {4.163]

To get a feel for what is happening here, let’s calculate the expectation value of
the spin {S) as a function of time:

(Se) = x () Sex (1)
i . ; B0 1Y [ cos(as2)e'rBer/?
— iy Bot/2 iyBot/2N .
(Cos(a/z)e 0 Sln(a/z)e 0 ) 2 < 1 O) (Sin(a/z)e—l}/Bot/z
= g sina cos(y Bot). [4.164]

Similarly,

() = X1 Sx(1) = 5 sinarsiny By, [4.165]

30This does assume that a and b are real; you can work out the general case if you like, but all it
does is add a constant to ¢.
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Figure 4.7: Precession of (S) in a uniform
X magnetic field.
and 5
(8:) = x(®)S.x(t) = 5 cosa. [4.166]

Evidently (S) is tilted at a constant angle « to the z-axis, and precesses about the field
at the Larmor frequency

just as it would classically®! (see Figure 4.7). No surprise here—Ehrenfest’s theorem
(in the form derived in Problem 4.21) guarantees that (S) evolves according to the
classical laws. But it’s nice to see how this works out in a specific context.

Example: the Stern-Gerlach experiment. In an inhomogeneous magnetic
field, there is not only a torque, but also a force, on a magnetic dipole®:

F=Vu - B). [4.168]

This force can be used to separate out particles with a particular spin orientation.
as follows. Imagine a beam of relatively heavy neutral atoms,” traveling in the
y-direction, which passes through a region of inhomogeneous magnetic field (Figure
4.8)—for example, .

B(x, y, z) = —axi + (By + az)k, {4.169]

where By is a strong uniform field and the constant ¢ describes a small deviation
from homogeneity. (Actually, what we’d like is just the z-component of this field, but

3 See, for instance, The Feynman Lectures on Physics (Reading, MA: Addison-Wesley, 1964).
Volume II, Section 34-3. Of course, in the classical case it is the angular momentum vector itself, not just
its expectation value, that precesses around the magnetic field.

3 Griffiths, (footnote 27), page 247. Note that F is the negative gradient of the energy (Equation
4.157).

33 We make them neutral to avoid the large-scale deflection that would otherwise result from the
Lorentz force, and heavy so we can construct localized wave packets and treat the motion in terms of
classical particle trajectories. In practice, the Stern-Gerlach experiment doesn’t work, for example, with a
beam of free electrons.
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T Spin up

™~ Spin down

Magnet

Figure 4.8: The Stern-Gerlach apparatus.

unfortunately that’s impossible—it would violate the electromagnetic law V- B = 0;
like it or not, the x-component comes along for the ride.) The force on these atoms is

F = ya (=S, + Sk).

But because of the Larmor precession about By, S, oscillates rapidly, and averages
to zero; the net force is in the z-direction:

F,=yas,, [4.170]

and the beam is deflected up or down, in proportion to the z-component of the spin
angular momentum. Classically we’d expect a smear, but in fact the beam splits into
2s + 1 individual beams, beautifully demonstrating the quantization of S;. (If you
use silver atoms, for example, all the inner electrons are paired in such a way that
their spin and orbital angular momenta cancel. The net spin is simply that of the
outermost—unpaired—electron, so in this case s = 1/2, and the beam splits in two.)

That argument was purely classical, up to the final step; “force” has no place in
a proper quantum calculation, and you might therefore prefer the following approach
to the same problem.>* We examine the process from the perspective of a reference
frame that moves along with the beam. In this frame the Hamiltonian starts out zero,
turns on for a time T (as the particle passes through the magnet), and then turns off
again:

0, fort < 0,
H(t)=1{ —y(Bo+az)S,, for0<t=<T, [4.171]
0, fort > T.

(Iignore the pesky x-component of B, which—for reasons indicated above—is irrel-
evant to the problem.) Suppose the atom has spin 1/2, and starts out in the state

x(t) =axy +bx-, fort <0
While the Hamiltonian acts, x (¢) evolves in the usual way:

x () =axpe Bt by e B for0<t <T,

34This argument follows L. Ballentine, Quantum Mechanics (Englewood Cliffs, NJ: Prentice Hall,
1990), page 172.
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where (from Equation 4.158)
h A
Ey =:F)/(B()+(XZ)§, [4.172

and hence it emerges in the state
x(t) = (aeVTBol2x ) @Y T/DZ o (pe=¥TBol2y ) mi@yT/Dz (¢ > T, [4.173

The two terms now carry momentum in the z-direction (see Equation 3.131); the
spin-up component has momentum

_ayTh

, [4.174
2

D:
and it moves in the plus-z direction; the spin-down component has the opposite
momentum, and it moves in the minus-z direction. Thus the beam splits in two, as
before. (Note that Equation 4.174 is consistent with the earlier result, Equation 4.170.
for in this case S; =%/2 and p, = F,T.)

The Stern-Gerlach experiment has played an important role in the philosophy
of quantum mechanics, where it serves both as the prototype for the preparation of a
quantum state and as an illuminating model for a certain kind of quantum measure-
ment. We casually assume that the initial state of a system is known (the Schrodinger
equation tells us how it subsequently evolves)—but it is natural to wonder how you
get a system into a particular state in the first place. Well, if you want to prepare a
beam of atoms in a given spin configuration, you pass an unpolarized beam through
a Stern-Gerlach magnet and select the outgoing stream you are interested in (closing
off the others with suitable baffles and shutters). Conversely, if you want to measure
the z-component of an atom’s spin, you send it through a Stern-Gerlach apparatus and
record which bin it lands in. T do not claim that this is always the most practical way
to do the job, but it is conceprually very clean and hence a useful context in-which to
explore the problems of state preparation and measurement.

Problem 4.33 In the first example (Larmor precession in a uniform magnetic field):

(a) Ifyoumeasured the component of spin angular momentum along the x-direction.
at time ¢, what is the probability that you would get +% /27

(b) Same question, but for the y-component.

(c) Same, but for the z-component.

xxProblem 4.34 An electron is at rest in an oscillating magnetic field
B = Bycos(wt)k,

where By and w are constants.
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(@) Construct the Hamiltonian matrix for this system.

(b) The electron starts out (at ¢ = 0) in the spin-up state with respect to the x-axis
[that is, x(0) = Xf)]. Determine x (¢) at any subsequent time. Beware: This
is a time-dependent Hamiltonian, so you cannot get x (¢) in the usual way from
stationary states. Fortunately, in this case you can solve the time-dependent
Schrodinger equation (Equation 4.162) directly.

(c) Find the probability of getting —#/2 if you measure S,. Answer:
B,
sin’ (J—/—B sin(cot)).
2w

(d) What is the minimum field (Bo) required to force a complete flip in S, ?

4.4.3 Addition of Angular Momenta

Suppose now that we have two spin-1/2 particles—for example, the electron and the
proton in the ground state® of hydrogen. Each can have spin up or spin down, so
there are four possibilities in all*:

Tt I [4.175]

where the first arrow refers to the electron and the second to the proton. Question:
What is the total angular momentum of the atom? Let

S=S0 4 §@ [4.176]

Each of the four composite states is an eigenstate of S,—the z-components simply
add

S = (S + 5D xxa = (S x0x + xS x2)
= (mix)xz + x1(thmax2) =h(m; + ma2)x1 x2,

[note that S acts only on x;, and S® acts only on x2]. So m (the quantum number
for the composite system) is just m; + ma:

tTm L
tdem = 0
tem =0
Wim = -1

351 put them in the ground state so there won’t be any orbital angular momentum to worry about.

36More precisely, each particle is in a linear combination of spin up and spin down, and the composite
system is in a linear combination of the four states listed.
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At first glance, this doesn’t look right: m is supposed to advance in integer
steps, from —s to +s, so it appears that s = 1—but there is an extra state with m = 0.
One way to untangle this problem is to apply the lowering operator S_ = s 4 g
to the state 11, using Equation 4.143:

-t = UM+ 1D
Bt +1 B =R+ 1.

Evidently the three states with s = 1 are (in the notation |s m)):

iy = 11
0oy = —%(NWLM) s = 1 (triplet). [4.177)
-1 = i

(As a check, try applying the lowering operator to |10); what should you get? See
Problem 4.35.) This is called the triplet combination, for the obvious reason. Mean-
while, the orthogonal state with m = 0 carries s = 0:
1 .
{|OO) «/Q(Ti iT)} s = 0 (singlet). [4.178]
(If you apply the raising or lowering operator to this state, you’ll get zero. See Prob-
lem 4.35))

I claim, then, that the combination of two spin-1/2 particles can carry a total spin
of 1 or 0, depending on whether they occupy the triplet or the singlet configuration.
To confirm this, I need to prove that the triplet states are eigenvectors of S? with
eigenvalue 242 and the singlet is an eigenvector of $2 with eigenvalue 0. Now

S? = (S(l) + S(2)) . (S(l) + S(2)) — (S(l))2 + (S(2))2 +28M . 8@ [4.179]
Using Equations 4.142 and 4.145, we have
SU-SP) = P HED D)+ S HEP )+ D )

GGG )-C)EY

hZ
T =1, :

I

Similarly,
h2
SPSOan =7 .

It follows that
505010, =" Lot —riq210 - in="110, @150
4 .2 4 ’ '
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and

s -82100) = "1 W=t =21 +iD= —ﬁmm [4.181]
=75 0 N=-= . [4
Returning to Equation 4.179 (and again using Equation 4.142), we conclude that
3r% 3n*_h?
S?110) = (T+T+2Z>|lo>zzh2“0)’ [4.182]

50 |10) is indeed an eigenstate of S with eigenvalue 242; and
$%00) = (— +— - 2—) |00y =0, [4.183]

s0 |0 0) is an eigenstate of S? with eigenvalue 0. (I will leave it for you to confirm that
[11) and |1 —1) are eigenstates of S?, with the appropriate eigenvalue—see Prob-
lem 4.35.)

What we have just done (combining spin 1/2 with spin 1/2 to get spin 1 and
spin 0) is the simplest example of a larger problem: If you combine spin s; with spin
52, what total spins s can you get?”’ The answer® is that you get every spin from
(s1 + s2) down to (57 — s2)—o0r (52 — 51), if 52 > §1—in integer steps:

s=061+5), 51+ —10, (s1+5—-2), ..., |s1 — 5| [4.184]

(Roughly speaking, the highest total spin occurs when the individual spins are aligned
parallel to one another, and the lowest occurs when they are antiparallel.) For example,
if you package together a particle of spin 3/2 with a particle of spin 2, you could get a
total spin of 7/2, 5/2, 3/2, or 1/2, depending on the configuration. Another example:
If a hydrogen atom is in the state ¥y, the net angular momentum of the electron
(spin plus orbital) is [ + 1/2 or [ — 1/2; if you now throw in the spin of the proton,
the atom’s total angular momentum quantum number is / + 1, /, or/ — 1 (and / can
be achieved in two distinct ways, depending on whether the electron alone is in the
{ + 1/2 configuration or the / — 1/2 configuration).

The particular state |s m) with total spin s and z-component m will be some
linear combination of the composite states |s; m1)|s2 m2):

lsmy =" Cuslsimi)lsama) [4.185]

mi+my=m

(because the z-components add, the only composite states that contribute are those
for which m +m, = m). Equations 4.177 and 4.178 are special cases of this general

371 say spins for simplicity, but either one (or both) could just as well be orbital angular momentum
(for which, however, we would use the letter /).

38For a proof you must look in a more advanced text; see, for instance, Claude Cohen-Tannoudji,
Bernard Diu, and Franck Lalog, Quantum Mechanics (New York: John Wiley & Sons, 1977), Vol. 2,
Chapter X.
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Table 4.7: Clebsch-Gordan coefficients. (A square root sign is understood for
every entry; the minus sign, if present, goes outside the radical.)

1
1/2 X 112 § 11 pormns -
[+12+121 1o o X 52Kl a2
|+1/2 EANRA K [:2 2] 1]ar2 +3r
-1/2 112 |12 <1721 42 12|15 4is) si2 32
I-172 -122] 1 +1 1172 |45 —15] +12 +1/2
+1 —1/2| 2/5 355 52 372
= 0 +1/2| 35 -215] -1/2 ~112
1% 1/2 |3/ IR 0 -t/2| 35 25 52 32
P+142] 1 +124p -t +12]| 2/5 -3/5]-312 a2
2
w1 =12 | 13 2 32 2 32x1/2 -1 -1/2[ 455 15[ ¢
I 0 +1/2] 23-13}-1/2 12 Rl 2 si] 15 4] |
0-12| 2/3 1] ar Lazaz] =
-1 +12| 1/3 -2/3]-3/2 |+3/2 12 [1/4 3;4 2 1
1/2 +1/2 |3/4 -1/4
2x1|.3 [ 2] ] aex1].2 +12 + 0 o0
x1],3 x 1 1.5/ 2 21 w2l 2 1
22 52 32 12 12|12 -1/
12 41 1]e2 2 [+32 +1 1 1 )32 +ar2 Z12 4 i
2 0|13 25 T3z 025 35| 52 82 12 B —12(a4 vl 2
I“ +1|2/3 173 |+1/2 | 35 25 )+12 412 4R Z32 +1i2]1/4 —3/4]-2
+2 -1 110 _2/5 1/2 1-32 2] 1
1x1]1.2 410 3 2 1 {62 32 12
251 0+ 0 0 o0 S22 12
| XN RN KX 15 172 310 +12 -1]310 815 1/6
+1 02 12l 2 1 ¥ 0 -25 | 3 2 1 -1/2 ofa5 -5 -13[ 62 32
0+1|12 -12f 0 0 15 ~t2 30 -1 -1 ~32 +1 [ 1110 ~215 112 ] -3 32
+1 -1 |16 12 13 0 -11615 12 110 -12-1| 35 25] 52
0 0|23 0-13[2 1 -1 0|6&/15-1/6 -3/10f 3 2 32 0| 2/5 -3/5]-5/2
141|612 13 )1 -1 2 +1]115 -1/3 35 |2 2
|32 -1 1
0-tl12 2] 2 —1-1(2/3 3] 3
-1 0]z -12|-=2 -2 0]1/3 -2/3]-3
-1 ~1] 1 | EEE

form, with s; = s, = 1/2 (I used the informal notation 1 = [ 1), = |4 (1)),
The constants C;°2°  are called Clebsch-Gordan coefficients. A few of the simplest

mymym
cases are listed in Tzzlble 4.7.%° For example, the shaded column of the 2 x 1 table tells
us that
21) = [22)]1 1) + 21)10) — 120)(11).

V3 NG V2
In particular, if two particles (of spin 2 and spin 1) are at rest in a box, and the total
spin is 2, and its z-component is 1, then a measurement of S(l) could return the value
2% (with probability 1/3), or 7 (with probability 1/6), or O (with probability 1/2).
Notice that the probabilities add up to 1 (the sum of the squares of any column on the

Clebsch-Gordan table is 1).
These tables also work the other way around:

Isimi)lsama) =Y Cosst s m). [4.186]

5

For example, the shaded row in the 3/2 x 1 table tells us that
31 _ /351 131 111
|§§>|10>—\/; zz>+\/1islzz>—\[§‘zz>

3The general formula is derived in Arno Bohm, Quantum Mechanics: Foundations and Applica-
tions, 2nd ed. (New York: Springer-Verlag, 1986), p. 172.
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If you put particles of spin 3/2 and spin 1 in the box, and you know that the first has
my = 1/2 and the second has m, = 0 (so m is necessarily 1/2), and you measured the
total spin s, you could get 5/2 (with probability 3/5), or 3/2 (with probability 1/15),
or 1/2 (with probability 1/3). Again, the sum of the probabilities is 1 (the sum of the
squares of each row on the Clebsch-Gordan table is 1).

If you think this is starting to sound like mystical numerology, I don’t blame
you. We will not be using the Clebsch-Gordan tables much in the rest of the book,
but I wanted you to know where they fit into the scheme of things, in case you
encounter them later on. In a mathematical sense this is all applied group theory—
what we are talking about is the decomposition of the direct product of two irreducible
representations of the rotation group into a direct sum of irreducible representations.
(You can quote that to impress your friends.)

«Problem 4.35

(@) Apply S_ to |10) (Equation 4.177), and confirm that you get /271 —1).
(b) Apply S to |00) (Equation 4.178), and confirm that you get zero.

(c) Show that |11) and |1 —1) (Equation 4.177) are eigenstates of S?, with the
appropriate eigenvalue.

Problem 4.36 Quarks carry spin 1/2. Three quarks bind together to make a
baryon (such as the proton or neutron); two quarks (or more precisely a quark and
an antiquark) bind together to make a meson (such as the pion or the kaon). Assume
the quarks are in the ground state (so the orbital angular momentum is zero).

(a) What spins are possible for baryons?
(b) What spins are possible for mesons?

Problem 4.37

(@) A particle of spin 1 and a particle of spin 2 are at rest in a configuration such
that the total spin is 3, and its z-component is 1 (that is, the eigenvalue of S, is
). If you measured the z-component of the angular momentum of the spin-2
particle, what values might you get, and what is the probability of each one?

(b) An electron with spin down is in the state s, of the hydrogen atom. If you
could measure the total angular momentum squared of the electron alone (not
including the proton spin), what values might you get, and what is the probability
of each?

Problem 4.38 Determine the commutator of $? with S (where § = S© + §®),
Generalize your result to show that

(5%, 8] = 2in (ST x 8§, [4.187]
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Note: Because S{V does not commute with 2, we cannot hope to find states that are
simultaneous eigenvectors of both. To form eigenstates of S?, we need linear combi-
nations of eigenstates of SV, This is precisely what the Clebsch-Gordan coefficients
(in Equation 4.185) do for us. On the other hand, it follows by obvious inference fron:
Equation 4.187 that the sum S 4+ S@ does commute with S2, which only confirm-
what we already knew (see Equation 4,103).

FURTHER PROBLEMS FOR CHAPTER 4

«Problem 4.39 Consider the three-dimensional harmonic oscillator, for which
the potential is

Vr)= %maﬂr? [4.188

(a) Show that separation of variables in Cartesian coordinates turns this into three
one-dimensional oscillators, and exploit your knowledge of the latter to deter-
mine the allowed energies. Answer:

E, = (n +3/)ho. [4.189]

(b) Determine the degeneracy d(n) of E,,.

x+xxProblem 4.40 Because the three-dimensional harmonic oscillator potential (Equa-
tion 4.188) is spherically symmetric, the Schrodinger equation can be handled by
separation of variables in spherical coordinates as well as Cartesian coordinates. Use
the power series method to solve the radial equation. Find the recursion formula
for the coefficients, and determine the allowed energies. Check your answer against
Equation 4.189.

#xProblem 4.41

(@) Prove the three-dimensional virial theorem
2AT) = (r- VV) [4.190]
(for stationary states). Hint: Refer to Problem 3.53.
(b) Apply the virial theorem to the case of hydrogen, and show that
(T) = —E,; (V) =2E,. [4.191)
(c) Apply the virial theorem to the three-dimensional harmonic oscillator (Prob-
lem 4.39), and show that in this case

(T) = (V) = E,/2. [4.192]

g
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xxxProblem 4.42 The momentum-space wave function in three dimensions is de-
fined by the natural generalization of Equation 3.132:

#(p) = / e P DMy (r) dr. [4.193]

1
(2mh)3/2

(@) Find the momentum-space wave function for the ground state of hydrogen
(Equation 4.80). Hint: Use spherical coordinates, setting the polar axis along
the direction of p. Do the @ integral first. Answer:

(et 4.194
¢(P)—n(h) [+ @ap/W 14154

(b) Check that ¢ (p) is normalized.
(C) Use ¢(p) to calculate {p?).

(d) What is the expectation value of the kinetic energy in this state? Express your
answer as a multiple of £, and check that it is consistent with the virial theorem
(Equation 4.191).

Problem 4.43

(a) Construct the spatial wave function (1) for hydrogen in the state n = 3,1 = 2,
m = 1. Express your answer as a function of », 6, ¢, and a (the Bohr radius)
only—no other variables (p, z, etc.), or functions (¥, v, etc.), or constants (A4,
ay, etc.), or derivatives allowed (7 is okay, and e, and 2, etc.).

(b) Check that this wave function is properly normalized by carrying out the appro-
priate integrals over r, 8, and ¢.

(c) Find the expectation value of r* in this state. For what range of s is the result
finite?

+xxProblem 4.44 Suppose two spin-1/2 particles are known to be in the singlet con-
figuration (Equation 4.178). Let S{" be the component of the spin angular momentum
of particle number 1 in the direction defined by the unit vector 4. Similarly, let Sz()Z)
be the component of 2°s angular momentum in the direction b. Show that
712
(SHs?y = - cos6, [4.195]

a

where 6 is the angle between d and b.

s+xProblem 4.45 Work out the Clebsch-Gordan coefficients for the case 5; = 1/2,
s> = anything. Hint: You're looking for the coefficients 4 and B in

lsm) = Al 3)ls2 (m = 3)) + Bl3 (=)s2 (m + ),
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such that |sm) is an eigenstate of S2. Use the method of Equations 4.179 througt
4.182. If you can’t figure out what S (for instance) does to |s; my), refer back t
Equations 4.136 and 4.144. Use this general result to construct the (1/2) x 1 table
of Clebsch-Gordan coefficients, and check it against Table 4.7. Answer:

4= szim+1/2; B4 sz:Fm—l-l/Z’
250 + 1 257+ 1

where the signs are determined by s = s, £1/2.

Problem 4.46 Find the matrix representing S, for a particle of spin 3/2 (using
the basis of eigenstates of S,). Solve the characteristic equation to determine the
eigenvalues of S;.

xxxProblem 4.47 Work out the normalization factor for the spherical harmonics, a-

follows. From Section 4.1.2 we know that
Y" = Ble™? P (cos6);

the problem is to determine the factor B;" (which I quoted, but did not derive, in
Equation 4.32). Use Equations 4.120, 4.121, and 4.130 to obtain a recursion relation
giving B{”*' in terms of By". Solve it by induction on m to get B;" up to an overall
constant C (/). Finally, use the result of Problem 4.22 to fix the constant. You may find

the following formula for the derivative of an associated Legendre function useful:

dp"
(1= x) = = V1= a2 —mx P [4.196]

Problem 4.48 The electron in a hydrogen atom occupies the combined spin and

position state
1o 21
Ry §Y1X++ §Y1X— .

(a) Ifyoumeasured the orbital angular momentum squared (L?), what values might
you get, and what is the probability of each?

(b) Same for the z-component of orbital angular momentum (L ;).

() Same for the spin angular momentum squared (S?).

(d) Same for the z-component of spin angular momentum (S;).
Let J = L + S be the total angular momentum.

(e) If you measured J2, what values might you get, and what is the probability of
each?

(f) Same for J,.
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(g) If you measured the position of the particle, what is the probability density for
findingitatr, 6, ¢?

(h) If you measured both the z-component of the spin and the distance from the ori-
gin (note that these are compatible observables), what is the probability density
for finding the particle with spin up and at radius »?

xxxProblem 4.49

(&) For a function f(¢) that can be expanded in a Taylor series, show that
f(@+ o) = =M f(g)

(where ¢ is any constant angle). For thisreason, L, /% is called the generator of
rotations about the z-axis. Hint: Use Equation 4.129, and refer to Problem 3.55.

More generally, L - 7 /7 is the generator of rotations about the direction 7, in
the sense that exp(/L - fig /i) effects a rotation through angle ¢ (in the right-hand
sense) about the axis 7. In the case of spin, the generator of rotations is 8 - 7i/A. In
particular, for spin 1/2

x' = ei(“'ﬁ)"’/zx [4.197]

tells us how spinors rotate.

(b) Construct the (2 x 2) matrix representing rotation by 180° about the x-axis,
and show that it converts “spin up” () into “spin down” (x_), as you would
expect.

(c) Construct the matrix representing rotation by 90° about the y-axis, and check
what it does to x,.

(d) Construct the matrix representing rotation by 360° about the z-axis. If the
answer 18 not quite what you expected, discuss its implications.

(e) Show that -
et(a-n)fp/Z — cos((p/2) + l(fl -o) Sln((p/z) [4.198]

+x+Problem 4.50 The fundamental commutation relations for angular momentum
(Equations 4.98 and 4.99) allow for half-integer (as well as integer) eigenvalues. But
for orbital angular momentum only the integer values occur. There must be some
extra constraint in the specific form L = r x p that excludes half-integer values.*
Let a be some convenient constant with the dimensions of length (the Bohr radius,
say, if we’re talking about hydrogen), and define the operators

q1 12 [x + (az/h)Py]; p1L= % [px — (h/aZ)y];
q2 12 [x - (az/h)Py]§ m= % [Px + (h/az)y],

e
S

S

40This problem is based on an argument in Ballentine, (footnote 34), page 127.
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(@) Verify that [g1, g21 = [p1, p21 = 0; [g1, p1]l = (42, p2] = if. Thus the g’s and
the p’s satisfy the canonical commutation relations for position and momentum.
and those of index 1 are compatible with those of index 2.

(b) Show that
a 2
=7 (1 — p)-

h
L, = —(q? — g2
2a2(‘11 q;) + 7

(C) Check that L, = H| — H,, where each H is the Hamiltonian for a harmonic
oscillator with mass m = % /a? and frequency w = 1.

(d) We know that the eigenvalues of the harmonic oscillator Hamiltonian are (n —
1/2)hw, where n = 0, 1,2, ... (in the algebraic theory of Section 2.3.1, thi
follows from the form of the Hamiltonian and the canonical commutation rela-
tions). Use this to conclude that the eigenvalues of L, must be integers.

xxxProblem 4.51 In classical electrodynamics the force on a particle of charge ¢

moving with velocity v through electric and magnetic fields E and B is given by the
Lorentz force law:

F =g(E + v x B). [4.199]

This force cannot be expressed as the gradient of a scalar potential energy function.
and therefore the Schrodinger equation in its original form (Equation 1.1) cannot
accomodate it. But in the more sophisticated form

g
ih%-—t— = Hv [4.200]

there is no problem,; the classical Hamiltonian*! is

1
H= 2—(p — qA)2 +q0, [4.201]
m

where A is the vector potential (B = V x A) and ¢ is the scalar potential (E = — Vg —
dA/d1), so the Schrodinger equation (making the canonical substitution p — (i /A)V)

becomes )
o 1
ih— = [—— (EV - qA> +q<p} v, [4.202)
ot 2m \ i
(@) Show that
d(r) 1
— = —{((p — qA)). [4.203]
dt m

418ee, for example, H. Goldstein, Classical Mechanics, 2nd ed., Addison-Wesley, Reading, MA.
1980, page 346.
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(b) As always (see Equation 1.32) we identify d(r)/dt with {v). Show that

d 2
m% =g(E) + —?——((p xB—Bxp) - q—((A x B)). [4.204]
t 2m m

(C) In particular, if the fields E and B are uniform over the volume of the wave

packet, show that
d{v)
m— == g(E + (v) x B), [4.205]
so the expectation value of (v) moves according to the Lorentz force law, as we

would expect from Ehrenfest’s theorem.

xxxProblem 4.52 [Refer to Problem 4.51 for background.] Suppose
B
A=2(j—y). and ¢=KZ,
where By and K are constants.

(@) Find the fields E and B.

(b) Find the allowed energies, for a particle of mass m and charge g, in these fields.

+xxProblem 4.53 [Refer to Problem 4.51 for background.] In classical electrodynam-
ics the potentials A and ¢ are not uniquely determined*; the physical quantities are
the fields, E and B.

(@) Show that the potentials

A
(p/z(p—y, A=A+ VA [4.206]
(where A is an arbitrary real function of position and time) yield the same fields
as ¢ and A. Equation [4.206] is called a gauge transformation, and the theory

is said to be gauge invariant.

(b) In quantum mechanics the potentials play a more direct role, and it is of interest
to know whether the theory remains gauge invariant. Show that

U = Ay [4.207]

satisfies the Schrodinger equation [4.202] with the gauge-transformed potentials
¢’ and A’. Since ¥’ differs from W only by a phase factor, it represents the

428ee, for example, Griffiths, (footnote 27), section 10.2.4.
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same physical state*’, and the theory is gauge invariant (see Section 10.2.4 for
further discussion).

43That is to say, (r), d(r)/dt, etc. are unchanged. Because A depends on position, (p) (with
p represented by the operator (3/i)V) does change, but as we found in Equation [4.203], p does
not represent the mechanical momentum (mv) in this context (in Lagrangian mechanics it is so-called
canonical momentum).




CHAPTER 5

IDENTICAL PARTICLES

5.1 TWO-PARTICLE SYSTEMS

For a single particle, the wave function W(r, ¢) is a function of the spatial coordinates
r and the time 7 (we’ll ignore spin for the moment). The wave function for a two-
particle system is a function of the coordinates of particle one (r;), the coordinates
of particle two (r,), and the time:

W(r, ry,1). [5.1]
Its time evolution is determined (as always) by the Schrodinger equation:
ov
ih— = HY, [5.2]
ot
where H is the Hamiltonian for the whole system:
o, R? 2
H=——V o — V4Vt 5.3
3 L 2y 2+ V(r, 1) [5.3]

(the subscript on V indicates differentiation with respect to the coordinates of particle
I or particle 2, as the case may be). The statistical interpretation carries over in the
obvious way:

N (ry, 12, )2 d°ry dry [5.4]

is the probability of finding particle 1 in the volume d>r; and particle 2 in the volume
d’ry; evidently ¥ must be normalized in such a way that

/|\y(r1,r2,z)|2d3r1 d*r, = 1. [5.5]
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For time-independent potentials, we obtain a complete set of solutions by sep-
aration of variables:

W(r), 12 0) = Y (e r)e” [5:6
where the spatial wave function () satisfies the time-independent Schrodinger equa-
tion:

h? h2 ,

Viv — 5 —Viv + Vv = Ey, [5.7
21’}1]

and F is the total energy of the system.

xxProblem 5.1 Typically, the interaction potential depends only on the vector
r = r; — I, separating the two particles. In that case the Schrodinger equation
separates, if we change variables from ry, rytor, R = (mir; + mar)/(my + mz
(the center of mass).

(@) Show thatr; =R+ (u/m)r,1r; = R~ (u/mo)r,and V| = (u/mz) Vg + V..
= (u/m)Vg — V,, where

M [5.8]

= ——o
m| + my

is the reduced mass of the system.
(b) Show that the (time-independent) Schrédinger equation becomes

2

hh

TS0+ ma) Vi — —V2¢+V(l')¢f Eyr.

() Solve by separation of variables, letting ¢ (R, r) = ¥z (R)¥(r). Note that ¢«
satisfies the one-particle Schridinger equation, with the total mass (m + mz)
in place of m, potential zero, and energy E g, while ¥, satisfies the one-particle
Schrodinger equation with the reduced mass in place of m, potential ¥ (r), and
energy E,. The total energy is the sum: E = E + E,. Note: What this tells
us is that the center of mass moves like a free particle, and the relative motion
(that is, the motion of particle 2 with respect to particle 1) is the same as if we
had a single particle with the reduced mass, subject to the potential ¥. Exactly
the same separation occurs in classical mechanics'; it reduces the two-body
problem to an equivalent one-body problem.

Problem 5.2 In view of Problem 5.1, we can correct for the motion of the nucleus
in hydrogen by simply replacing the electron mass with the reduced mass:

(@) Find (to two significant digits) the percent error in the binding energy of hydro-
gen (Equation 4.77) introduced by our use of m instead of i.

ISee, for example, Jerry Marion, Classical Dynamics, 2nd ed. (New York: Academic Press 1970).
Section 8.2.
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(b) Find the separation in wavelength between the red Balmer lines
(n =3 — n = 2) for hydrogen and deuterium.

(¢) Find the binding energy of pesitronium (in which the proton is replaced by a
positron—positrons have the same mass as electrons but opposite charge).

(d) Suppose you wanted to confirm the existence of muonic hydrogen, in which the
electron is replaced by a muon (same charge, but 206.77 times heavier). Where
(ie., at what wavelength) would you look for the “Lyman-a” line
n=2—->n=1)

5.1.1 Bosons and Fermions

Suppose particle 1 is in the (one-particle) state v, (r), and particle 2 is in the state
Y (r). In that case Y (ry, r2) is a simple product:

Y (T, 1) = Yo(r)¥p(ry). [5.9]

Of course, this assumes that we can tell the particles apart—otherwise it wouldn’t
make any sense to claim that number 1 is in state 1, and number 2 is in state 1,; all
we could say is that one of them is in the state v, and the other is in state v, but
we wouldn’t know which is which. If we were talking about classical mechanics this
would be a silly objection: You can always tell the particles apart, in principle—just
paint one of them red and the other one blue, or stamp identification numbers on
them, or hire private detectives to follow them around. But in quantum mechanics
the situation is fundamentally different: You can’t paint an electron red, or pin a label
on it, and a detective’s observations will inevitably and unpredictably alter the state,
raising doubts as to whether the two had perhaps switched places. The fact is, all
electrons are utterly identical, in a way that no two classical objects can ever be. It is
not merely that we don’t happen to know which electron is which; God doesn’t know
which is which, because there is no such thing as “this” electron, or “that” electron;
all we can legitimately speak about is “an” electron.

Quantum mechanics neatly accommodates the existence of particles that are
indistinguishable in principle: We simply construct a wave function that is noncom-
mittal as to which particle is in which state. There are actually two ways to do it:

Vi(r1, 12) = A[Ya () ¥s(r2) £ Y (r) ¥, (r2)]. [5.10]

Thus the theory admits two kinds of identical particles: boesons, for which we use the
plus sign, and fermions, for which we use the minus sign. Photons and mesons are
bosons; protons and electrons are fermions. It so happens that

[5.11]

all particles with integer spin are bosons, and
all particles with half-integer spin are fermions.
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This connection between spin and “statistics” (as we shall see, bosons and fermions
have quite different statistical properties) can be proved in relativistic quantum me-
chanics; in the nonrelativistic theory it must be taken as an axiom.

It follows, in particular, that two identical fermions (for example, two electrons)
cannot occupy the same state. For if ¥, = ¥, then

Y (11, 12) = A[Ya (X)) ¥a(r2) — Ya(r)va ()] =0,

and we are left with no wave function at all. This is the famous Pauli exclusion
principle. It is not (as you may have been led to believe) a bizarre ad hoc assumption
applying only to electrons, but rather a consequence of the rules for constructing
two-particle wave functions, applying to all identical fermions.

I assumed, for the sake of argument, that one particle was in the state 1, and
the other in state 1, but there is a more general (and more sophisticated) way to
formulate the problem. Let us define the exchange operator P which interchanges
the two particles:

Pf(r;,ry) = f(ra, 1)) [5.12]

Clearly, P? = 1, and it follows (prove it for yourself) that the eigenvalues of P are £1.
If the two particles are identical, the Hamiltonian must treat them the same: m; = m-
and V (11, r3) = V (1, ry). It follows that P and H are compatible observables,

[P, H] =0, [5.13]

and hence we can find a complete set of functions that are simultaneous eigenstates of
both. That is to say, we can find solutions to the Schrodinger equation that are either
symmetric (eigenvalue +1) or antisymmetric (eigenvalue —1) under exchange:

Y(ry, ry) = ¥ (rz, ry) (+ for bosons, — for fermions). [5.14]

Moreover, if a system starts out in such a state, it will remain in such a state. The new
law (I'1l call it the symmetrization requirement) is that for identical particles the
wave function is not merely allowed, but required to satisfy Equation 5.14, with the
plus sign for bosons and the minus sign for fermions.? This is the general statement.
of which Equation 5.10 is a special case.

2]t is sometimes suggested that the symmetrization requirement (Equation 5.14) is nothing new—
that it is forced by the fact that P and H commute. This is false: It is perfectly possible to imagine a system
of two distinguishable particles (say, an electron and a positron) for which the Hamiltonian is symmetric.
and yet there is no requirement that the wave function be symmetric (or antisymmetric). But identical
particles have to occupy symmetric Of antisymmetric states, and this is a completely new fundamental
law—on a par, logically, with Schrédinger’s equation and the statistical interpretation. Of course, there
didn’t have to be any such things as identical particles; it could have been that every single particle in
nature was clearly distinguishable from every other one. Quantum mechanics allows for the possibility of
identical particles, and nature (being lazy) seized the opportunity. (But I'm not complaining—this makes
matters enormously simpler!)
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Example. Suppose we have two noninteracting® particles, both of mass m, in
the infinite square well (Section 2.2). The one-particle states are

Yu(x) = \/g Sin(%x), E, = n’K

(where K = m2h%/2ma?). If the particles are distinguishable, the composite wave
functions are simple products:

Vniny (X1, %2) = Y, X)) ¥n, (X2),  Egpn, = (n% + I’l%)K

For example, the ground state is
2. .
Y11 = —sin(zwx,/a) sin(wxz/a), E; = 2K;
a
the first excited state is doubly degenerate:
2
V2 = —sin(wx, /a) sin(Qrx,/a), Epp =5K,
a

2
Vo1 = —sin2mx, /a) sin(wxy/a), Ey =5K;
a

and so on. If the two particles are identical bosons, the ground state is unchanged,
but the first excited state is nondegenerate:

? [sin(mwx; /a) sin(2wx, /a) + sin(2wx; /a) sin(w x, /a)]

(still with energy SK). And if the particles are identical fermions, there is no state
with energy 2K; the ground state is

—? [sin(rrxy /a) sin(2rxy/a) — sin(2wx; /a) sin(wxy/a)],

and its energy is 5K.

xProblem 5.3

(@) If v, and v, are orthogonal, and both normalized, what is the constant 4 in
Equation 5.107

(b) If 4, = ¥, (and itis normalized), what is 4? (This case, of course, occurs only
for bosons.)

3They pass right through one another—never mind how you would set this up in practice! I'll
ignore spin—if this bothers you (after all, a spinless fermion is a contradiction in terms), assume they’re
in the same spin state.
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Problem 5.4

(a) Write down the Hamiltonian for two identical noninteracting particles in the
infinite square well. Verify that the fermion ground state given in the example
is an eigenfunction of H, with the appropriate eigenvalue.

(b) Find the next two excited states (beyond the ones given in the example)—wave
functions and energies—for each of the three cases (distinguishable, identical
bosons, identical fermions).

5.1.2 Exchange Forces

To give you some sense of what the symmetrization requirement actually does, I'm
going to work out a simple one-dimensional example. Suppose one particle is in
state 1, (x), and the other is in state v, (x), and these two states are orthogonal and
normalized. If the two particles are distinguishable, and number 1 is the one in state
Y., then the combined wave function is

Y(x1, x2) = Yo (x1)¥p(x2); [5.15]

if they are identical bosons, the composite wave function is (see Problem 5.3 for the
normalization)

1
Yy (x1, x2) = E[Wa(xl)Wb(xZ) + Yp(x1) ¥ (x2)]; [5.16]

and if they are identical fermions, it is
1

ﬁ[%(xl)%(xz) — Yp(x)¥alx2)]. (5.17]

Let’s calculate the expectation value of the square of the separation distance
between the two particles,

Y_(x1, x2) =

(G = x2)%) = (x7) + (x3) = 2{xyx2). (5.18)

Case 1: Distinguishable particles. For the wave function in Equation 5.15.
we have

(x}) = f X Wa () dx, f e (x2) P dxa = (x%),

the expectation value of x? in the one-particle state ,),
P P

(x3) =f|wa(x1)|2dx1/x§|wb(xz)|2dxz= (x%)s,
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and
(X1x2) = /x1|10(x1)|2dx1/lelﬁ(xz)lzdxz = (xX)a{x)s.
In this case, then,

(1 — x2)%)a = (XN + (X2 — 2(x)a (x)s. [5.19]

(Incidentally, the answer would—of course—be the same if particle 1 had been in
state v, and particle 2 in state ,.)

Case 2: Identical particles. For the wave functions in Equations 5.16 and
5.17,

o = 5[ veoran [k
+ f X 1Ys ) dx, f |¥a(x2) I dxz
+ / X[ Ya(x1) Y (x1) dxy / Vb (X2)*Ya (x2) dxs
£ [ v [ vawar v dx]

1

= 5[<x2>a +(xM)p £0£0] = = ((x%), + (x%)s) .

NS

Similarly,
(x3) = % (% + (x%)a) -
(Naturally, (x7) = (x?), since you can’t tell them apart.) But
(rixy) = %[fxrlwa(xl)lzdxlflewb(xz>|2dxz
+fx1|wb(x1)|2dx1/xzwa(xz)rzdxz
ifxlllfa(xl)*lﬁb(xl)dxlfleﬁb(xz)*lﬁa(xz)dxz

i/xﬂlfb(xl)*llfa(xl)dxl/lelfa(xz)*llfb(xz)dxz]
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1
= ((x)alx)s + (X)6(X)a £ (X)an(X)sa £ (X)ba(X)as)
2

= (x)alx)p = [(X)asl’

where

(Xas = / Ve (X) s (x) dx. [5.20

Evidently

((x1 = x2)%)e = (D) + (D) = 2(x)a(x)s F 20(x)asl*. [5.21

Comparing Equations 5.19 and 5.21, we see that the difference resides in the
final term:

(Ax))) 2 = (AX)P)a F 21{x)ap|%; [5.22

identical bosons (the upper signs) tend to be somewhat closer together, and identica.
fermions (the lower signs) somewhat farther apart, than distinguishable particles ir
the same two states. Notice that (x),, vanishes unless the two wave functions actually
overlap [if ¥, (x) is zero wherever v, (x) is nonzero, the integral in Equation 5.20 i~
itself zero]. So if v, represents an electron in an atom in Chicago and 1, represent-
an electron in an atom in Seattle, it’s not going to make any difference whether you
antisymmetrize the wave function or not. As a practical matter, therefore, it’s okay
to pretend that electrons with nonoverlapping wave functions are distinguishable
(Indeed, this is the only thing that allows physicists and chemists to proceed at all.
for in principle every electron in the universe is linked to every other one via the
antisymmetrization of their wave functions, and if this really mattered, you wouldn't
be able to talk about any one electron until you were prepared to deal with them all'

The interesting case is when there is some overlap of the wave functions. The
system behaves as though there were a “force of attraction” between identical bosons.
pulling them closer together, and a “force of repulsion” between identical fermions.
pushing them apart. We call it an exchange force, although it’s not really a force at
all—no physical agency is pushing on the particles; rather, it is a purely geometricai
consequence of the symmetrization requirement. It is also a strictly quantum me-
chanical phenomenon, with no classical counterpart. Nevertheless, it has profound
consequences. Consider, for example, the hydrogen molecule (H;). Roughly speak-
ing, the ground state consists of one electron in the atomic ground state (Equation
4.80) centered on nucleus 1, and one electron in the atomic ground state centered at
nucleus 2. If electrons were bosons, the symmetrization requirement (or, if you like.
the “exchange force™) would tend to concentrate the electrons toward the middle.
between the two protons (Figure 5.1a), and the resulting accumulation of negative
charge would attract the protons inward, accounting for the covalent bond that holds
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+ F F + F + + F
*— - b e *—
p p p p

(@) (b)

Figure 5.1: Schematic picture of the covalent bond: (a) Symmetric configura-
tion produces attractive force; (b) antisymmetric configuration produces repul-
sive force.

the molecule together. Unfortunately, electrons aren’t bosons, they’re fermions, and
this means that the concentration of negative charge should actually be shifted to the
wings (Figure 5.1b), tearing the molecule apart!

But wait. We have been ignoring spin. The complete state of the electron in-
cludes not only its position wave function, but also a spinor, describing the orientation
of its spin*:

Y(r)x(s). [5.23]

When we put together the two-electron state, it is the whole works, not just the
spatial part, that has to be antisymmetric with respect to exchange. Now, a glance
back at the composite spin states (Equations 4.177 and 4.178) reveals that the singlet
combination is antisymmetric (and hence would have to be joined with a symmetric
spatial function), whereas the three triplet states are all symmetric (and would require
an antisymmetric spatial function). Evidently, then, the singlet state should lead to
bonding, and the triplet to antibonding. Sure enough, the chemists tell us that covalent
bonding requires the two electrons to occupy the singlet state, with total spin zero.’

xProblem 5.5 Imagine two noninteracting particles, each of mass m, in the infinite
square well. If one is in the state v, (Equation 2.24) and the other in state v,
orthogonal to v,, calculate ((x; — x,)?), assuming that (a) they are distinguishable
particles, (b) they are identical bosons, and (c) they are identical fermions.

Problem 5.6 Suppose you had three particles, one in state ¥, (x), one in state ¥, (x),
and one in state ¥.(x). Assuming that ¥,, ¥,, and 1. are orthonormal, construct
the three-particle states (analogous to Equations 5.15, 5.16, and 5.17) representing
(a) distinguishable particles, (b) identical bosons, and (c) identical fermions. Keep in
mind that (b) must be completely symmetric under interchange of any pair of particles,
and (c) must be completely anti-symmetric in the same sense.) Nore: There’s a cute

“In the absence of coupling between spin and position, we are free to assume that the state is
separable in its spin and spatial coordinates. This just says that the probability of getting spin up is
independent of the location of the particle. In the presence of coupling, the general state would take the
form of a linear combination: ¥ (r) x4+ + ¥— () x-.

3In casual language, it is often said that the electrons are “oppositely aligned” (one with spin up,
and the other with spin down). This is something of an oversimplification, since the same could be said of
the m = O triplet state. The precise statement is that they are in the singlet configuration.
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trick for constructing completely antisymmetric wave functions: Form the Slater
determinant, whose first row is v, (x1), ¥(x1), ¥.(x;), etc., whose second row i~
Ya(x2), ¥ (x2), o (x2), etc., and so on (this device works for any number of particles).

5.2 ATOMS

A neutral atom, of atomic number Z, consists of a heavy nucleus, with electric charge
Ze, surrounded by Z electrons (mass m and charge —e). The Hamiltonian for this
system is®

h? 1\ Ze?) 1/ 1 Z, ¢
H = A V- - Z E . [5.24
Z { 2m <4neo) r } + 2 <4neo> = Ir; — 1] [5-24]

J=1

The term in curly brackets represents the kinetic plus potential energy of the jth
electron in the electric field of the nucleus; the second sum (which runs over all
values of j and k except j = k) is the potential energy associated with the mutual
repulsion of the electrons (the factor of 1/2 in front corrects for the fact that the
summation counts each pair twice). The problem is to solve Schrodinger’s equation.

Hy = Ev, [5.25]

for the wave function ¥ (r;, s, ..., rz). Because electrons are identical fermions.
however, not all solutions are acceptable: only those for which the complete state
(position and spin),

w(r17r27""rz)X(sl’sz’"'VSZ)’ [5'26]

is antisymmetric with respect to interchange of any two electrons. In particular, no
two electrons can occupy the same state.

Unfortunately, the Schrodinger equation with the Hamiltonian in Equation 5.24
cannot be solved exactly (at any rate, it hasn 't been) except for the very simplest case.
Z =1 (hydrogen). In practice, one must resort to elaborate approximation methods.
Some of these we shall explore in Part II; for now I plan only to sketch some of the
qualitative features of the solutions, obtained by neglecting the electron repulsion
term altogether. In section 5.2.1 we’ll study the ground state and excited states of
helium, and in section 5.2.2 we’ll examine the ground states of higher atoms.

1’m assuming the nucleus is stationary. The trick of accounting for nuclear motion by using the
reduced mass (Problem 5.1) works only for the two-body problem—hydrogen; fortunately, the nucleus is so
much more massive than the electrons that the correction is extremely small even in that case (see Problem
5.2a), and it is smaller still for the heavier atoms. There are more interesting effects, due to magnetic
interactions associated with electron spin, relativistic corrections, and the finite size of the nucleus. We’ll
look into these in later chapters, but all of them are minute corrections to the “purely Coulombic” atom
described by Equation 5.24.




