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Problem 5.7 Suppose you could find a solution ¥(ry,rs,...,rz) to the
Schrodinger (Equation 5.25) for the Hamiltonian in Equation 5.24. Describe how
you could construct from it a completely symmetric function and a completely an-
tisymmetric function, which also satisty the Schrodinger equation, with the same
energy.

5.2.1 Helium

After hydrogen, the simplest atom is helium (Z = 2). The Hamiltonian,

? 1 262 ? 1 262 1 &2
H={-—V— — -V —_— —, [5.27
{ 2m ! 4mey 1 } + { 2 dmey ry ] + 4mey r; — 1y} [ ]

consists of two hydrogenic Hamiltonians (with nuclear charge 2e), one for electron
1 and one for electron 2, together with a final term describing the repulsion of the
two electrons. It is this last term that causes all the problems. If we simply ignore it,
the Schrodinger equation separates, and the solutions can be written as products of
hydrogen wave functions:

lﬁ(rh r) = Ynim (1‘1)¢n/1/m/(l‘2), [5.28]

only with half the Bohr radius (Equation 4.72), and four times the Bohr energies
(Equation 4.70). The total energy would be

E = 4(E, + Ey), [5.29]

where E, = —13.6/n? eV. In particular, the ground state would be

8
Yo(ri, 12) = Yroo(T)diop(r2) = —e 720/ [5.30]
(see Equation 4.80), and its energy would be
Ep =8(—13.6eV) = —109eV. [5.31]

Because v is a symmetric function, the spin state has to be antisymmetric, so the
ground state of helium is a singlet configuration, with the spins “oppositely aligned”.
The actual ground state of helium is indeed a singlet, but the experimentally deter-
mined energy is —78.975 eV, so the agreement is not very good. But this is hardly
surprising: We ignored electron repulsion, which is certainly not a small contribution.
Itis clearly positive (see Equation 5.27), which is comforting—evidently it brings the
total energy up from —109 to —79 eV (see Problem 5.10).

The excited states of helium consist of one electron in the hydrogenic ground
state and the other in an excited state:

Ynim ¥100- [5.32]
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[If you try to put both electrons in excited states, one immediately drops to the ground
state, releasing enough energy to knock the other one into the continuum (£ > 0.
leaving you with a helium ion (He™) and a free electron. This is an interesting sys-
tem in its own right—see Problem 5.8—but it is not our present concern.] We can
construct from this both symmetric and antisymmetric combinations, in the usual
way (Equation 5.10); the former go with the antisymmetric spin configuration (the
singlet), and they are called parahelium, while the latter require a symmetric spin
configuration (the triplet), and they are known as orthohelium. The ground state
1s necessarily parahelium; the excited states come in both forms. Because the sym-
metric spatial state brings the electrons closer together (as we discovered in Section
5.1.2), we expect a higher interaction energy in parahelium, and indeed it is exper-
imentally confirmed that the parahelium states have somewhat higher energy than
their orthohelium counterparts (see Figure 5.2).

Problem 5.8

(a) Suppose you put both electrons in a helium atom into the n = 2 state; what
would the energy of the emitted electron be?

(b) Describe (quantitatively) the spectrum of the helium jon, He™.

Problem 5.9 Discuss (qualitatively) the energy level scheme for helium (a) if elec-
trons were identical bosons, and (b) if electrons were distinguishable particles (but
still with the same mass and charge). Pretend the electrons still have spin 1/2.

xxProblem 5.10

(@) Calculate ((1/|r; — r,])) for the state ¥y (Equation 5.30). Hint: Do the d°r»
integral first, using spherical coordinates and setting the polar axis along ry, so
that

Iri — | = rl2 + r22 — 2r1ry cos 6;.

The 6, integral is easy, but be careful to take the positive root. You’ll have to
break the 7, integral into two pieces, one ranging from 0 to 7, the other from
r| to co. Answer: 5/4a.

(b) Use your result in (a) to estimate the electron interaction energy in the ground
state of helium. Express your answer in electron volts, and add it to Ey (Equa-
tion 5.31) to get a corrected estimate of the ground-state energy. Compare the
experimental value. Note: Of course, we’re still working with an approximate
wave function, so don’t expect perfect agreement.




Sec. 5.2: Atoms 189

Parahelium Orthohelium
0 1S 1P 1D 1F v GS GP GD GF )
1 4Pt 4D+ 4F { 4D
_il4s 45l 4PT 4DT 4F
3Pt 3D 1 3D
3st 3P
3st
2
=
2
5 -3f
@
5 opPL
opl
_al2S¢
28+
s}
(1S at 24.46 eV)

Figure 5.2: Energy level diagram for helium (the notation is explained in Section
5.2.2). Note that parahelium energies are uniformly higher than their orthohelium
counterparts. The numerical values on the vertical scale are relative to the ground
state of ionized helium (He*): 4 x (—13.6 eV) = —54.4 eV; to get the total energy of
the state, subtract 54.4 eV.

5.2.2 The Periodic Table

The ground-state electron configurations for heavier atoms can be pieced together
in much the same way. To first approximation (ignoring their mutual repulsion al-
together), the individual electrons occupy one-particle hydrogenic states (r, [, m),
called orbitals, in the Coulomb potential of a nucleus with charge Ze. If electrons
were bosons (or distinguishable particles), they would all shake down to the ground
state (1,0,0), and chemistry would be very dull indeed. But electrons are in fact iden-
tical fermions, subject to the Pauli exclusion principle, so only two can occupy any
given orbital (one with spin up, and one with spin down—or, more precisely, in the
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singlet configuration). There are n? hydrogenic wave functions (all with the same
energy E,) for a given value of n, so the n = 1 shell has room for two electrons, the
n = 2 shell holds eight, n = 3 takes 18, and in general the nth shell can accomodate
2n? electrons. Qualitatively, the horizontal rows on the Periodic Table correspond
to filling out each shell (if this were the whole story, they would have lengths 2.
8, 18, 32, 50, etc., instead of 2, 8, 8, 18, 18, etc.; we’ll see in a moment how the
electron-electron repulsion throws the counting off).

With helium, the n = 1 shell is filled, so the next atom, lithium (Z = 3), ha~
to put one electron into the n = 2 shell. Now, for » = 2 we can have [ = 0 or
! = 1, which of these will the third electron choose? In the absence of electron-
electron interactions, they both have the same energy (the Bohr energies depend on
n, remember, but not on /). But the effect of electron repulsion is to favor the lowest
value of /, for the following reason: Angular momentum tends to throw the electron
outward (more formally, the expectation value of » increases with increasing /, for a
given n), and the farther out an electron gets, the more effectively the inner electron~
screen the nucleus (roughly speaking, the innermost electron “sees” the full nuclear
charge Ze, but the outermost electron sees an effective charge hardly greater than e).
Within a given shell, therefore, the state with lowest energy (which is to say, the most
tightly bound electron) is / = 0, and the energy increases with increasing /. Thus the
third electron in lithinm occupies the orbital (2,0,0). The next atom (beryllium, with
Z = 4) also fits into this state (only with “opposite spin”), but boron (Z = 5) has to
make use of / = 1.

Continuing in this way, we reach neon (Z = 10), at which point the n = 2 shell
is filled, and we advance to the next row of the periodic table and begin to populate the
n = 3 shell. First there are two atoms (sodium and magnesium) with / = 0, and then
there are six with / = 1 (aluminum through argon). Following argon there “should”
be 10 atoms with n = 3 and / = 2; however, by this time the screening effect is so
strong that it overlaps the next shell, so potassium (Z = 19) and calcium (Z = 20)
choose n = 4,1 = 0, in preference to n = 3,/ = 2. After that we drop back to pick
up the n = 3, ] = 2 stragglers (scandium through zinc), followed by n = 4,1 = |
(gallium through krypton), at which point we again make a premature jump to the
next row (n = 5) and wait until later to slip in the / = 2 and / = 3 orbitals from the
n = 4 shell. For details of this intricate counterpoint, refer to any book on atomic
physics.”

I would be delinquent if I failed to mention the archaic nomenclature for atomic
states, because all chemists and most physicists use it (and the people who make up the
Graduate Record Exam love this kind of thing). For reasons known best to nineteenth-
century spectroscopists, [ = 0 is called s (for “sharp”), / = 1 is p (for “principal”).
I =2isd (“diffuse”), and/ = 3is f (“fundamental™); after that I guess they ran out of

7See, for example, U. Fano and L. Fano, Basic Physics of Atoms and Molecules (New York: John
Wiley & Sons, 1959), Chapter 18, or the classic by G. Herzberg, Atomic Spectra and Atomic Structure
(New York: Dover, 1944).
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imagination, because the list just continues alphabetically (g, A, i, etc.).® The state of
a particular electron is represented by the pair n/, with # (the number) giving the shell
and [ (the letter) specifying the orbital angular momentum; the magnetic quantum
number m is not listed, but an exponent is used to indicate the number of electrons
that occupy the state in question. Thus the configuration

(1)*(25)*2p)* [5.33]
tells us that there are two electrons in the orbital (1,0,0), two in the orbital (2,0,0), and
two in some combination of the orbitals (2,1,1), (2,1,0), and (2,1,—1). This happens
to be the ground state of carbon.

In that example there are two electrons with orbital angular momentum quantum
number 1, so the total orbital angular momentum quantum number L (capital L,
instead of /, to indicate that this pertains to the fotal, not to any one particle) could be
2, 1, or 0. Meanwhile, the two (1s) electrons are locked together in the singlet state,
with total spin zero, and so are the two (2s) electrons, but the two (2p) electrons could
be in the singlet configuration or the triplet configuration. So the total spin quantum
number S (capital, again, because it’s the total) could be 1 or 0. Evidently the grand
total (orbital plus spin) J could be 3, 2, 1, or 0. There exist rituals (Hund’s rules’)
for figuring out what these totals will be, for a particular atom. The result is recorded
as the following hieroglyphic:

28+, [5.34]

(where S and J are the numbers, and L the letter—capitalized, this time, because
we’re talking about the fotals). The ground state of carbon happens to be > Py: The
total spin is 1 (hence the 3), the total orbital angular momentum is 1 (hence the P), and
the grand total angular momentum is zero (hence the 0). In Table 5.1 the individual
configurations and the total angular momenta (in the notation of Equation 5.34) are
listed, for the first four rows of the Periodic Table.

x*+xProblem 5.11

(a) Figure out the electron configurations (in the notation of Equation 5.33) for the
first two rows of the Periodic Table (up to neon), and check your results against
Table 5.1.

(b) Figure out the corresponding total angular momenta, in the notation of Equation
[5.34], for the first four elements. List all the possibilities for boron, carbon,
and nitrogen.

8The shells themselves are assigned equally arbitrary nicknames, starting (don’t ask me why) with
K: the K shellisn = 1, the L shellis n = 2, M is n = 3, and so on (at least they re in alphabetical order).

9See, for example, Stephen Gasiorowicz, Quantum Physics (New York: John Wiley & Sons, 1974),
Chapters 18 and 19.
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Table 5.1: Ground-state electron configurations for the first four rows of the
Periodic Table.

Z  Element Configuration

1 H (1s) 281

2 He (1s)? 15

3 Li (He) (2s) 281/

4  Be (He)(2s)? 1Sy

5 B (He)(25)*(2p) 2Pij2

6 C (He)(25)*(2p)* R

7 N (He)(2s)*(2p)° 832

8 O (He)(2s)*(2p)* P

9 F (He)(25)’(2p)° Py
10 Ne (He)(25)2(2 p)® 1y
11 Na (Ne)(3s) 281,
12 Mg (Ne)(3s)? 15
13 Al (Ne)(3s)*(3p) 2Py
14 Si (Ne)(35)*(3p)? 3p
15 (Ne)3s*(3p)° “S3p
16 S (Ne)(3s)2 (3 p)* p
17 ¢l (Ne)(35)2(3p)° 2P
18  Ar (Ne)(35)2(3p)® BRY
19 K (Ar)(4s) 281
20 Ca (Ar)(4s)? 1o
21 Sc (Ar)(45)% (3d) D3
2 T (Ar)(45)?(3d)? B
23V (Ar)(45)?(3d)° B
24 Cr (Ar)(45)(3d)° 785
25 Mn (An)(4s)2(3d)° 832
26 Fe (Ar)(4s)? (3d)° 3Dy
27 Co (An)(4s5)2(3d)7 4 Fop
28 Ni (Ar)(4s)*(3d)8 3F
29 Cu (Ar)(4s)(3d)'1° 281,
30 Zn (An(49)2(3d)'0 18
31 Ga (An(4s)*(3)%4p) Py
32 Ge AD@Es)23d)04p)? 3R
33 As (AD(4s)?(3d)°(4p)® 483
34 Se (An4s)2Gd)°4py* *p
35 Br (A4)°3d)!°@4p)® 2Py
36 Kr (AN4s)’(3d) %4p)® 1S

(c) Hund’s first rule says that, all other things being equal, the state with the highest
total spin will have the lowest energy. What would this predict in the case of
the excited states of helium?
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(d) Hund’s second rule says that if a subshell (n, /) is no more than half filled,
then the lowest energy level has J = |L — §}; if it is more than half filled, then
J = L + § has the lowest energy. Use this to resolve the boron ambiguity in
(b).

(e) Use Hund’s rules and the fact that a symmetric spin state must go with an

antisymmetric position state (and vice versa) to resolve the carbon ambiguity in
(b). What can you say about nitrogen?

Problem 5.12 The ground state of dysprosium (element 66, in the sixth row of the
Periodic Table) is listed as ° Iz. What are the total spin, total orbital, and grand total
angular momentum quantum numbers? Suggest a likely electron configuration for
dysprosium.

5.3 SOLIDS

In the solid state, a few of the loosely bound outermost valence electrons in each atom
become detached and roam around throughout the material, no longer subject only to
the Coulomb field of a specific “parent” nucleus, but rather to the combined potential
of the entire crystal lattice. In this section we will examine two extremely primitive
models: first, the electron gas theory of Sommerfeld, which ignores all forces (except
the confining boundaries), treating the wandering electrons as free particles in a
box (the three-dimensional analog to an infinite square well); and second, Bloch’s
theory, which introduces a periodic potential representing the electrical attraction of
the regularly spaced, positively charged, nuclei (but still ignores electron-electron
repulsion). These models are no more than the first halting steps toward a quantum
theory of solids, but already they reveal the critical role of the Pauli exclusion principle
in accounting for the “solidity” of solids, and provide illuminating insight into the
remarkable electrical properties of conductors, semiconductors, and insulators.

5.3.1 The Free Electron Gas

Suppose the object in question is a rectangular solid, with dimensions /., [,, /,, and
imagine that an electron inside experiences no forces at all, except at the impenetrable
walls:

fO0O<x<l,0<y<l,,0<z<l)

otherwise. [5.35]

07
WL%D—{w,
The Schrodinger equation,

h2
—5 VY = Ey,
2m
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separates in Cartesian coordinates: ¥ (x, y, z) = X(x)Y () Z(z), with
B d*X ndy W d’z
2mdx? T dmdyr T YT 2m d22

and E = E; + E, + E.. Letting

=FE.Z,

2mE, 2mFE _ /2mE;

we obtain the general solutions

X(x) = Ay sin(kyx) + B, cos(k,x), Y(y) = Ay sin(kyy) + By cos(ky,y),

Z(z) = A, sin(k,z) + B, cos(k,z).

The boundary conditions require that X(0) = Y(0) = Z(0) = 0, so B, = B, =
B, =0,and X(l;) =Y(,) =Z(,) =0, s0

ke =n,m, ki, =n,m, k. =n,m, [5.36:
where each » is a positive integer:
ne=12,3...,n,=123 ...,n,=1,2,3, .... [5.37]

The (normalized) wave functions are

8 . [(mm . (n,7 . [ nm
Ynonyn, = L sm( L x) sin (—lyTy) sm( L z), [5.38]

and the allowed energies are

Wr? (n? ni n? R2k?
nnyn, — TS - 2 == A 39
Ennn 2m <l§+l§+lzz 2m 15391

where k is the magnitude of the wave vector k = (%, , ky, k).

If you imagine a three-dimensional space, with axes &, , ky, k., and planes drawn
inatk, = (w/l,), 2n/l), Bn/l,), ..., at ky = (m/l)), 2n/l,), 3n/ly), ..., and
at k; = (n/l,), 2n/l;), Bn/l,), ..., each intersection point represents a distinct
(one-particle) stationary state (Figure 5.3). Each block in this grid, and hence also
each state, occupies a volume

=— [5.40]
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kX

Figure 5.3: Free electron gas. Each intersection on the grid represents an al-
lowed energy. Shading indicates one block; there is one state for every block.

of “k-space,” where ¥V = I,1,l, is the spatial volume of the object itself. Now
suppose our sample contains N atoms, and each atom contributes g free electrons.
(In practice, N will be enormous—on the order of Avogadro’s number, for an object
of macroscopic size.) If electrons were bosons (or distinguishable particles), they
would all settle down to the ground state, ¥/1;;./° But electrons are in fact identical
fermions subject to the Pauli exclusion principle, so only two of them can occupy any
given state. They will fill up one octant of a sphere in k-space,'’ whose radius & is
determined by the fact that each pair of electrons requires a volume 7/ ¥ (Equation
5.40):

101'm assuming there is no appreciable thermal excitation, or other disturbance, to lift the solid out
of its collective ground state. If you like, I'm talking about a “cold” solid, though (as you will show in
Problem 5.13c), typical solids are still “cold,” in this sense, far above room temperature.

UBecause N is such a huge number, we need not worry about the distinction between the actual
jagged edge of the grid and the smooth spherical surface that approximates it.
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Thus
kr = 3pmH)3, (541
where
q .
= — 5.42
p=- [

is the free electron density (the number of free electrons per unit volume).

The boundary separating occupied and unoccupied states, in k-space, is called
the Fermi surface (hence the subscript F). The maximum occupied energy is called
the Fermi energy Er; evidently, for a free electron gas,

h2
Ep= ﬁ@pnz)zﬂ. [5.43]

The fotal energy of the electron gas can be calculated as follows: a shell of thickness
dk (Figure 5.4) contains a volume

1
g(4nk2)dk,

so the number of electron states in the shell is

20(1/2)nk*dk] ¥V
(73/V)

2
= Fk dk.

Figure 5.4: One octant of a spherical shell in 4-space.
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Each of these states carries an energy A2k%/2m (Equation 5.39), so the energy of the
shell is

B2y
dE = — — K2 dk, [5.44]
2m m?
and hence the total energy is
nv [k RSV R2(3niNg)’3
Eo = Pdk=—£— = y 23, 5.4
T 2m2m _[) 1072m 1072m [5.43]

This quantum mechanical energy plays a role rather analogous to the internal
thermal energy (U) of an ordinary gas. In particular, it exerts a pressure on the walls,
for if the box expands by an amount dV, the total energy decreases:
2h*(3n%Ng)*s 2 dv
dE = _""(—T[—?‘)_‘V_Sﬂ dV = —=Ew—

3 107%m 3 vV
and this shows up as work done on the outside (d W = P dV') by the quantum pressure
P. Evidently

P=

[5.46]

2Eq _ 2 Kkp _ G)PR? ,
3V 31omtm . sm '
Here, then, is a partial answer to the question of why a cold solid object doesn’t
simply collapse: There is a stabilizing internal pressure that has nothing to do with
electron-electron repulsion (which we have ignored) or thermal motion (which we
have excluded) but is strictly quantum mechanical, and derives ultimately from the
antisymmetrization requirement for the wave functions of identical fermions. It is
sometimes called degeneracy pressure, although “exclusion pressure” might be a
better term.'?

Problem 5.13 The density of copper is 8.96 gm/cm?, and its atomic weight is 63.5
gm/mole.

(a) Calculate the Fermi energy for copper (Equation 5.43). Assume g, = 1, and
give your answer in electron volts.

(b) What is the corresponding electron velocity [set Er = (1/2)mv?]? Is it safe to
assume that the electrons in copper are nonrelativistic?

(c) At what temperature would the characteristic thermal energy (kg T, where kp is
the Boltzmann constant and 7 is the Kelvin temperature) equal the Fermi energy,
for copper? Note: This is called the Fermi temperature. As long as the actual
temperature is substantially below the Fermi temperature, the material can be
regarded as “cold”, with most of the electrons in the ground-state configuration.
Since the melting point of copper is 1356 K, solid copper is always cold.

12%e derived Equations 5.41, 5.43, 5.45, and 5.46 for the special case of an infinite rectangular
well; but they hold for containers of any shape as long as the number of particles is extremely large.
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(d) Calculate the degeneracy pressure (Equation 5.46) of copper, in the electron gas
model.

Problem 5.14 The bulk modulus of a substance is the ratio of a small decrease
in pressure to the resulting fractional increase in volume:

dPpP

B=-V—.

dv
Show that B = (5/3) P, in the free electron gas model, and use your result in Prob-
lem 5.13(d) to estimate the bulk modulus of copper. Note: The observed value is
13.4 x 10'° N/m2, but don’t expect perfect agreement—after all, we’re neglecting
all electron-nucleus and electron-electron forces! Actually, it is rather surprising that
this calculation comes as close as it does.

5.3.2 Band Structure

We’re now going to improve on the free electron model by including the forces exerted
on the electrons by the regularly spaced, positively charged, essentially stationary
nuclei. The qualitative behavior of solids is dictated to a remarkable degree by
the mere fact that this potential is periodic—its actual shape is relevant only to the
finer details. To show you how it goes, I'm going to develop the simplest possible
example: a one-dimensional Dirac comb, consisting of evenly spaced delta-function
wells (Figure 5.5). But before I get to that, we need to know a bit about the general
theory of periodic potentials.

Consider, then, a single particle subject to a periodic potential in one dimension:

Vix+a)=V(). [5.47}
Bloch’s theorem tells us that the solutions to the Schrodinger equation,

By, YW= E 5.48
ﬁ_dx—z—i_ () = Ev, [5.48]

r V(x)

-2a -a a 2a 3a 4a 5a 6a

Figure 5.5: The Dirac comb, Equation 5.57.
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for such a potential, can be taken to satisfy the condition
Yx +a) =5 (x) [5.49]

for some constant K,

Proof: Let D be the “displacement” operator:
Df(x) = f(x +a). [5.50]
By virtue of Equation 5.47, D commutes with the Hamiltonjan:
[D, H] =0, [5.51]

and hence (see Section 3.4.1) we are free to choose eigenfunctions of H that
are simultaneously eigenfunctions of D: Dy = Ay, or

Yx +a) = Ap(x). [5.52]

Now 1 is certainly not zero [if it were, then—since Equation 5.52 holds for
all x—we would immediately obtain ¢ (x) = 0, which is not a permissible
eigenfunction], so, like any nonzero complex number, it can be expressed as an

exponential: ‘
A= ek [5.53]

for some constant K. QED.

At this stage Equation 5.53 is merely a strange way to write the eigenvalue 2,
but in a moment we will discover that K is in fact real, so that although ¥ (x) itself
is not periodic, | (x)? is:

[ (x +a) = [y )], [5.54]

as one would certainly expect.'

Of course, no real solid goes on forever, and the edges are going to spoil the
periodicity of ¥ (x) and render Bloch’s theorem inapplicable. However, for any
macroscopic crystal, containing something on the order of Avogadro’s number of
atoms, it is hardly imaginable that edge effects can significantly influence the behav-
ior of electrons deep inside. This suggests the following device to salvage Bloch’s
theorem: We wrap the x-axis around in a circle and connect it onto its tail, after a
large number N & 10?* of periods; formally, we impose the boundary condition

¥ (x + Na) = ¢ (x). [5.55]

3Indeed, you might be tempted to reverse the argument, starting with Equation 5.54, as a way
of proving Bloch’s theorem. It doesn’t work, for Equation 5.54 alone would allow the phase factor in
Equation 5.49 to be a function of x.
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It follows (from Equation 5.49) that

e VK (x) = Y (x),

soeVke =1 or NKa = 2zn, or

2
k="

Vo (=0 L E2 ). [5.56]

In particular, for this arrangement K is necessarily real. The virtue of Bloch’s theorem
is that we need only solve the Schrodinger equation within a single cell (say, on the
interval 0 < x < a); recursive application of Equation 5.49 generates the solution
everywhere else.

Now suppose the potential consists of a long string of delta-function wells (the
Dirac comb):

N-1
V) =—a) 8x - ja). [5.57]
=0

The wells are supposed to represent, very crudely, the electrical attraction of the nuclei
in the lattice. (In Figure 5.5 you must imagine that the x-axis has been “wrapped
around,” as suggested in the previous paragraph, so the Nth well actually appears at
x = —a.) No one would pretend that this is a realistic model, but remember, it is only
the effect of periodicity that concerns us here; the classic study'* used a repeating
rectangular pattern, and many authors still prefer that one.!” In the region 0 < x < a
the potential is zero, so

hZ d2¢
—— L =Evy,
2m dx? v
or ‘ ,
d=yr )
bl Ap— S
dx? v
where
2mE
k= o [5.58]

as usual. (I'll work out the positive-energy solutions; the negative-energy states can
be obtained in exactly the same way, using x = +/—2mE /h, or by simply substituting
k — ix in the final result [5.64].)

The general solution is

¥(x) = Asin(kx) + Beos(kx), (0 <x <a). [5.59]

4R deL. Kronig and W, G. Penney, Proc. R. Soc. Lond., ser. A, 130, 499 (1930).

158ee, for instance, D. Park, Introduction 1o the Quantum Theory, 3rd ed., (New York: McGraw-Hill,
1992).



Sec. 5.3: Solids 201

According to Bloch’s theorem, the wave function in the cell immediately to the lef
of the origin is

Y(x) = e K Asink(x +a) + Beosk(x +a)], (—a<x <0). [560]
At x = 0, ¥ must be continuous, so
B = e %[ 4 sin(ka) + B cos(ka)]; [5.61]
its derivative suffers a discontinuity proportional to the strength of the delta function
(see Equation 2.107):
kA4 — e K9%[ A4 cos(ka) — Bsin(ka)] = —27'"233. [5.62]

Solving Equation 5.61 for 4 sin(ka) yields
A sin(ka) = [¢'%® — cos(ka)]B. [5.63]

Substituting this into Equation 5.62, and canceling k B, we find
4 . ‘ 2
[eKe — cos(ka)][1 — €K cos(ka)] + e K sin(ka) = —hmT: sin(ka),
which simplifies to

cos(Ka) = cos(ka) — 7—’7% sin(ka). [5.64]
This is the fundamental result from which all else follows. For the Kronig-Penney po-
tential (see footnote 15), the formula is more complicated, but it shares the qualitative
features we are about to explore.
Equation 5.64 determines the possible values of k, and hence the allowed en-
ergies. To simplify the notation, let

aa

m
z=ka, and B= h—z, [5.65]
so the right side of Equation 5.64 can be written
f(2) =cos(z) — B ) [5.66]

The constant j is a dimensionless measure of the “strength” of the delta function. In
Figure 5.6 I have plotted f'(z) for the case § = 1. The important thing to notice is that
£ (2) strays outside the range (—1, +1), and in such regions there is no hope of solving
Equation 5.64, since | cos(Ka)| < 1. These gaps represent forbidden energies; they
are separated by bands of allowed energies. Within a given band, virtually any energy
is allowed, for according to Equation 5.56 Ka = 27n/N, where N is a huge number,
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f(z)A

N, e e ! \— prm \eermre, prereees e ] ateitesto g e, prsd e povoed
1st gap 2nd gap 3rd gap 4th gap
band band band band

Figure 5.6: Graph of f(z) (Equation 5.66) for 8 = 1, showing allowed bands
separated by forbidden gaps.

and n can be any integer. You might imagine drawing N horizontal lines on Figure
5.6, at values of cos(27rn/N) ranging from +1 (n = 0) down to —1 (n = N /2), and
back almostto+1 (n = N — 1)—at this point the Bloch factor e'X“ recycles, so no new
solutions are generated by further increasing n. The intersection of each of these lines
with f(z) yields an allowed energy. Evidently there are N /2 positive-energy states
in the first band (joined by N /2 negative-energy states) and N in all the higher bands.
they are so closely spaced that for most purposes we can regard them as forming a
continuum (Figure 5.7).

So far, we’ve only put one electron in our potential. In practice there will be
Ng of them, where g is again the number of “free” electrons per atom. Because ot

Figure 5.7: The allowed positive
energies for a periodic potential.
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the Pauli exclusion principle, only two electrons can occupy a given spatial state,
so if g = 1, they will just fill the negative-energy half of the first band, if g = 2
they will completely fill the first band, if g = 3 they half fill the second band, and
so on. (In three dimensions, and with more realistic potentials, the band structure
may be more complicated, but the existence of bands, separated by forbidden gaps,
persists—band structure is the signature of a periodic potential.) Now, if a band is
entirely filled, it takes a relatively large energy to excite an electron, since it has to
jump across the forbidden zone. Such materials will be electrical insulators. On
the other hand, if a band is only partly filled, it takes very little energy to excite an
electron, and such materials are typically conductors. If you dope an insulator with
a few atoms of larger or smaller ¢, this puts some “extra” electrons into the next
higher band, or creates some holes in the previously filled one, allowing in either
case for weak electric currents to flow; such materials are called semiconductors. In
the free electron model a/l solids should be excellent conductors, since there are no
large gaps in the spectrum of allowed energies. It takes the band theory to account
for the extraordinary range of electrical conductivities exhibited by the solids in
nature.

Problem 5.15

(a) Using Equations 5.59 and 5.63, show that the wave function for a particle in the
periodic delta function potential can be written in the form

Y(x) = Clsin(kx) + e Kosink(a — x)], (0 <x <a).

(Don’t bother to determine the normalization constant C.)

(b) There is an exception: At the bottom of a band, where ka = Ka = jm, (a)
yields ¥ (x) = 0. Find the correct wave function for this case. Note what
happens to v at each delta function.

Problem 5.16 Find the energy at the top of the first allowed band, for the case
B =5, correct to three significant digits. For the sake of argument, assume o/a = 1
eV.

Problem 5.17 Suppose we used delta-function spikes, instead of wells (so that
the electrons are repelled, instead of attracted, by the nuclei). Draw the analogs to
Figures 5.6 and 5.7 (using the same values of the parameters—except for their signs).
How many allowed energies are there in each band? What is the energy at the top of
the jth band?

Problem 5.18 Show thatmosr of the energies determined by Equation 5.64 are dou-
bly degenerate. What are the exceptional cases? Hint: Tryitfor N =1,2,3,4, ...,
to see how it goes. What are the possible values of cos(K a) in each case?
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5.4 QUANTUM STATISTICAL MECHANICS

At absolute zero, a physical system occupies its lowest energy configuration. As w«
turn up the temperature, random thermal activity will begin to populate the excitec
states, and this raises the following question: If we have a large number N of particle~
in thermal equilibrium at temperature 7', what is the probability that a given particic
would be found to have a specific energy E;? Note that the “probability” in questior
has nothing to do with quantum indeterminacy—exactly the same question arises 1*
classical statistical mechanics. The reason we must be content with a probabilisii.
answer is that we are typically dealing with enormous numbers of particles, and w«
could not possibly expect to keep track of each one separately, whether or not the
underlying mechanics is deterministic.

The fundamental assumption of statistical mechanics is that in thermal
equilibrium every distinct state with the same roral energy E is equally probable
Random thermal motions constantly shift energy from one particle to another anc
from one form (rotational, kinetic, vibrational, etc.) to another, but (absent extern.
influences) the roral is fixed by conservation of energy. The assumption (and it's =
deep one, worth thinking about) is that this continual redistribution of energy doe-
not favor any particular state. The temperature 7 is simply a measure of the tota.
energy, for a system in thermal equilibrium. The only new twist introduced by
quantum mechanics has to do with how we count the distinct states, and this depend-
critically on whether the particles involved are distinguishable, identical bosons. or
identical fermions. The arguments are relatively straightforward, but the arithmer.
gets pretty dense, so I’'m going to begin with an absurdly simple example, so you'l.
have a clear sense of what is at issue when we come to the general case.

5.4.1 Example

Suppose we have just three noninteracting particles (all of mass m) in the one-
dimensional infinite square well (Section 2.2). The total energy is

7'[2 2 -
E:EA+EB+EC=M—a5(ni+n§+n§) [5.67

(see Equation 2.23), where n 4, ng, and nc are positive integers. Now suppose, for
the sake of argument, that £ = 243(w%42?/2ma?), which is to say,

n +n% 4+ nk =243, [5.68

There are, as it happens, 10 combinations of positive integers, the sum of whose
squares is 243: All three could be 9, or two could be 3 and one 15 (which occurs in
three permutations), or one could be 5, one 7, and one 13 (six permutations). Thu~
(n4, ng,nce) is one of the following:
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(97 9’ 9)1
(3,3,15), (3,15,3), (15,3, 3),
(6,7,13), (5,13,7), (7,5,13), (7,13,5), (13,5,7), (13,7,5).

If the particles are distinguishable, each of these represents a distinct quantum
state, and the fundamental assumption of statistical mechanics says that in thermal
equilibrium!® they are all equally likely. But I’m not interested in knowing which
particle is in which (one-particle) state, only the total number of particles in each
state—the occupation number N, for the state v,,. The collection of all occupation
numbers for a given three-particle state we will call the configuration. If all three
are in 1), the configuration is

0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,...) [5.69]

(i.e., No = 3, all others zero). If two are in vr; and one is in 5, the configuration is

0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,...) [5.70]

(i.e., N3 = 2, Ni5 = 1, all others zero). And if there is one particle in 5, one in 7,
and one in 13, the configuration is

0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,...) [5.71]

(ie., Ns = Ny = Nj3 = 1, all others zero.) Of these, the third is the most probable
configuration, because it can be achieved in six different ways, whereas the second
occurs three ways, and the first only one.

Returning now to my original question, if we select one of these three particles
at random, what is the probability (P,) of getting a specific (allowed) energy E,?
Well, the chances are 1 in 10 that the system is in the first configuration (Equation
5.69), and in that event we are certain to get Ey, so Py = 1/10. The chances are
3 in 10 that the system is in the second configuration (Equation 5.70), and in that
case there is a 2/3 probability of getting E3, and 1/3 probability of getting E|s, so
Py = (3/10) x (2/3) = 1/5,and P;5 = (3/10) x (1/3) = 1/10. And the chances
are 6in 10 that the system is in the third configuration, in which case the probability is
1/3 each that we’ll get Es, E4, and Ej3,50 Ps = P; = Pj3 = (6/10) x (1/3) = 1/5.
As a check, we note that

15How the particles maintain thermal equilibrium, if they really don’t interact at all, is a problem I'd
rather not worry about—maybe God reaches in periodically and stirs things up (being careful not to add
or remove any energy). In real life, of course, the continual redistribution of energy is caused precisely
by interactions between the particles, so if you don’t approve of divine intervention let there be extremely
weak interactions—sufficient to thermalize the system (at least, over long time periods) but too small to
alter the stationary states and the allowed energies appreciably.
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1 1 1 1 1 1
P+ Ps+P 4+ P+ P Pi=-dt—db—-af — =4+ —=1
3+ Ps + P;+ Py + Pi3+ s 5+5+5+10+5+10

But that’s when the particles are distinguishable. If in fact they are identicu.
fermions, the antisymmetrization requirement (leaving aside spin, for simplicity) ex-
cludes the first and second configurations (which assign two—or, worse still, three—
particles into the same state), and there is just one state with the third configuratior.
(see Problem 5.19). For identical fermions, then, Ps = P; = Py3 = 1/3 (and agair.
the sum of the probabilities is 1). On the other hand, if they are identical bosons the
symmetrization requirement allows for one state with each configuration (see Prob-
lem 5.19), s0 Py = 1/3, Py = (1/3) x (2/3) = 2/9, Pis = (1/3) x (1/3) = 1/9.
and Ps = P; = Pj3 = (1/3) x (1/3) = 1/9. As always, the sum s 1.

The purpose of this example was to show you how the counting of states depend~
on the nature of the particles. In one respect it was actually more complicated than
the realistic situation, in which N is a huge number. For as N grows, the most
probable configuration (in this example, N5 = N; = N3 = 1, for the case ot
distinguishable particles) becomes overwhelmingly more likely than its competitors.
so that, for statistical purposes, we can afford to ignore the others altogether. The
distribution of individual particle energies, at equilibrium, is simply their distribution
in the most probable configuration. (If this were true for N = 3—which, obviously. it
is not—we would conclude that Ps = P; = Pj3 = 1/3 for the case of distinguishable
particles.) I'll return to this point in Secticn 5.4.3, but first we need to generalize the
counting procedure itself.

«Problem 5.19

(a) Construct the completely antisymmetric wave function ¥ (x4, X3, x¢) for three
identical fermions, one in the state 15, one in the state 17, and one in the state

Y.

(b) Construct the completely symmetric wave function ¥ (x 4, x g, xc) for three iden-
tical bosons, (i) if all three are in state yrg, (ii) if two are in state 13 and one
is in state 1,3, and (iii) if one is in state 15, one in state Y-, and one in state

Y13.

«Problem 5.20 Suppose you had three particles in a one-dimensional harmonic
oscillator potential, in thermal equilibrium, with a total energy E = (9/2)hw.

() Ifthey are distinguishable particles (but all with the same mass), what are the pos-
sible occupation-number configurations, and how many distinct (three-particle)
states are there for each one? What is the most probable configuration? If you
picked a particle at random and measured its energy, what values might you get.
and what is the probability of each one? What is the most probable energy?
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(b) Do the same for the case of identical fermions (ignoring spin, as in the Example
in Section 5.4.1).

(¢) Do the same for the case of identical bosons (ignoring spin).

5.4.2 The General Case

Now consider an arbitrary potential, for which the one-particle energies are E;, £,
Es, ..., with degeneracies dy, d, ds, . .. (i.e., there are d, distinct one-particle states
with the same energy E,). Suppose we put N particles (all with the same mass) into
this potential; we are interested in the configuration (N1, Ny, N3, ...), for which there
are N particles with energy E;, N, particles with energy E,, and so on. Question:
How many different ways can this be achieved (or, more precisely, how many distinct
states correspond to this particular configuration)? The answer, Q(N;, N2, N3, .. .),
depends on whether the particles are distinguishable, identical fermions, or identical
bosons, so we’ll treat the three cases separately.'’

First, assume the particles are distinguishable. How many ways are there to
select (from the N available candidates) the N to be placed in the first “bin”? Answer:
the binomial coefficient, “N choose N;”:

N\ _ N!
(Nl) T NIV =Nl [5.72]

For there are N ways to pick the first particle, leaving (N — 1) for the second, and so
on:

Nt
(N - NV
However, this counts separately the Ni! different permutations of the Ny particles,
whereas we don’t care whether number 37 was picked on the first draw, or on the
twenty-ninth draw; so we divide by N;!, confirming Equation 5.72. Now, how many
different ways can those N, particles be arranged wirhin the first bin? Well, there
are d; states in the bin, so each particle has d; choices; evidently there are (d;)™
possibilities in all. Thus the number of ways to put N; particles, selected from a total
population of N, into a bin containing d; distinct options, is

NIN—DN=2--(N=N, +1) =

N
NiI(N — N
The same goes for bin 2, of course, except that there are now only (N — N;) particles
left to work with:
(N - NDd)*
NyI(N — Ny — No)!’

17The presentation here follows closely that of Amnon Yariv, An Introduction to Theory and Appli-
cations of Quantum Mechanics (New York: John Wiley & Sons, 1982).
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and so on. It follows that

O(N1, N2, N3, .0

_ NWY (N — N)'d)” (N — Ny — Np)1dy”
= N!I(N = N»)! Na'(N — Ny — No)! N3!(N — Ny — N2 — Ny)!

N N> N3 00
:N!ML'_'=N11_[“’ (5.7
n=1

N
NN ING! - - Nl

(You should pause right now and check this result for the Example in Section 5.4.1—
see Problem 5.21.)

The problem is a lot easier for identical fermions. Because they are indisur.-
guishable, it doesn’t matter which particles are in which states—the antisymmetriz.-
tion requirement means that there is just one N-particle state in which a specific s¢:
of one-particle states is occupied. Moreover, only one particle can occupy any giver

state. There are
dn
N,

ways to choose the N, occupied states in the nth bin,'® so

! dy! -,
O(Ny, Na, N3, ...) BIN,,!(dn—Nn)!' (5.7
(Check it for the Example in Section 5.4.1—see Problem 5.21.)

The calculation is hardest for the case of identical bosons. Again, the sym-
metrization requirement means that there is just one N-particle state in which a spe-
cific set of one-particle states is occupied, but this time there is no restriction on the
number of particles that can share the same one-particle state. For the nth bin, the
question becomes: how many different ways can we assign N, identical particle~
to d, different slots? There are many ways to solve this combinatorial problem: ar.
especially clever method involves the following trick: Let dots represent particles anc
crosses represent partitions, so that, for example, ifd, =5and N, =7,

o e X & X0 o0 X & X

would indicate that there are two particles in the first state, one in the second, three
in the third, one in the fourth, and none in the fifth. Note that there are N, dots and
(d, — 1) crosses (partitioning the dots into d, groups). If the individual dots anc
crosses were labeled, there would be (N, + d, — 1)! different ways to arrange them
But for our purposes the dots are all equivalent—permuting them (N, ! ways) does not

18This should be zero, of course, if N, > dy, and it is, provided that we consider the factorial o -
negative integer to be infinite.
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change the state. Likewise, the crosses are all equivalent—permuting them [(d,, — 1)!

ways] changes nothing. So there are in fact
N, +d, — D! ., -
(N + W (Natdy—1 [5.75]
N, — D! Ny

distinct ways of assigning the N, particles to the d, one-particle states in the nth bin,
and we conclude that

& (N, +d, — 1)
Q(Ny, N2, N3, ...) = ]1 SATRVR [5.76]

(Check it for the Example in Section 5.4.1—see Problem 5.21.)

xProblem 5.21 Check Equations 5.73, 5.74, and 5.76 for the Example in Section
54.1.

*+Problem 5.22 Obtain Equation 5.75 by induction. The combinatorial question is
this: How many different ways can you put N identical balls into d baskets (never
mind the subscript » for this problem). You could stick all N of them into the third
basket, or all but one in the second basket and one in the fifth, or two in the first and
three in the third and all the rest in the seventh, etc. Work it out explicitly for the
cases N = 1, N =2, N =3, and N = 4; by that stage you should be able to deduce
the general formula.

5.4.3 The Most Probable Configuration

In thermal equilibrium, every state with a given total energy E and a given particle
number N is equally likely. So the most probable configuration (N, N2, N3, ...)
is the one that can be achieved in the largest number of different ways—it is that
particular configuration for which Q(Ny, N, N3, ...) is a maximum, subject to the
constraints

o0
ZN" =N [5.77]
n=1
and
o0
ZN"E" =E. (5.78]
n=1

The problem of maximizing a function F(x;, x2, X3, .. .) of several variables, subject
to the constraints f] (x|, x2, X3, ...) = 0, fa(x1, X2, x3,...) = 0, etc., is most con-
veniently handled by the method of Lagrange multipliers'®: We introduce the new
function

9gee, for example, Mary Boas, Mathematical Methods in the Physical Sciences, 2nd ed. (New
York: John Wiley & Sons, 1983), Chapter 4, Section 9.
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G(xl,xz,x3,...,Al,kz,...) = F+)\.1f1 +)\.2f2+ [57‘*J
and set all its derivatives equal to zero:
G G
— =0 =0. [5.8¢
0x, O0Ay

In our case it’s a little easier to work with the logarithm of Q, instead of ¢/
itself——this turns the products into sums. Since the logarithm is a monotonic functior.
of its argument, the maxima of Q and In(Q) occur at the same point. So we let

[ ¢] [ ¢]
G=ln(Q)+a|N=Y N, |+B|E-) NE |, (5.81
n=1 n=1

where « and 8 are the Lagrange multipliers. Setting the derivatives with respect to v
and B equal to zero merely reproduces the constraints (Equations 5.77 and 5.78): 1-
remains, then, to set the derivative with respect to N, equal to zero.

If the particles are distinguishable, then Q is given by Equation 5.73, and w«
have

G =In(N1)+ Y [N, In(d,) — In(N, )]

n=1

+a|:N—iNni|+ﬂ|:E—iNnEni|. [5.82
n=1

n=1
Assuming that the relevant occupation numbers (N,,) are large, we can invoke Stir-
ling’s approximation:

Inz) = zIn(z) —z forz>>1 [5.83

to write

G~ Y [N, In(d,) — N, In(N,)) + N; — aN, = BE,N,]

n=1

+In(NY) +aN + BE. [5.84
It follows that

aG
N,

— In(d,) — In(N,) — a — BE,. [5.85)

205ee George Arfken, Mathematical Methods for Physicists, 3rd ed. (Orlando, FL: Academ.
Press, 1985), Section 10.3. If the relevant occupation numbers are not large—as in the Example of Sectior
5.4.1—then statistical mechanics simply doesn’t apply. The whole point is to deal with such enormou~
numbers that statistical inference is a reliable predictor. Of course, there will always be one-particle state-
of extremely high energy that are not populated at all; fortunately, Stirling’s approximation holds also for
z = 0. 1 use the word “relevant” to exclude any stray states right at the margin, for which N, is neither
huge nor zero.
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Setting this equal to zero and solving for N,, we conclude that the most probable
occupation numbers for distinguishable particles are

N, = d,e”@TBED, [5.86]

If the particles are identical fermions, then Q is given by Equation 5.74, and
we have

G= Zl {In(d,!) — In(N,!) — In[(d, — N,)'1}

+a[N—§:Nn:|+ﬂl:E—§:NnEn:|. [5.87]
n=1 n=1

This time we must assume not only that N, is large, but also that d,, >»> N,,?' so that
Stirling’s approximation applies to both terms. In that case

G~ Y [In(d,) = Nyln(Ny) + Ny = (d = N) In(dy = N,)

n=I

+ (dy — N,)) —aN, — ﬂE,,N,,] +aN + BE, [5.88]
SO

3G

- = =In(Ny) +In(d, — N,) — @ — BE,. [5.89]

Setting this equal to zero and solving for N,,, we find the most probable occupation
numbers for identical fermions:

dy

Nn = e@tBE) | 17

[5.90]

Finally, if the particles are identical bosons, then Q is given by Equation 5.76,
and we have

G= Z {In[(N, + d» — D] —In(N, 1) — In[(d, — D]}

n=1

+ o l:N — iNnjl +8 [E - iNnEn:l . [5.91]
n=1 n=1

21Ty one dimension the energies are nondegenerate (see Problem 2.42), but in three dimensions d,
typically increases rapidly with increasing a (for example, in the case of hydrogen, d, = n?). So it is not
unreasonable to assume that for most of the occupied states d, >> 1. On the other hand, d, is certainly not
much greater than N, at absolute zero, where all states up to the Fermi level are filled, and hence d, = N,,.
Here again we are rescued by the fact that Stirling’s formula holds also for z = 0.
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Assuming (as always) that N, > 1, and using Stirling’s approximation:
o0
G~ Y {(Na+dy = DInN, +dn = 1) = Ny +dy = 1) = Na In(Np)
n=1
+ N, —In[(d, — 1)!] —aN, — BE,N,} +aN + BE, (592

SO

G
= In(N, +d, — 1) —In(N,)) — & — BE,. [5.93
IN,
Setting this equal to zero and solving for N,, we find the most probable occupation
numbers for identical bosons:
d, — 1

Nn= —apEr —1°

[5.94]

(For consistency with the approximations already invoked, we should really drop the
1 in the numerator, and I shall do so from now on.)

Problem 5.23 Use the method of Lagrange multipliers to find the area of the
largest rectangle, with sides parallel to the axes, that can be inscribed in the ellipse

(x/a)* + (y/b)* = L.
Problem 5.24

() Find the percent error in Stirling’s approximation for z = 10.

(b) What is the smallest integer z such that the error is less than 1%?

5.4.4 Physical Significance of ¢ and

The parameters  and B came into the story as Lagrange multipliers, associated
with the total number of particles and the total energy, respectively. Mathematically.
they are determined by substituting the occupation numbers (Equations 5.86, 5.90.
and 5.94) back into the constraint equations (Equations 5.77 and 5.78). To cam
out the summation, however, we need to know the allowed energies (E,) and their
degeneracies (d,) for the potential in question. As an example, I'll work out the case
of a three-dimensional infinite square well; this will enable us to infer the physical
significance of o and B.
In Section 5.3.1 we determined the the allowed energies (Equation 5.39):

2
Ey = h—kz, [5.95]

2m

where
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ko [Ths Tny 7N

- (777

As before, we convert the sum into an integral, treating k as a continuous variable,
with one state (or, for spin s, 2s + 1 states) per volume 73/ ¥ of k-space. Taking as
our “bins” the spherical shells in the first octant (see Figure 5.4), the “degeneracy”
(that is, the number of states in the bin) is

l4nk*dk  V 2

= gm =5 [5.96]

k

For distinguishable particles (Equation 5.86), the first constraint (Equation 5.77) be-
comes

3/2
N = Le—a /oo e—ﬂhzkz/ka2 dk = Ve ™ ( m 2) ,
272 0 2 Bh

SO

3/2

2
eV (2”‘8 i ) . [5.97]
14 m

The second constraint (Equation 5.78) says

2 372
= Lze‘°’—71— T epieim g = Y (—m 2> ,
2 2m Jo 2B 2nph

or, putting in Equation 5.97 for ¢7¢,

E= 3N [5.98]

28°
(If you include the spin factor, 25 + 1, in Equation 5.96, it cancels out at this point,
so Equation 5.98 is correct regardless of spin.)
Equation 5.98 is reminiscent of the classical formula for the average kinetic

energy of an atom at temperature 7%
E 3
= = ki, (5.99]

where k g is the Boltzmann constant. This suggests that 8 is related to the temperature:

1

=—, 1
T {5.100]

B

22See, for example, David Halliday and Robert Resnick, Fundamentals of Physics, 3rd ed. extended
(New York: John Wiley & Sons, 1988), Section 21-5.
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To prove that this holds in general, and not simply for distinguishable particles in e
three-dimensional infinite square well, we would have to demonstrate that differe=
substances in thermal equilibrium with one another have the same value of 8. The
argument is sketched in many books,? but I shall not reproduce it here—I will simpl»

adopt equation [5.100] as the definition of T'.
It is customary to replace & (which, as is clear from the special case of Equaticr
5.97, is a function of T') by the so-called chemical potential,

w(T) = —aksT, [5.101

and rewrite Equations 5.86, 5.90, and 5.94 as formulas for the most probable numbe -
of particles in a particular (one-particle) state with energy € (to go from the numbe:
of particles with a given energy to the number of particles in a particular state witr
that energy, we simply divide by the degeneracy of the state):

e (€M ksl MAXWELL-BOLTZMANN
1
n(€) =3 ele—w/ksT 4 1° FERMI-DIRAC (5.102

1

The Maxwell-Boltzmann distribution is the classical result for distinguishable par-
ticles; the Fermi-Dirac distribution applies to identical fermions, and the Bose-
Einstein distribution is for identical bosons.

The Fermi-Dirac distribution has a particularly simple behavior as T — 0:

(e—u)/ksT 0, ife <u(0),
¢ - {oo, if e > (0),

80

1, ife < u(0),

n(€) - {0, if e > p(0).

All states are filled, up to an energy ©(0), and none are occupied for energies above

this (Figure 5.8). Evidently the chemical potential at absolute zero is precisely the
Fermi energy:

[5.103

w0 = Ep. [5.104
As the temperature rises, the Fermi-Dirac distribution “softens” the cutoff, as indicated
by the rounded curve in Figure 5.8.
For distinguishable particles in the three-dimensional infinite square well, we
found (Equation 5.98) that the total energy at temperature T is

3
E = ENkBT; [5.105,

23See, for example, Yariv, footnote 17, Section 15.4.




Sec. 5.4: Quantum Statistical Mechanics 215
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Figure 5.8: Fermi-Dirac distribution for 7 = 0 and for 7 somewhat above zero.

from Equation 5.97 it follows that

I'would like to work out the corresponding formulas for identical fermions and bosons,
using Equations 5.90 and 5.94 in place of Equation 5.86. The first constraint (Equation

5.77) becomes
vV e’} k2
T 22 /0 LB 2m)—p) kT £ | dk [5.107]

(with the plus sign for fermions and minus for bosons), and the second constraint
(Equation 5.78) reads

14 h2 0 k4
E=—— dk. 5.108
272 2m /0 [ ]

el K /2m)— )/ ks T 4 |

The first of these determines 1(T), and the second determines E(T) (from the latter
we obtain, for instance, the heat capacity C = 3 £/dT). Unfortunately, the integrals
cannot be evaluated in terms of elementary functions, and I shall leave it for you to
explore the matter further (see Problems 5.25 and 5.26).

Problem 5.25 Evaluate the integrals (Equations 5.107 and 5.108) for the case of
identical fermions at absolute zero. Compare your results with Equations 5.43 and
5.45. (Note that for electrons there is an extra factor of 2 in Equations 5.107 and
5.108, to account for the spin degeneracy.)

xxxProblem 5.26

(a) Show that for bosons the chemical potential must always be less than the mini-
mum allowed energy. Hint: n(¢) cannot be negative.

(b) In particular, for the ideal bose gas (identical bosons in the three-dimensional
infinite square well), u(T) < O for all T. Show that in this case u(7T) mono-
tonically increases as T decreases, assuming that N and ¥ are held constant.
Hint: Study Equation 5.107, with the minus sign.



216

Chap. 5 Identical Particles

(C) A crisis (called bose condensation) occurs when (as we lower T) w(T') hiz
zero. Bvaluate the integral, for u = 0, and obtain the formula for the criticz
temperature T, at which this happens. Note: Below the critical temperature. the
particles crowd into the ground state, and the calculational device of replacing
the discrete sum (Equation 5.77) by a continuous integral (Equation 5.107
loses its validity. See F. Mandl, Staristical Physics (London: John Wiley &
Sons, 1971), Section 11.5. Hint:

o0 xs—l
/ dx =T (s)¢(s), [5.10%
0 e* —1

where I is Euler’s gamma function and ¢ is the Riemann zeta function. Loos
up the appropriate numerical values. '

(d) Find the critical temperature for “*He. Its density, at this temperature, is 0.1%
gm/cm?. Note: The experimental value of the critical temperature in *He is 2.1°
K. The remarkable properties of *He in the neighborhood of T, are discussed 1~
the reference cited in (c).

5.4.5 The Blackbody Spectrum

Photons (quanta of the electromagnetic field) are identical bosons with spin 1, but the:
are a very special case because they are massless particles, and hence intrinsicall»
relativistic. We can include them here, if you are prepared to accept four assertior.-
that do not really belong to nonrelativistic quantum mechanics:

(1) The energy of a photon is related to its frequency by the Planck formul.
E=hv =ho.

(2) The wave number k is related to the frequency by k = 27/x = w/c, where .
is the speed of light.

(3) Only two spin states occur (the quantum number m can be 41 or —1, but n-
0).

(4) The number of photons is not a conserved quantity; when the temperature rises
the number of photons (per unit volume) increases.

In view of item 4, the first constraint equation (Equation 5.77) does not apply
We can take account of this by simply setting @ — 0, in Equation 5.81 and everythinzg
that follows. Thus the most probable occupation number for photons is (Equatior.
5.94)
di

N, = W‘j‘]‘. [5.110

For free photons in a box of volume V, d; is given by Equation 5.96,** multiplied b
2 for spin (item 3), and expressed in terms of w instead of k (item 2):

241 truth, we have no business using this formula, which came from the (nonrelativistic) Schroding -
equation; fortunately, the degeneracy is exactly the same for the relativistic case. See Problem 5.3.2.
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Figure 5.9: Planck’s formula for the blackbody spectrum, Equation 5.112.

14
dy = ?wz dw. [5.111]
mec

So the energy density N,hiw/V , in the frequency range dow, is p(w) dw, where

ho?

T — [5.112]

plw) =

This is Planck’s famous blackbody spectrum, giving the energy per unit volume,
per unit frequency, in an electromagnetic field at equilibrium at temperature 7. It is
plotted, for three different temperatures, in Figure 5.9.

Problem 5.27 Use Equation 5.112 to determine the energy density in the wave-
length range dA. Hint: set p(w)dw = p(A)dA, and solve for p(1). Derive the Wien
displacement law for the wavelength at which the blackbody energy density is a

maximum: ,
2.90 x 10~° mK
Amay = ——— . [5.113]
T
You’ll need to solve the transcendental equation (5 — x) = 5¢™*, using a calculator

(or a computer); get the numerical answer accurate to three significant digits.
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Problem 5.28 Derive the Stefan-Boltzmann formula for the total energy density

in blackbody radiation:
E 2k}
Z = T4 = (7.57 x 1071 Im™3K~4) 7*. 5.114)
v (15h3c3> ( ) [ ‘

Hint: Use the hintin Problem 5.26(c) to evaluate the integral. Note that¢ (4) = 7#/90.

FURTHER PROBLEMS FOR CHAPTER 5

Problem 5.29 Suppose you have three particles, and three distinct one-particle
states (¥4 (x), ¥»(x), and .(x)) are available. How many different three-particle
states can be constructed (a) if they are distinguishable particles, (b) if they are iden-
tical bosons, and (c) if they are identical fermions? [The particles need not be in
different states—jr, (x1)¥,(x2)¥,(x3) would be one pos51b111ty if the particles are
distinguishable.]

Problem 5.30 Calculate the Fermi energy for electrons in a two-dimensional infi-
nite square well. (Let o be the number of free electrons per unit area.)

ssxxProblem 5.31 Certain cold stars (called white dwarfs) are stabilized against grav-
itational collapse by the degeneracy pressure of their electrons (Equation 5.46). As-
suming constant density, the radius R of such an object can be calculated as follows:

(@) Write the total electron energy (Equation 5.45) in terms of the radius, the number
of nucleons (protons and neutrons) N, the number of electrons per nucleon g.
and the mass of the electron m.

(b) Look up, or calculate, the gravitational energy of a uniformly dense sphere.
Express your answer in terms of G (the constant of universal gravitation), R, M.
and M (the mass of a nucleon). Note that the gravitational energy is negative.

(c) Find the radius for which the total energy, (a) plus (b), is a minimum. Answer:

R 9_7_[ 2/3 h2q5/3
- GmM?AIN1/3'

(Note that the radius decreases as the total mass increases!) Put in the actual
numbers, for everything except N, using ¢ = 1/2 (actually, g decreases a bit as
the atomic number increases, but this is close enough for our purposes). Answer:
R=17.6x105N"15,

(d) Determine the radius, in kilometers, of a white dwarf with the mass of the sun.

(e) Determine the Fermi energy, in electron volts, for the white dwarf in (d), and
compare it with the rest energy of an electron. Note that this system is getting
dangerously relativistic (see Problem 5.32).

x+xProblem 5.32 We can extend the theory of a free electron gas (Section 5.3.1) to
the relativistic domain by replacing the classical kinetic energy, £ = p?/2m, with

the relativistic formula, E = /p*c? + m2c* — mc®>. Momentum is related to the
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wave vector in the usual way: p = %k. In particular, in the extreme relativistic limit,
E = pc =hck.

(@)

(b)

(©

Replace 2k /2m in Equation 5.44 by the ultrarelativistic expression, ck, and
calculate Eyy in this regime.

Repeat parts (a) and (b) of Problem 5.31 for the ultrarelativistic electron gas.
Notice that in this case there is no stable minimum, regardless of R; if the
total energy is positive, degeneracy forces exceed gravitational forces and the
star will expand, whereas if the total is negative, gravitational forces win out
and the star will collapse. Find the critical number of nucleons N, such that
gravitational collapse occurs for N > N,. This is called the Chandrasekhar
limit. Answer: 2.0 x 10°7. What is the corresponding stellar mass (give your
answer as a multiple of the sun’s mass). Stars heavier than this will not form
white dwarfs, but collapse further, becoming (if conditions are right) neutron
stars.

At extremely high density, inverse beta decay, e~ + p* — n + v, converts
virtually all of the protons and electrons into neutrons (liberating neutrinos,
which carry off energy, in the process). Eventually neurron degeneracy pressure
stabilizes the collapse, just as electron degeneracy does for the white dwarf (see
Problem 5.31). Calculate the radius of a neutron star with the mass of the sun.
Also calculate the (neutron) Fermi energy, and compare it to the rest energy of
a neutron. Is it reasonable to treat such a star nonrelativistically?

xxxProblem 5.33

(@)

(b)
(0

Find the chemical potential and the total energy for distinguishable particles in
the three-dimensional harmonic oscillator potential (Problem 4.39). Hint: The
sums in Equations 5.77 and 5.78 can be evaluated exactly in this case—no need
to use an integral approximation, as we did for the infinite square well. Note
that by differentiating the geometric series,

! =ix”, [5.115]

you can get

d X o0 ;
E(l—x>=,;)(n+l)x

and similar results for higher derivatives. Answer:

3 1+e—hw/k5T
E = Eth (m) . [5.116]

Discuss the limiting case k3T < hw.

Discuss the classical limit, k3 T >> hw, in the light of the equipartition theorem
(see, for example, Halliday and Resnick, footnote 22, Section 21-9). How many
degrees of freedom does a particle in the three-dimensional harmonic oscillator
possess?
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CHAPTER 6

TIME-INDEPENDENT
PERTI{RBATION THEORY

6.1 NONDEGENERATE PERTURBATION THEORY

6.1.1 General Formulation

Suppose we have solved the (time-independent) Schrodinger equation for some po-
tential (say, the one-dimensional infinite square well):

Hoy) = BNy, [6.1]
obtaining a complete set of orthonormal eigenfunctions, 1/},?,

WoAY2) = Sum, [6.2]

and the corresponding eigenvalues EC. Now we perturb the potential slightly (say,
by putting a little bump in the bottom of the well—Figure 6.1). We’d like to solve for
the new eigenfunctions and eigenvalues:

Hl/fn = En‘/fn’ [63]

but unless we are very lucky, we’re unlikely to be able to solve the Schrédinger
equation exactly, for this more complicated potential. Perturbation theory is a
systematic procedure for obtaining approximate solutions to the perturbed problem
by building on the known exact solutions to the unperturbed case.

Yy 14
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V%)

Figure 6.1: Infinite square well with
small perturbation.

To begin with, we write the new Hamiltonian as the sum of two terms:
H=H"4+,H, [6.4

where H’ is the perturbation. For the moment we’ll take A to be a small number; later
we’ll crank it up to 1, and H will be the true, exact Hamiltonian. Writing 1, and £,
as power series in A, we have

Yn = YO+ AP X224 [6.5]

E,=EX+ AE' + 22E2 4., [6.6)

Here E] is the first-order correction to the n™ eigenvalue, and ! is the first-order
correction to the n' eigenfunction; £ and 2 are the second-order corrections, and
so on. Plugging Equations 6.4, 6.5, and 6.6 into Equation 6.3, we have

(H° + A H) YL + Ay} + 222 4+ ]
= (Ep + AE, + N Ef + - )W, + My + 2797+,
or (collecting like powers of A):
HOYY + A(H Yy + H'Y) + A2 (HOY2 + H'Y ) + -
= EQYC + MEW, + Eyyd) + A2 (ESY2 + Eprs + E2Y) + .

To lowest order (1°) this yields H%? = E2v%, which is nothing new (just Equation
6.1). To first order (A1),

H%) + H'Y) = Egyr, + Enry. [6.7]
To second order (12),
Ho%Y? + H'Yy = EQYe + Eyyry + E2yrd, [6.8]

and so on. (I'm done with A, now—it was just a device to keep track of the different
orders—so crank it up to 1.)
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Figure 6.2: Constant perturbation over
the whole well.

6.1.2 First-Order Theory

Taking the inner product of Equation 6.7 with y0 [that is, multiplying by (9)* and
integrating],

[ WAE) + WNEY) = EJGI) + BV
But A is Hermitian, so
WA H ) = (HYL1¥,) = (ESyLy)) = EQWolv),

and this cancels the first term on the right. Moreover, (¥|¢%) = 1, so!

= (YOI H'|[y). [6.9]

This is the fundamental result of first-order perturbation theory; as a practical matter,
it may well be the most important equation in quantum mechanics. It says that the
first-order correction to the energy is the expectation value of the perturbation in the
unperturbed state.

Example. The unperturbed wave functions for the infinite square well are

(Equation 2.24)
/2 nmw
l/f x)= ;sm (—a—x>.

Suppose first that we perturb the system by simply raising the “floor” of the well by a
constant amount ¥ (Flgure 6.2). Inthat case H' = VQ, and the first-order correction
to the energy of the n'" state is

= (Y2Voly?) = Vo(w 21wy = V.

UIn this context it doesn’t matter whether we write (0| H'y0) or (y0|H'|¢0) (with the extra
vertical bar) because we are using the wave function itself to “label” the state. But the latter notation is
preferable because it frees us from this specific convention.
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Figure 6.3: Constant perturbation over
half the well.

The corrected energy levels, then, are E, = ES + Vy; they are simply lifted by the
amount V. Of course! The only surprising thing is that in this case the first-order
theory yields the exact answer. Evidently, for a consrant perturbation ail the higher
corrections vanish.> If, on the other hand, the perturbation extends only halfway
across the well (Figure 6.3), then

2V, [ T Vi
E! = midl sin® (Lx> dx = =2
a Jo a 2

Inthis case every energy level is lifted by V5 /2. That’s not the exact result, presumably.
but it does seem reasonable as a first-order approximation.

Equation 6.9 is the first-order correction to the energy; to find the first-order
correction to the wave function we first rewrite Equation 6.7:

(H = EQy) = —(H' — EDy?. [6.10]

The right side is a known function, so this amounts to an inhomogeneous differential
equation for v!. Now, the unperturbed wave functions constitute a complete set, so
¥ (like any other function) can be expressed as a linear combination of them:

Yy = iyl [6.11]
m#n

[There is no need to include m = n in the sum, for if ¢! satisfies Equation 6.10, so
too does (! + ay?), for any constant &, and we can use this freedom to subtract
off the ¥ term.?] If we could determine the coefficients ¢, we’d be done. Well,
putting Equation 6.11 into Equation 6.10, and using the fact that the 0 satisfies the

ZIncidentally, nothing here depends on the specific nature of the infinite square well—the same
result applies for any potential, when the perturbation is constant.
3 Alternatively, a glance at Equation 6.5 reveals that any 1//,? component in 1//,} might as well be

pulled out and combined with the first term. We are only concerned, for the moment, with solving the
Schrodinger equation (Equation 6.3), and the v, we get will not, in general, be normalized.
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unperturbed Schridinger equation (Equation 6.1), we have

3 (ES — EDclyh = —(H — E)yy.
m#n

Taking the inner product with 1/f,0 ,

STES - EDe® (WP 1vh) = =W LH 19) + Ey (WP 1)
msEn

If | = n, the left side is zero, and we recover Equation 6.9; if [ # n, we get

(E? — EDe™ = —(y|H'|¥D),

or 0 0
H/
cm = ———<'/g"2|_ 2/;""), [6.12]
SO
y=y WUn H1V0) o (6.13]
/ " msn (E,? - Ef(:l) " '

Notice that the denominator is safe, since there is no coefficient withm = n, as long as
the unperturbed energy spectrum is nondegenerate. But if two different unperturbed
states share the same energy, we’re in serious trouble (we divided by zero to get
Equation 6.12); in that case we need degenerate perturbation theory, which I'll
come to in Section 6.2.

That completes first-order perturbation theory: E! is given by Equation 6.9,
and v/} is given by Equation 6.13. I should warn you that whereas perturbation theory
often yields surprisingly accurate energies (that is, EV+E 1 is quite close to the exact
value E,), the wave functions are notoriously poor.

xProblem 6.1 Suppose we put a delta-function bump in the center of the infinite
square well:
H =ad(x —a/2),

where « is a constant. Find the first-order correction to the allowed energies. Explain
why the energies are not perturbed for even n.

«Problem 6.2 For the harmonic oscillator [V (x) = (1/2)kx?], the allowed energies
are
E,=n+1/hw, =012 ..),

where @ = +/k/m is the classical frequency. Now suppose the spring constant
increases slightly: £ — (1 4 €)k. (Perhaps we cool the spring, so it becomes less
flexible.)



226 Chap. 6 Time-Independent Perturbation Theory

(a) Find the exact new energies (trivial, in this case). Expand your formula a- -
power series in €, up to second order.

(b) Now calculate the first-order perturbation in the energy, using Equation 6.~
What is H' here? Compare your result with part (a). Hint: It is not necessary —
in fact, it is not permirted—to calculate a single integral in doing this problerr

Problem 6.3 Two identical bosons are placed in an infinite square well (Equatio-
2.15). They interact weakly with one another, via the potential

Vix1, x2) = —aVpd(xy — x2)

(where V) is a constant with the dimensions of energy and a is the width of the well

(a) First, ignoring the interaction between the particles, find the ground state anc
first excited state—both the wave functions and the associated energies.

(b) Use first-order perturbation theory to calculate the effect of the particle-particic
interaction on the ground and first excited state energies.

6.1.3 Second-Order Energies
Proceeding as before, we take the inner product of the second-order equation (Equa-
tion 6.8) with 0
U HOY?) + (W H ) = EXn 1) + Ep(Uliv,) + EXUIvD).
Again, we exploit the Hermiticity of H°:
(Wl HOW) = (HU 1) = EJR19,),

so the first term on the left cancels the first term on the right. Meanwhile, (¥0]/0) = 1
and we are left with a formula for E2:

E} = (Y| H' W) — Ey(¥l1v,).

But
WUl =Yy llyn)
m#£n
SO
0 H' 0 0 H 0
=wf,?inf,b=;c§:><w3|mw2>=;("""' Vol Wl 1),

or, finally,

Z I{ l/fmli'ifll/fn)l . [6.14]

m#n
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This is the fundamental result of second-order perturbation theory. We could proceed
to calculate the second-order correction to the wave function (1//3), the third-order
correction to the energy, and so on, but in practice Equation 6.14 is ordinarily as high
as it is useful to pursue this method.

xxProblem 6.4

(a) Find the second-order correction to the energies ( E2) for the potential in Problem
6.1. Note: You can sum the series explicitly to obtain the result —2m (a/7hn)?,
for odd n.

(b) Calculate the second-order correction to the ground-state energy (E}) for the
potential in Problem 6.2. Check that your result is consistent with the exact
solution.

x+Problem 6.5 Consider a charged particle in the one-dimensional harmonic oscil-
lator potential. Suppose we turn on a weak electric field (E) so that the potential
energy is shifted by an amount H' = —gEx.

(a) Show that there is no first-order change in the energy levels, and calculate the
second-order correction. Hint: See Problem 3.50.

(b) The Schrédinger equation can be solved exactly in this case by a change of
variables: x' = x — (q E/mw?). Find the exact energies, and show that they are
consistent with the perturbation theory approximation.

6.2 DEGENERATE PERTURBATION THEORY

If the unperturbed states are degenerate—that is, if two (or more) distinct states
(0 and ¥?) share the same energy—then ordinary perturbation theory fails: c{”
(Equation 6.12) and E? (Equation 6.14) blow up (unless, possibly, the numerator
vanishes, (y)| H'|y?) = 0—a loophole that will be important to us later on). In the
degenerate case, therefore, there is no reason to trust even the firsr-order correction
to the energy (Equation 6.9), and we must look for some other way to handle the
problem.

6.2.1 Twofold Degeneracy

Suppose that
Ho%? = E%0,  HO) = E%), and (y°|y)) =0. [6.15]

a’

Note that any linear combination of these states,

Y0 = ay? + By, [6.16]
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is still an eigenstate of H°, with the same eigenvalue E?:
Ho%% = EO°. [6.17

Typically, the perturbation (H') will “break” the degeneracy: As we increase A (from
0 to 1), the common unperturbed energy E° splits into two (Figure 6.4).

The essential problem is this: When we turn off the perturbation, the “upper” state
reduces down to one linear combination of ¥ and 1//,9, and the “lower” state reduces
to some other linear combination, but we don’t know a priori what these “good™
linear combinations will be. For this reason we can’t even calculate the first-order
energy (Equation 6.9) because we don’t know what unperturbed states to use.

For the moment, therefore, let’s just write the “good” unperturbed states in the
general form (Equation 6.16), keeping @ and 8 adjustable. We want to solve the
Schradinger equation,

Hy = Evy, (6.18]

with H = HY + AH’ and
E=E +AE" 4+ NE* +--, v=y +ayp' +2%%% 4., [6.19]

Plugging these into Equation 6.18, and collecting like powers of 1, as before, we find

HYO 4 AHY + HOYY 4 = EOY° + A(E'YO + B ) + -
But HO%0 = E%;° (Equation 6.17), so the first terms cancel; at order A! we have
Hy'+ H'y® = E%!' + E'y°. [6.20]
Taking the inner product with ¥2:
Wl W) + W HYO) = E°(ydiyty + BN (901 0).

Because H' is Hermitian, the first term on the left cancels the first term on the right.
Putting in Equation 6.16 and exploiting the orthonormality condition Equation 6.15.
we obtain

(W H WD) + Bl H |y)) = o« EY,

Figure 6.4: “Lifting” of a degeneracy by a
perturbation.
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or, more compactly,
aWag+ BWap = aE', [6.21]

where
Wi = WH' YD), G, j=a,b). [6.22]

Similarly, the inner product with ¥ yields
aWpa + BWyy = BE'. [6.23]

Notice that the W s are (in principle) known—they are just the “matrix elements”
of H', with respect to the unperturbed wave functions ¥ and l//‘b Multiplying
Equation 6.23 by W, and using Equation 6.21 to eliminate BW4p, we find

a[WasWpa — (E' = Waa)(E' = Wip)1 = 0. [6.24]

If @ is not zero, Equation 6.24 yields an equation for E L
(EY2 — E'Waa + Wip) + WaaWop —~ WapWsa) = 0. 6.25]
Invoking the quadratic formula, and noting (from Equation 6.22) that Wy, = W},

we conclude that

[Wea + WiV Waa = Wi + AW [6.26]

L1
Ei=>

This is the fundamental result of degenerate perturbation theory; the two roots corre-
spond to the two perturbed energies.

But what if @ is zero? In that case 8 = 1, Equation 6.21 says W, = 0,
and Equation 6.23 gives E ! = W,,. This is actually included in the general result
(Equation 6.26), with the plus sign (the minus sign corresponds to & = =18=0).
What’s more, the answers,

EL =Wy = WIH WD), EL=Wu=@HY,),

are precisely what we would have obtained using nondegenerate perturbatlon theory
(Equation 6.9)—we have simply been lucky: The states l/fa and l/fb were already the
“correct” linear combinations. Obviously, it would be greatly to our advantage if we
could somehow guess the “good” states right from the start. In practice, we can often
do so by exploiting the following theorem:

Theorem: Let 4 be a Hermitian operator that commutes with A’ If ¥ and
1 are eigenfunctions of 4 with distinct eigenvalues,

Ay = pyy, Ayy =vyy, andp#v,

then W5 = 0 (and hence ¥ and ) are the “good” states to use in perturbation
theory).



230 Chap. 6 Time-Independent Perturbation Theory

Proof: By assumption, [4, H'] = 0, so

Wolld, Hlyd) = 0
Wl AH'Y)) — (Yo H Ay))
= (AYIH'Y)) — (WO H'vy))
= (W= VHY)) = (1 — V)W
But i # v, s0 W, = 0. QED

Moral: If you’re faced with degenerate states, look around for some Hermitian
operator 4 that commutes with H’; pick as your unperturbed states ones that are si-
multaneously eigenfunctions of H° and 4. Then use ordinary first-order perturbation
theory. If you can’t find such an operator, you’ll have to resort to Equation 6.26, but
in practice this is seldom necessary.

Problem 6.6 Let the two “good” unperturbed states be

¥ = asy? + Bayd,

where oy and B are determined (up to normalization) by Equation 6.21 (or Equation
6.23), with Equation 6.26 for E.. Show explicitly that

(@) Y are orthogonal ((y9[y0) = 0);
b @UH 1Y) =0;
© (wH YY) = EL

Problem 6.7 Consider a particle of mass m that is free to move in a one-dimensional
region of length L that closes on itself (for instance, a bead which slides frictionlessly
on a circular wire of circumference L; Problem 2.43).

(@) Show that the stationary states can be written in the form
1 ,
Yn(x) = ﬁez’"""“, (=L/2 <x < L)2),

where n = 0, &1, 2, ..., and the allowed energies are

g _ 2 (nah)?
"Tm L '
Notice that—with the exception of the ground state (n = 0)—these are all
doubly degenerate.

(b) Now suppose we introduce the perturbation

H = _Voe—xz/az’
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where a <« L. (This puts a little “dimple” in the potential at x = 0, as though
we bent the wire slightly to make a “trap.”’) Find the first-order correction to
E,, using Equation 6.26. Hint: To evaluate the integrals, exploit the fact that
a <« L to extend the limits from %L /2 to f00; after all, H’ is essentially zero
outside —a < x < a.

(C) What are the “good” linear combinations of v, and ¥_, for this problem? Show
that with these states you get the first-order correction using Equation 6.9.

(d) Find a Hermitian operator A that fits the requirements of the theorem, and show
that the simultaneous eigenstates of H° and 4 are precisely the ones you found
in (¢).

6.2.2 Higher-Order Degeneracy

In the previous section I assumed the degeneracy was twofold, but it is easy to see
how the method generalizes. Rewrite Equations 6.21 and 6.23 in matrix form:

Wae Wap Yy (@
(Wba Wbb)(ﬂ>_E (ﬂ) 16271

Evidently the E'’s are nothing but the eigenvalues of the W -matrix; Equation 6.25
is the characteristic equation (Equation 3.70) for this matrix, and the “good” linear
combinations of the unperturbed states are the eigenvectors of W. In the case of
n-fold degeneracy, we look for the eigenvalues of the n x »n matrix

Wi = (| H'[¥)). (6.28]

In the language of linear algebra, finding the “good” unperturbed wave functions
amounts to constructing a basis in the degenerate subspace that diagonalizes the
perturbation H'. Once again, if you can think of an operator 4 that commutes with
H’, and use the simultaneous eigenfunctions of 4 and H 0 then the W matrix will
automatically be diagonal, and you won’t have to fuss with solving the characteristic
equation.

Example. Consider the three-dimensional infinite cubical well (Problem 4.2):

0. if0<x<a0<y<aand0<z<a; 49

Vix,yz)= :
x5, 2) o0 otherwise.

The stationary states are

'/fr?xn,.nz(x, y,z) = (%)3/2 sin (%x) sin (%y) sin (%z) . [6.30]
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Figure 6.5: The perturbation increases the
potential by an amount ¥} in the shaded sector.

where n,, ny, and n; are positive integers. The corresponding allowed energies are

2h2

i
By, = 550 + 1 + 1), (6.31]

Notice that the ground state (¥11) is nondegenerate; its energy is

2h?
E) =3—, 6.32
0 2ma? [6.32]
But the first excited state is (triply) degenerate:
VYa =V, ¥ = Y121, and Y. = Yy, [6.33]
all share the energy
24,2
w*h
E)=3—. [6.34]
ma
Now let’s introduce the perturbation
H = Vo, 1f0<).c<a/2and0<y<a/2; [6.35]
0, otherwise.

This raises the potential by an amount ¥} in one quarter of the box (see Figure 6.5).
The first-order correction to the ground state energy is given by Equation 6.9:

233 aj2
E(%=('/f111|H/|'/f111>=<5> VO/O sinz(gx) dx

a/2 a 1
/ sin? (zr_y) a’y/ sin’ (—Jzz) dz = =V,
0 a 0 a 4

which is just what we would expect.
For the first excited state we need the full machinery of degenerate perturbation
theory. The first step is to construct the matrix #. The diagonal elements are the

[6.36]
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same as for the ground state (except that the argument of one of the sines is doubled);
you can check for yourself that

1
Waea = Wpp = We = ZVO

The off-diagonal elements are more interesting:
) 3 a2
W = (—> Vo/ sin? (zx) dx
a 0 a
/ alz (27 ¢ (2 oy
sin (—y) sin| —y ) dy [ sin|—z]sin (—z) dz.
0 a a 0 a a

But the z integral is zero (as it will be also for W), so

Wab=Wac=0'
Finally,
2\° alz {2
Wp = | — VO/ sm(—x)sm —x ) dx
a 0 a a
aj2 (o LT 4 T 16
/0 sin (7)/) sin (;—y) a’y/o sin (;z) dz = §PV0'
Thus
v 1 0 0
W=IO(O 1 K>, [6.37]
0 « 1

where k = (8/3m)? ~ 0.7205.
The characteristic equation for W (or rather, for 4W / V5, which is easier to work
with) is
1 —-w)—«k?1 —w) =0,

and the eigenvalues are
wy=1; w=14+xk~17205 ws=1-«k=0.279.
To first order in A, then,

EY + aVo/4,
Ei(0) = 3§ E) + A1 4+ k)Vo/4, [6.38]
EY 4+ A(1 — x)Vo/4,

where EV is the (common) unperturbed energy (Equation 6.34). The perturbation
lifts the degeneracy, splitting E(l) into three distinct energy levels (see Figure 6.6).
Notice that if we had naively applied nondegenerate perturbation theory to this prob-
lem, we would have concluded that the first-order correction (Equation 6.9) is the
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E(0

E‘o

|
I Figure 6.6: Lifting of the degeneracy in
! the example (Equation 6.38).

same for all three states, and equal to Vy/4—which is actually correct only for the
middle state.
Meanwhile, the “good” unperturbed states are linear combinations of the form

¥ = av, + By + v, [6.39°

where the coefficients (@, 8, and y) form the eigenvectors of the matrix W:

(511)6)--6)

Forw=1lwegeta =1, =y =0;forw = l+xwegeta =0,8=+y =1/42
(I normalized them as I went along.) Thus the “good” states are*

Y
Y0 = { Wb+ o) /2, [6.40]
(s — ¥e) V2.

Problem 6.8 Suppose we perturb the infinite cubical well (Equation 6.29) by
putting a delta-function “bump” at the point (a/4, a/2, 3a/4):

H =a’Vyd(x —a/4)8(y — a/2)8(z — 3a/4).

Find the first-order corrections to the energy of the ground state and the (triply de-
generate) first excited states.

“We might have guessed this result right from the start by noting that the operator P, which
interchanges x and y, commutes with H'. Its eigenvalues are +1 (for functions that are even under the
interchange) and —1 (for functions that are odd). In this case v, is already even, (¥ + ¥.) is even, and
(¥p — ) is odd. However, this is not quite conclusive, since any linear combination of the even states
would still be even. What we’d really like is an operator with three distinct eigenvalues in the degenerate
subspace.



Sec. 6.3: The Fine Structure of Hydrogen 235

+«Problem 6.9 Considera quantum system with just three linearly independent states.
The Hamiltonian, in matrix form, is

(1—-¢) 0 O
H=V0( 0 1 6),
0 € 2

where V) is a constant and ¢ is some small number (¢ < 1).

(a) Write down the eigenvectors and eigenvalues of the unperturbed Hamiltonian
(e =0).
(b) Solve for the exact eigenvalues of H. Expand each of them as a power series in

€, up to second order.

(c) Use first- and second-order nondegenerate perturbation theory to find the ap-
proximate eigenvalue for the state that grows out of the nondegenerate eigen-
vector of H?. Compare the exact result from (b).

(d) Use degenerate perturbation theory to find the first-order correction to the two
initially degenerate eigenvalues. Compare the exact results.

6.3 THE FINE STRUCTURE OF HYDROGEN

In our study of the hydrogen atom (Section 4.2), we took the Hamiltonian to be

n* 2]
He—ty_ % _ [6.41]
2m dmegr
(electron kinetic energy plus Coulombic potential energy). But this is not quite the
whole story. We have already learned how to correct for the motion of the nucleus:
Just replace m by the reduced mass (Problem 5.1). More significant is the so-called
fine structure, which is actually due to two distinct mechanisms: a relativistic
correction, and spin-orbit coupling. Compared to the Bohr energies (Equation
4.70), fine structure is a tiny perturbation—smaller by a factor of &%, where
2
e 1
= 6.42
* = dmeghc ~ 137.036 [6.42]

is the famous fine structure constant. Smaller still (by another factor of «) is the
Lamb shift, associated with the quantization of the Coulomb field, and smaller by yet
another order of magnitude is the hyperfine structure, which is due to the magnetic
interaction between the dipole moments of the electron and the proton. This hierarchy
is summarized in Table 6.1.
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Table 6.1: Hierarchy of corrections to the Bohr energies of hydrogen.

Bohr energies:  of order  o’mc?

Fine structure:  of order a*mc?

Lamb shift:  of order a’mc?
Hyperfine splitting: ~ of order  (m/m,)a*mc?

In the present section we will analyze the fine structure of hydrogen, as an application
of time-independent perturbation theory.

Problem 6.10

(a) Express the Bohr energies in terms of the fine structure constant and the rest
energy (mc?) of the electron.

(b) Calculate the fine structure constant from first principles (i.e. without recourse
to the empirical values of €, ¢, %, and ¢). Note: The fine structure constant is un-
doubtedly the most fundamental pure (dimensionless) number in all of physics:
It relates the basic constants of electromagnetism (the charge of the electron).
relativity (the speed of light), and quantum mechanics (Planck’s constant). If
you can solve part (b), you have the most certain Nobel Prize in history waiting
for you. But I wouldn’t recommend spending a lot of time on it right now; many
smart people have tried and given up.

6.3.1 The Relativistic Correction
The first term in the Hamiltonian is supposed to represent Kinetic energy:

] 2
T = Emv2 = —%, [6.43]

and the canonical substitution p— (#/i)V yields the operator

T =——V- [6.44]
2m
But Equation 6.43 is the classical equation for kinetic energy; the relativistic formula

1S )
T=—TC__ _ .2 [6.45]

V1= (v/c)?
The first term is the total relativistic energy (not counting pofential energy, which
we aren’t concerned with at the moment), and the second term is the rest energy—
the difference is the energy attributable to motion. We need to express T in terms of the
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(relativistic) momentum,

muv
p= [6.46]
V1= (v/c)?
instead of velocity. Notice that
2,22 2.4 2 2.4
7 2 g4 mvCct+mc’[l = (v/e)] mc 2.2
_ = = (T
petme = /ey = ey ~ T Fmen

$0

T =/ p2c + m2c* — mc?. [6.47]
This relativistic equation for kinetic energy reduces (of course) to the classical result
(Equation 6.43), in the nonrelativistic limit p <« mc; expanding in powers of the
small number (p/mc), we have

reme i G e[ G - G )

2 4
p p
=i 6.48
2m  8m3c? [6.48]
The lowest-order” relativistic contribution to the Hamiltonian is evidently
4
/ p
H=-—"_ 6.49
" 8m3c? [6.49]

In first-order perturbation theory, the correction to E), is given by the expectation
value of H’ in the unperturbed state (Equation 6.9):

1
El — H/ — _ ~4 —_ — 52 2 . 6.50
V= (H) =~ WP = s (PUIFY). 1650)
Now the Schrodinger equation (for the unperturbed states) says
P =2m(E — V), [6.51]
and hence®
1 1 2 1 2 2
E =- ((E=V))=——=I[E“=2E(V)+ (V)] [6.52]
2mc? 2mc?

SThe kinetic energy of the electron in hydrogen is on the order of 10 eV, which is miniscule
compared to its rest energy (511,000 eV), so the hydrogen atom is basically nonrelativistic, and we can
afford to keep only the lowest-order correction. In Equation 6.48, p is the relativistic momentum (Equation
6.46), not the classical momentum mv. It is the former that we now associate with the quantum operator
—ihV, in Equation 6.49.

There is some sleight-of-hand in this maneuver, which exploits the Hermiticity of 5* and of
(E — V). In truth, the operator p* is not Hermitian, for states with / = 0, and the applicability of
perturbation theory to Equation 6.49 is therefore called into question. Fortunately, the exact solution is
available; it can be obtained by using the (relativistic) Dirac equation in place of the (nonrelativistic)
Schrédinger equation, and it confirms the results we obtain here by less rigorous means. (See Problem
6.17.) .
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So far, this is entirely general; but we’re interested in the case of hydrogen, for whict.
V(r) = —(1/4meg)e?/r:

1 &2 1 A\ 1
El =— 21 2F, - =), 6.53%
" 2mc? {E" + (47teo> (r> + (471’EO> (r2>j] [

where E, is the Bohr energy of the state in question.
To complete the job, we need the expectation values of 1/7 and 1 /r* in the
(unperturbed) state ¥, (Equation 4.89). The first is easy (see Problem 6.11):

1 1
(=)= [6.54
v

— T 5
nla

where a is the Bohr radius (Equation 4.72). The second is not so simple to derive
(see Problem 6.28), but the answer is’

1 1 ..
(r_2> = m [6.55°

It follows that
2

L Y (i L (2 !
T 2me? | " "\4dney ) na dmey ) (+1/2n3a2 |’

or, eliminating a (using Equation 4.72) and expressing everything in terms of £,
(using Equation 4.70),

E? 4n
El=—_"7 _ . .
T 2me? [l+ 1/2 3] [6.56]

Notice that the relativistic correction is smaller than E, by a factor of E,/mc* ~
2 x 1075,

You might have noticed that I used nondegenerate perturbation theory in this
calculation even though the hydrogen atom is highly degenerate. But the pertur-
bation is spherically symmetrical, so it commutes with L? and L. Moreover, the
eigenfunctions of these operators (taken together) have distinct eigenvalues for the
n? states with a given E,. Luckily, then, the wave functions ¥, are “good” states
for this problem, so as it happens the use of nondegenerate perturbation theory was
legitimate.

xProblem 6.11 Use the virial theorem (Problem 4.41) to prove Equation 6.54.

"The general formula for the expectation value of any power of r is given in Hans A. Bethe and
Edwin E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, (New York: Plenum, 1977).
p. 17.
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Problem 6.12 In Problem 4.43, you calculated the expectation value of #* in the
state yr37;. Check your answer for the special cases s = 0 (trivial), s = —1 (Equation
6.54), s = —2 (Equation 6.55), and s = —3 (Equation 6.63). Comment on the case
s ==

xxProblem 6.13 Find the (lowest-order) relativistic correction to the energy levels of
the one-dimensional harmonic oscillator. Hint: Use the technique of Problem 2.37.

6.3.2 Spin-Orbit Coupling

Imagine the electron in orbit around the nucleus; from the electron’s point of view,
the proton is circling around it (Figure 6.7). This orbiting positive charge sets up
a magnetic field B in the electron frame, which exerts a torque on the spinning
electron, tending to align its magnetic moment () along the direction of the field.
The Hamiltonian (Equation 4.157) is

H=—-uB. [6.57]

The Magnetic Field of the Proton. If we picture the proton (from the elec-
tron’s perspective) as a continuous current loop (Figure 6.7), its magnetic field can
be calculated from the Biot-Savart law:

I
B = HO_,
2r
with an effective current I = e/ T, where e is the charge of the proton and T is the
period of the orbit. On the other hand, the orbital angular momentum of the electron
(in the rest frame of the nucleus) is L = rmv = 2xmr?/T. Moreover, B and L point

in the same direction (up, in Figure 6.7), so

1 e
B=———L. 6.58
47 eg mc2rd [6.58]

(T used ¢ = 1/, /€pup to eliminate 1 in favor of €;.)

B, L

— Figure 6.7: Hydrogen atom, from the

e , .
electron’s perspective.
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M S
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q m

Figure 6.8: A ring of charge, rotating about its axis.

The Magnetic Dipole Moment of the Electron. The magnetic dipole me-
ment of a spinning charge is related to its (spin) angular momentum; the proportional-
ity factor is the gyromagnetic ratio (which we already encountered in Section 4.4.2
Let’s derive it, using classical electrodynamics. Consider first a charge g smearec
out around a ring of radius », which rotates about the axis with period 7' (Figure 6.8
The magnetic dipole moment of the ring is defined as the current (g/T') times the
area (77r?):

_gqnr?
=

n

If the mass of the ring is m, its angular momentum is the moment of inertia (mr-
times the angular velocity 2/ T'):

2rmr?

S =
T

The gyromagnetic ratio for this configuration is evidently u/S = g/2m. Notice
that it is independent of » (and T'). If [ had some more complicated object, such a~
a sphere (all 1 require is that it be a figure of revolution, rotating about its axis). |
could calculate p and S by chopping it into little rings and adding their contributions.
As long as the mass and the charge are distributed in the same manner (so that the
charge-to-mass ratio is uniform), the gyromagnetic ratio will be the same for each
ring, and hence also for the object as a whole. Moreover, the directions of 4 and S
are the same (or opposite, if the charge is negative), so

= ()s

That was a purely classical calculation, however; as it turns out, the electron’s mag-
netic moment is twice the classical answer:

u, = -S8. (6.59]
m
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The “extra” factor of 2 was explained by Dirac in his relativistic theory of the electron.?

The Spin-Orbit Interaction. Putting all this together, we have

= (2 L s.L
T \dmey ) mic2r3 )

But there is a serious fraud in this calculation: I did the analysis in the rest frame
of the electron, but that’s nor an inertial system—it accelerates as the electron orbits
around the nucleus. You can get away with this if you make an appropriate kinematic
correction, known as the Thomas precession.’ In this context it throws in a factor of
1/2:

H = (i> L s (6.60]

07\ 8mep ) m2cr3 ) )

This is the spin-orbit interaction; apart from two corrections (the modified gyromag-
netic ratio for the electron and the Thomas precession factor—which, coincidentally,
exactly cancel one another), it is just what you would expect on the basis of a naive
classical model. Physically, it is attributable to the torque exerted on the magnetic
dipole moment of the spinning electron, by the magnetic field of the proton, in the
electron’s instantaneous rest frame.

Now the quantum mechanics. In the presence of spin-orbit coupling, the Hamil-
tonian no longer commutes with L and S, so the spin and orbital angular momenta
are not separately conserved (see Problem 6.14). However, H] does commute with
L?, $%, and the total angular momentum

J=L+8, [6.61]

and hence these quantities are conserved (Equation 3.148). To put it another way, the
eigenstates of L, and §, are not “good” states to use in perturbation theory, but the
eigenstates of L?, 8% J2 and J, are. Now

J2=(@L+S) (L+S) = L* + §* + 2L - S,

8We have already noticed that it can be dangerous to picture the electron as a spinning sphere
(see Problem 4.26), and it is not too surprising that this naive classical model gets the gyromagnetic ratio
wrong. Incidentally, quantum electrodynamics reveals tiny corrections to Equation 6.59; the calculation
of the so-called anomalous magnetic moment of the electron stands as one of the greatest achievements
of theoretical physics.

°One way of thinking of it is that we are continually stepping from one inertial system to another;
Thomas precession amounts to the cumulative effect of all these Lorentz transformations. We could avoid
this problem, of course, by staying in the lab frame, in which the nucleus is at rest. In that case the field of
the proton is purely electric, and you may well wonder why it exerts any torque on the electron. Well, the
fact is that a moving magnetic dipole acquires an electric dipole moment, and in the lab frame the spin-orbit
coupling is due to the interaction of the electric field of the nucleus with the electric dipole moment of
the electron. Because this analysis requires more sophisticated electrodynamics, it seems best to adopt
the electron’s perspective, where the physical mechanism is more transparent. For a related discussion, see
V. Namias, Am. J. Phys., 57, 171 (1989).



242 Chap. 6 Time-Independent Perturbation Theory

SO 1
L.S= 5(JZ—LZ—S2), [6.62

and therefore the eigenvalues of L - S are

hZ
5[j(j+ D —I1d+1) —s(s+ D]

In this case, of course, s = 1/2. Meanwhile, the expectation value of 1/ P (see

Problem 6.30) is
1 1
—=) = 6.63
<r3) Id+172)1 + DHn3a®’ [6.63.
and we conclude that
By = &L @DLUGHD A+ D ~3/4)
so T VSOl T Rreg m2c? I+ 1/2)d + Dn3a3 ’
or, expressing it all in terms of E,:
E} [(njU+D) —IU+1) - 3/41}
El = ) 6.64
¥ me? { I+1/20+1) L6641

It is remarkable, considering the totally different physical mechanisms in-
volved, that the relativistic correction and the spin-orbit coupling are of the same
order (E2/mc?). Adding them together, we get the complete fine-structure formula
(see Problem 6.15):

BLo Br (3o [6.65]
57 2me? j+1/2)° )
Combining this with the Bohr formula, we obtain the grand result for the energy levels
of hydrogen, including fine structure:

£ - 13.6eV 1+(x2 n 3 [6.66]
VT p2 n2\j+1/2 4)]) ‘

Fine structure breaks the degeneracy in / (that is, for a given n, the different allowed
values of / do not all carry the same energy); the energies are determined by n and
(see Figure 6.9). The azimuthal eigenvalues for orbital and spin angular momentum
(m; and m) are no longer “good” quantum numbers—the stationary states are linear
combinations of states with different values of these quantities; the “good” quantum
numbers are n, [, s, j, and m;."°

0T, write |/ m;) (for given [ and s) as a linear combination of [/ m;)|s ms) we would use the
appropriate Clebsch-Gordan coefficients (Equation 4.185).
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I=0 =1 =2 =3
©) P )] F)

Figure 6.9: Energy levels of hydrogen, including fine structure (not to scale).

Problem 6.14 Evaluate the following commutators: (a) [L - S, L], (b) [L - S, S,
©L-S,JL,@IL-S, L2, () [L-S, 8], ) [L - S, J2). Hinr: L and S satisfy the
fundamental commutation relations for angular momentum (Equations 4.98, 4.99,
and 4.134), but they commute with each other.

xProblem 6.15 Derive the fine structure formula (Equation 6.65) from the relativis-
tic correction (Equation 6.56) and the spin-orbit coupling (Equation 6.64). Hint: Note
that j = ]+ 1/2; treat the plus sign and the minus sign separately, and you’ll find
that you get the same final answer either way.

«+Problem 6.16 The most prominent feature of the hydrogen spectrum in the visible
region is the red Balmer line, coming from the transition n = 3 ton = 2. First
of all, determine the wavelength and frequency of this line, according to the Bohr
theory. Fine structure splits this line into several closely spaced lines; the question
is: How many, and what is their spacing? Hint: First determine how many sublevels
the n = 2 level splits into, and find E}s for each of these, in eV. Then do the same for
n = 3. Draw an energy level diagram showing all possible transitions from n = 3
to n = 2. The energy released (in the form of a photon) is (E3 — E;) + AE, the
first part being common to all of them, and the AE (due to fine structure) varying
from one transition to the next. Find AE (in eV) for each transition. Finally, convert
to photon frequency, and determine the spacing between adjacent spectral lines (in
Hz)—not the frequency interval between each line and the unperturbed line (which
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is, of course, unobservable), but the frequency interval between each line and the nex:
one. Your final answer should take the form, “The red Balmer line splits into (77"
lines. In order of increasing frequency, they come from the transitions (1) j = (777
to j = (272), (2) j = (27?) to j = (??7), and so on. The frequency spacing betweer.
line (1) and line (2) is (???) Hz, the spacing between line (2) and line (3) is (?77) Hz.
and so on.”

Problem 6.17 The exact fine-structure formula for hydrogen (obtained from the
Dirac equation without recourse to perturbation theory) is''

-1/2

2 -1

E,; =mc

2
1+
(n —U+1/2)+V/ (G +1/2)2 = 062>

Expand to order o* (noting that « < 1), and show that you recover Equation 6.66.

6.4 THE ZEEMAN EFFECT

When an atom is placed in a uniform external magnetic field Bey, the energy levels
are shifted. This phenomenon is known as the Zeernan effect. For a single electron.
the perturbation is

Hjy = —(py + ) - Bex, [6.67]

where e
p,=——S [6.68]

m

is the magnetic dipole moment associated with electron spin, and

o= ——L [6.69]
2m

is the dipole moment associated with orbital motion.'? Thus

Hy, = 2 (L +2S) - Bex.. [6.70]

2m
The nature of the Zeeman splitting depends critically on the strength of the
external field in comparison with the internal field (Equation 6.58) that gives rise
to spin-orbit coupling. For if Bex < Bint, then fine structure dominates, and H,
can be treated as a small perturbation, whereas if Bext 3> Bin, then the Zeeman

11 Bethe and Salpeter (footnote 7) page 83.

12The gyromagnetic ratio for orbital motion is just the classical value (¢ /2m)—it is only for spin
that there is an “extra” factor of 2.
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effect dominates, and fine structure becomes the perturbation. In the intermediate
zone, where the two fields are comparable, we need the full machinery of degenerate
perturbation theory, and it is necessary to diagonalize the relevant portion of the
Hamiltonian “by hand”. In the following sections we shall explore each of these
regimes briefly, for the case of hydrogen.

Problem 6.18 Use Equation 6.58 to estimate the internal field in hydrogen, and
characterize quantitatively a “strong” and “weak” Zeeman field.

6.4.1 Weak-Field Zeeman Effect

If Bext < Bint, fine structure dominates (Equation 6.66); the “good” quantum num-
bers are n, I, j, and m; (but not m; and m,, because—in the presence of spin-orbit
coupling—L and S are not separately conserved). In first-order perturbation theory,
the Zeeman correction to the energy is

EL = (nljmj|Hylnl jm;) = Z—fn—Bext~(L+ZS). [6.71]

Now L + 28 = J + S; unfortunately, we do not immediately know the expectation
value of S. But we can figure it out as follows: The total angular momentum J = L+ S
is constant (Figure 6.10); L and S precess rapidly about this fixed vector. In particular,
the (time) average value of S is just its projection along J:

S-D
7 J.
ButL = J-S,s0 L2 = J? + §2 —2] - S, and hence

Save = [672]

1 h?
$ J=3(+8 -1 ="+ D+s+ D=1+, [673]

from which it follows that

S-J

jG+H -1+ 1D +3/4
(L+28)=((1+7>J)=|:1+

2jj+D

} (1. 16.74]

Figure 6.10: In the presence of spin-orbit

L coupling, L and S are not separately
conserved; they precess about the fixed
total angular momentum, J.
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1gBext

b))
¢

m; =112

—13.6eV (1 + 0%/4) ¢

Figure 6.11: Weak-field Zeeman
splitting of the ground state; the
Mo 2 upper line (m; = 1/2) has slope 1, the
! .
lower line (m; = —1/2) has slope —1

The term in square brackets is known as the Landé g-factor, g;.
We may as well choose the z-axis to lie along Bey; then

Ey = ppgsBeum;, [6.7%

where "
g = 2 — 5788 x 1075 eV/T [6.76
2m

is the so-called Bohr magneton. The rotal energy is the sum of the fine-structure
part (Equation 6.66) and the Zeeman contribution (Equation 6.75). For example. the
ground state (n = 1,/ = 0, j = 1/2, and therefore g; = 2) splits into two levels:

—13.6eV(l +a?/4) £ p Bex, 6.7

with the plus sign for m; = 1/2, and minus for m; = —1/2. These energies arc
plotted (as functions of Bey) in Figure 6.11.

«Problem 6.19 Consider the (eight) n = 2 states, |2 [ jm;). Find the energy o:
each state, under weak-field Zeeman splitting, and construct a diagram like Figure
6.11 to show how the energies evolve as By increases. Label each line clearly, anc
indicate its slope.

6.4.2 Strong-Field Zeeman Effect

If Boyt > Bin, the Zeeman effect dominates'; with Bey in the z direction, the “good”
quantum numbers are now 7, [, m;, and m; (but not j and m ; because—in the presence
of the external torque—the total angular momentum is not conserved, whereas L, anc

131n this regime the Zeeman effect is also known as the Paschen-Back effect.
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S, are). The Zeeman Hamiltonian is
, e
HZ = %Bext(Lz +28;),

and the “unperturbed” energies are

13.6 eV

Enmm, = "2 + g Bex(my + 2my). [6.78]

In first-order perturbation theory, the fine-structure correction to these levels is
Ef = (nlmymg|(H + H ) Inlm;m,). [6.79]

The relativistic contribution is the same as before (Equation 6.56); for the spin-orbit
term (Equation 6.60) we need

(S L) = (SH (L) + (SHLy) + (SH(L.) = WPmym [6.80]

(note that (S) = (S,) = (Ly) = (L,) = O for eigenstates of S, and L,). Putting all
this together (Problem 6.20), we conclude that

136V L (3 [+ —mm,
Bu=—p¢ [4n [1(1+1/2)(1+1)“' [6.81]

(The term in square brackets is indeterminate for / = 0; its correct value in this case
is 1—see Problem 6.22.) The total energy is the sum of the Zeeman part (Equation
6.78) and the fine-structure contribution (Equation 6.81).

Problem 6.20 Starting with Equation 6.79 and using Equations 6.56, 6.60, 6.63,
and 6.80, derive Equation 6.81.

sx«Problem 6.21 Consider the eight n = 2 states, |2 /m;m,). Find the energy of
each state, under strong-field Zeeman splitting. (Express your answers as the sum of
three terms, as in Equation 6.77: the Bohr energy; the fine structure, proportional to
o?: and the Zeeman contribution, proportional to u g Bex:.) If you ignore fine structure
altogether, how many distinct levels are there, and what are their degeneracies?

Problem 6.22 If / = 0, then j = s, m; = my, and the “good” states are the
same (jn m;)) for weak and strong fields. Determine £ ‘Z (from Equation 6.71) and
the fine structure energies (Equation 6.66), and write down the general result for the
! = 0 Zeeman effect—regardless of the strength of the field. Show that the strong-
field formula (Equation 6.81) reproduces this result, provided that we interpret the
indeterminate term in square brackets as 1.
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6.4.3 Intermediate-Field Zeeman Effect

In the intermediate regime, neither H é nor Hf’S dominates, and we must treat the two
on an equal footing, as perturbations to the Bohr Hamiltonian (Equation 6.41):

H = Hj + H,. [6.82]

I'll confine my attention here to the case » = 2 and choose as the basis for de-
generate perturbation theory the states characterized by /, j, and m;."* Using the
Clebsch-Gordan coefficients (Problem 4.45 or Table 4.7) to express | j m ) as a linear
combination of |/ m;)|s my), we have

:O{wl 33 = 100)53),

v = 133H = 10003 F),
¥ 13 3) 1115 3),
o= 133 = |1—1|1:21>,

o] ¥ o= 3 = V2RO, + VIS ),
ve = 135 = =VIBNOIi)  + V2311157,
vo= 123 = JIBN-LIEH  + V2BI0)5 S,
Vs 135 -VZBN -l + VIS0 .

In this basis the nonzero matrix elements of H[ are all on the diagonal, and
given by Equation 6.65; H, has four off-diagonal elements, and the complete matrix

—W is (see Problem 6.23)
(Sy=B 0O 0 0 0 0 0 0
0 Sy+8 0 0 0 0 0 0
0 0 y-28 0 0 0 0 0
0 0 0 y+28 0 0 0 0
0 0 0 0 y-2ip 4p 0 0
0 0 0 0 28 Ssy—-1p 0 0
Vi
0 0 0 0 0 0 y+3i8  $B
0 0 0 0 0 0 2p 5y 41p

where
y = (a/8)213.6 eV and B = ugBe.-

The first four eigenvalues are displayed along the diagonal; it remains only to find the
eigenvalues of the two 2 x 2 blocks. The characteristic equation for the first is

11
A+ M6y = B) + 5y = T vB) =0,

14You can use 7, m;, m; states if you prefer—this makes the matrix elements of /. é easier but those
of Hi more difficult; the / -matrix will be more complicated, but its eigenvalues (which are independent

of basis) are the same either way.
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Table 6.2: Energy levels for the n = 2 states of hydrogen, with fine structure and
Zeeman splitting.

€1
€2
€3
€4
€5
€6
€7

€8

E, -5y +8
E;-5y-8
E,—y+28
E,—y-28
Ey ~3y + B/2+ /4y + 2/3)yB + B2/4
E» =3y + B/2— /4y + 2/3)yB + B2/4
Ey—3y — B2+ /4y — 2/3)yB + B*/4
Ex—3y — B/2—\/ay? — 2/3)yB + B2/4

and the quadratic formula gives the eigenvalues:

Ax = =3y +(B/2) £ V42 + (2/3)vB + (B2/4). [6.83]

The eigenvalues of the second block are the same, but with the sign of 8 reversed.
The eight energies are listed in Table 6.2, and plotted against By in Figure 6.12. In
the zero-field limit (8 = 0) they reduce to the fine-structure values; for weak fields
(B < y) they reproduce what you got in Problem 6.19; for strong fields (8 > y)
we recover the results of Problem 6.21 (note the convergence to five distinct energy
levels, at very high fields, as predicted in Problem 6.21).

Problem 6.23 Work out the matrix elements of H}, and H/, and construct the
W -matrix given in the text, forn = 2.

x+xxProblem 6.24 Analyze the Zeeman effect for the n = 3 states of hydrogen in the
weak, strong, and intermediate field regimes. Construct a table of energies (analogous

Weak

Intermediate { Strong

Figure 6.12: Zeeman splitting of the n = 2
states of hydrogen in the weak,

16Boxt intermediate, and strong field regimes.
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to Table 6.2), plot them as functions of the external field (as in Figure 6.12), and check
that the intermediate-field results reduce properly in the two limiting cases.

6.5 HYPERFINE SPLITTING

The proton itself constitutes a magnetic dipole, though its dipole moment is much

smaller than the electron’s because of the mass in the denominator (Equation 6.59):
e e

=& p, = ——S.. [6.84]

P e

By = 2m,, m,

(The proton is a composite structure, made up of three quarks, and its gyromagnetic
ratio is not as simple as the electron’s—hence the g-factor,'” whose measured value
is 5.59 as opposed to 2.00 for the electron.) According to classical electrodynamics.
a dipole y sets up a magnetic field'®

o . 2100

B=—=[3(u F)F - ul+ ——ps’ ). [6.85]
Anr 3

So the Hamiltonian (Equation 6.57) of the electron, in the magnetic field due to the

proton’s magnetic dipole moment, is

poge® [3(Sp-A(Se-7) —Sy-Sel | moge?

+ S, - Se8°(r). [6.86]

H, =
hi 8orm pm, r3 3mpme

According to perturbation theory, the first-order correction to the energy (Equa-
tion 6.9) is the expectation value of the perturbing Hamiltonian:

£l _ poge*  3(S, - F)(Se-F)—Sp - Se

)

M 8m m, 3
2
Hoge
+ 082 (s, Sl ) [6.87]
3mpm,

In the ground state (or any other state for which / = 0) the wave function is spherically
symmetrical, and the first expectation value vanishes (see Problem 6.25). Meanwhile.
from Equation 4.80 we find that |y,00(0)|> = 1/(ra?), so

2
El, = "% s, .8,), [6.88]

3mmpmea’

5The Landé g-factor, in Equation 6.74, plays a similar role in the proportionality between the
electron’s total magnetic moment (&; + ;) and its total angular momentum J.
161f you are unfamiliar with the delta function term in Equation 6.85, you can derive it by treating

the dipole as a spinning charged spherical shell, in the limit as the radius goes to zero and the charge goes
to infinity (with g held constant). See D. J. Griffiths, Am. J. Phys. 50, 698 (1982).
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Triplet
Ll
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Unperturbed 7
\
\\
\ AE
\
\
\
\
\ .
v Singlet Y

Figure 6.13: Hyperfine splitting in the ground state of hydrogen.

in the ground state. This is called spin-spin coupling because it involves the dot
product of two spins (contrast spin-orbit coupling, which involves S - L).

In the presence of spin-spin coupling, the individual spin angular momenta are
no longer conserved; the “good” states are eigenvectors of the fotal spin,

S=S,+S5,. [6.89]

As before, we square this out to get
1
S,-S. = E(S2 — 52— 55). [6.90]

But the electron and proton both have spin 1/2, so S2 = S; = (3/4)h*. In the triplet
state (spins “parallel”) the total spin is 1, and hence S? = 2A2; in the singlet state the

total spin is 0, and $? = 0. Thus

1 _
Ehf_

4 . )
dgh [+1/4, (triplet); [6.91]

3mpm2cia* | —3/4, (singlet).

Spin-spin coupling breaks the spin degeneracy of the ground state, lifting the
triplet configuration and depressing the singlet (see Figure 6.13).
The energy gap is evidently

h4
AE= 8

mpmgc

The frequency of the photon emitted in a transition from the triplet to the singlet state
is

AE
V== = 1420 MHz, [6.93]

and the corresponding wavelength is ¢/v = 21 cm, which falls in the microwave
region. This famous “21-centimeter line” is among the most pervasive and ubiquitous
forms of radiation in the universe.
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Problem 6.25 Let a and b be two constant vectors. Show that

/(a -r)(b-r)sin@dbd¢ = 4%(3- b). [6.94

The integration is over the usual range: 0 < 8 < 7,0 < ¢ < 2mw. Use this result to
demonstrate that

(3(Sp “F)S. - F) =8, - Se
3

) =0,

-
for states with / = 0. Hint: 7 = sin6 cos ¢7 + sin 6 sin ¢ + cos Ok.

Problem 6.26 By appropriate modification of the hydrogen formula, determine the
hyperfine splitting in the ground state of (a) muonic hydrogen (in which a muon—
same charge and g-factor as the electron, but 207 times the mass—substitutes for
the electron), (b) positronium (in which a positron—same mass and g-factor as the
electron, but opposite charge—substitutes for the proton}, and (¢) muonium (in which
an antimuon—same mass and g-factor as a muon, but opposite charge—substitutes for
the proton). Hint: Don’t forget to use the reduced mass (Problem 5.1) in calculating
the “Bohr radius” of these exotic “atoms.”. Incidentally, the answer you get for
positronium (4.85 x 10~* eV) is quite far from the experimental value (8.41 x 107*
eV); the large discrepancy is due to pair annihilation (e* + e~ — y + y), which
contributes an extra (3/4)A E and does not occur (of course) in ordinary hydrogen.
muonic hydrogen, or muonium. See Griffiths (footnote 16) for further details.

FURTHER PROBLEMS FOR CHAPTER 6

xxProblem 6.27 Suppose the Hamiltonian H, for a particular quantum system.

is a function of some parameter A; let E,(1) and ¥,(1) be the eigenvalues and
eigenfunctions of H (). The Feynman-Hellmann theorem states that

9E, 0H
EYN - (I/Inlﬁwfﬁ [6~95]

assuming either that £, is nondegenerate, or—if degenerate—that the ,,’s are the
g g 24
“good” linear combinations of the degenerate eigenfunctions).

(@) Prove the Feynman-Hellmann theorem. Hinr: Use Equation 6.9.

(b) Apply it to the one-dimensional harmonic oscillator, (i) using A = o (this yields
a formula for the expectation value of V'), (ii) using A = % (this yields (7')), and
(iii) using A = m (this yields a relation between (7'} and (V')). Compare your
answers to Problem 2.37 and the virial theorem predictions (Problem 3.53).
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*»xProblem 6.28 The Feynman-Hellmann theorem (Problem 6.27) can be used to
determine the expectation values of 1/r and 1/r? for hydrogen.'” The effective
Hamiltonian for the radial wave functions is (Equation 4.53)

R4 RPId+1) 1

2mdr?  2m  r? Aegr’

and the eigenvalues (expressed in terms of /)'? are (Equation 4.70)

me*

 32m2h% (Jax + 1+ D

n

(a) Use A = e in the Feynman-Hellmann theorem to obtain (1/r). Check your
result against Equation 6.54.

(b) Use A = to obtain (1/r?). Check your answer with Equation 6.55.

+xxProblem 6.29 Prove Kramers’ relation:

s+ 1
2

(r) = 25 + Da(r'Y + %[(21 F 12 =525 =0, [6.96]

which relates the expectation values of » to three different powers (s, s — 1, and
s — 2), for an electron in the state vy, of hydrogen. Hint: Rewrite the radial
equation (Equation 4.53) in the form

Il+1 2 1
u//:[(Jr) N }u’

r2 ar n2a?

and use itto express f(ur*u”)dr interms of (r*), (r*~1), and (+*~2). Then use integra-
tion by parts to reduce the second derivative. Show that [ (ursu')dr = —(s/2)(r*"1),
and [(u'r*u)dr = —[2/(s + 1)] [ (u"r**'u')dr. Take it from there.

Problem 6.30

(@) Plugs =0,5s = 1,s = 2, and s = 3 into Kramers’ relation (Equation 6.96)
to obtain formulas for (r~1), (r), (r?), and (r3). Note that you could continue
indefinitely, to find any positive power.

(b) In the other direction, however, you hit a snag. Put in s = —1, and show that
all you get is a relation between (r=2) and (r3).

17¢, sanchez del Rio, Am. J. Phys., 50, 556 (1982); H. S. Valk, Am. J. Phys., 54, 921 (1986).

18 part (b) we treat / as a continuous variable; n becomes a function of /, according to Equation
4.67, because jmax, Which must be an integer, is fixed. To avoid confusion, I have eliminated n, to reveal
the dependence on / explicitly.
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(c) But if you can get (r—2) by some other means, you can apply the Kramers’
relation to obtain the rest of the negative powers. Use Equation 6.55 (which
is derived in Problem 6.28) to determine (r~*), and check your answer against
Equation 6.63.

sxxxProblem 6.31 When an atom is placed in a uniform external electric field Ey,, the
energy levels are shifted—a phenomenon known as the Stark effect. In this problem
we analyze the Stark effect for the n = 1 and » = 2 states of hydrogen. Let the field
point in the z direction, so the potential energy of the electron is

Hi = —eEez = —eEcqr cosé.

Treat this as a perturbation on the Bohr Hamiltonian (Equation 6.41); spin is irrelevant
to this problem, so ignore it.

(a) Show that the ground-state energy is not affected by this perturbation, in first
order.

(b) The first excited state is fourfold degenerate: V20, Y211, ¥210, ¥21—1. Using de-
generate perturbation theory, determine the first-order corrections to the energy.
Into how many levels does E, split?

(C) What are the “good” wave functions for part (b)? Find the expectation value of
the electric dipole moment (p, = —er), in each of these “good” states. Notice
that the results are independent of the applied field—evidently hydrogen in its
first excited state can carry a permanent electric dipole moment.

Hint: There are a lot of integrals in this problem, but almost all of them are
zero. So study each one carefully before you do any calculations: If the ¢ integral
vanishes, there’s not much point in doing the r and 6 integrals! Partial answer:
W13 = W31 = 3ea Ee; all other elements are zero.

xxxProblem 6.32 Consider the Stark effect (Problem 6.31) for the n = 3 states of
hydrogen. There are initially nine degenerate states, ¥r3, (neglecting spin, of course),
and we turn on an electric field in the z direction.

(a) Construct the 9 x 9 matrix representing the perturbing Hamiltonian. Partial an-
swer: (300]2]310) = =364, (310]2|320) = —34/3a, (31 £1|2|32+1) =
—(9/2)a.

(b) Find the eigenvalues and their degeneracies.

Problem 6.33 Calculate the wavelength, in centimeters, of the photon emitted
under a hyperfine transition in the ground state (n = 1) of deuterium. Deuterium
is “heavy” hydrogen, with an extra neutron in the nucleus. The proton and neutron
bind together to form a deuteron, with spin 1 and magnetic moment
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z

&K

9% d, qs
gz dz gz y
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x*
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Figure 6.14: Hydrogen atom surrounded by six point charges (crude model for
a crystal lattice); Problem 6.34.

the deuteron g-factor is 1.71.

x+xxProblem 6.34 Inacrystal, the electric field of neighboring ions perturbs the energy
levels of an atom. As a crude model, imagine that a hydrogen atom is surrounded by
three pairs of point charges, as shown in Figure 6.14.
(Spin is irrelevant to this problem, so ignore it.)

(@) Assuming that r < dj, r « dp, and r < dj3, show that

H' = Vo +3(Bix* + Boy* + 325 — (B + B2 + B3)r7,

where

€ i
b= e ;’—3 and Vo = 2(Bd2 + Pod2 + Bsd?).

(b) Find the lowest-order correction to the ground-state energy.

(c) Calculate the first-order corrections to the energy of the first excited states (n =
2). Into how many levels does this fourfold degenerate system split, (i) in the
case of cubic symmetry, 8; = B, = B;; (ii) in the case of orthorhombic
symmetry, B; = B, # Bs; (iii) in the general case of tetragonal symmetry
(all three different)?




CHAPTER 7

THE VARIATIONAL PRINCIPLE

7.1 THEORY

o 14’ Ad

Suppose you want to calculate the ground-state energy E, for a system described by
the Hamiltonian H, but you are unable to solve the (time-independent) Schrodinger
equation. Pick any normalized function r whatsoever.

Theorem:

Eg < (Y|H|Y) = (H). [7.1]

That is, the expectation value of H in the (presumably incorrect) state ¥ is certain to
overestimate the ground-state energy. Of course, if ¥ just happens to be one of the
excited states, then obviously (H) exceeds E,; but the theorem says that the same
holds for any ¥ whatsoever.

Proof: Since the (unknown) eigenfunctions of / form a complete set, we can
express ¥ as a linear combination of them':

V=) catn, with Hyy = Eyf,.

UTf the Hamiltonian admits scattering states, as well as bound states, then we’1l need an integral as
well as a sum, but the argument is unchanged.
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Since ¥ is normalized,

1= (yly) = Zcmx/fm Zc,,x/m—ZZc::,c,,(x/fmlx/fn):Dcnlz

(assuming the eigenfunctions have been orthonormalized: (Y |¥») = 8pn). Mean-
while,

= cntnl HY cathn) = D D i EncalWml¥n) = ) Ealeal”
But the ground-state energy is, by definition, the smallest eigenvalue, so E; < E,,
and hence
H) > EgZ|Cn|2 = Eg.

QED

Example 1. Suppose we want to find the ground-state energy for the one-
dimensional harmonic oscillator:

a2 @ 1
T 2mdx? 2

Of course, we already know the exact answer, in this case (Equation 2.49):
E; = (1/2)hw; but this makes it a good test of the method. We might pick as
our “trial” wave function the gaussian,

Y(x) = de7 7, (7.2]

where b is a constant and 4 is determined by normalization:

o0 1/4
1= |A|2/ e dy = (AP = 4= AN [7.3]
oo 2b T

Now
(H)y =(T)+ V), (7.4]
where, in this case,
2 d2 _bxz h2b
(T) |A| / de ) dx = =—. [7.5]
and
2bx? o’
bl A —2bx = _,
4 mw 214 / %
) ) )
hb
(Hy = 22 4+ 22 17.6]

2m 8b
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According to the theorem, this exceeds E, for any b; to get the rightest bounc
let’s minimize (H) with respect to b:

a'(H)_h2 mw2_0:>b_ma)
db>" " 2m 8b2 v
Putting this back into (H), we find
1
(H)min = Eha). [7.”

In this case we hit the ground-state energy right on the nose—because (obviously) |
“Just happened” to pick a trial function with precisely the form of the actual grounc
state (Equation 2.48). But the gaussian is very easy to work with, so it’s a popular
trial function even when it bears little resemblance to the true ground state.

Example 2. Suppose we’re looking for the ground state energy of the delta-

function potential:
2 2

7
H=——— —ad(x).
a0
Again, we already know the exact answer (Equation 2.109): E, = —ma’ J2R%. A
before, we’ll use a gaussian trial function (Equation 7.2). We’ve already determined
the normalization and calculated (T'); all we need is

2 [T o 2b
(V) = —ald]| e §x)dx = —ay/ —.
o T
Evidently,
Rb 2b
(H) = — —a,] =, [7.8]
2m T
and we know that this exceeds E, for all . Minimizing it,
d B2 o 2ma?
db( ) 2m 2nb xh?
So
ma?
<H>miﬂ = - ﬂhz s [79]

which is indeed somewhat higher than E,, since 7 > 2.

I said you can use any (normalized) trial function ¥ whatsoever, and this is
true in a sense. However, for discontinuous functions it takes some fancy footwork
to assign a sensible interpretation to the second derivative (which you need, in order
to calculate (7')). Continuous functions with kinks in them are fair game, however:
the next example shows how to handie them.
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Example 3. Find an upper bound on the ground-state energy of the one-
dimensional infinite square well (Equation 2.15), using the “triangular” trial wave
function (Figure 7.1)*:

Ax, if0<x<a/2,
(x) = {A(a—x), ifa/2 <x <a, [7.10]
0, otherwise,

where A4 is determined by normalization:

_ 2 arz 2 ¢ 2 _ ZEi — _2_ E
1 =14] Zdx+ | (@—x)*dx|=|4] = A= . [7.11]
0 a2 12 ava

In this case

4, if0<x<a/2
d ’ = —_ ]
d—w=[—A, ifa/2 <x <a,
* 0, otherwise,
as indicated in Figure 7.2. Now, the derivative of a step function is a delta function

(see Problem 2.24b):

Ay

T = AS(x) —248(x —a/2) + Aé(x — a), [7.12]

and hence

h24
(H) = > f[a(x) —25(x — a/2) + 8(x — )Y (x) dx
[7.13]
B4 A% 12R%
ST VO WDy @I= =

Figure 7.1: Triangular trial wave function for the infinite square well (Equation 7.10).

2There is no point in trying a function (such as the gaussian) that extends outside the well, because
you’ll get (V') = oo, and Equation 7.1 tells you nothing.
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dyldx A

are a

xY

-A+

Figure 7.2: Derivative of the wave function in Figure 7.1.

The exact ground state is £, = w2h*/2ma? (Equation 2.23), so the theorem works
(12 > 7).

The variational principle (as Equation 7.1 is called) is extremely powerful.
and embarrassingly easy to use. What a chemist does, to find the ground-state energy
of some complicated molecule, is write down a trial wave function with a large number
of adjustable parameters, calculate {H), and tweak the parameters to get the lowest
possible value. Even if ¥ has no relation to the true wave function, one often gets
miraculously accurate values for E,. Naturally, if you have some way of guessing a
realistic yr, so much the better. The only rrouble with the method is that you never
know for sure how close you are to the target—all you can be certain of is that you’ve
got an upper bound. Moreover, the technique applies only to the ground state (see.
however, Problem 7.4).

«Problem 7.1 Use the gaussian trial function (Equation 7.2) to obtain the low-

est upper bound you can on the ground-state energy of (a) the linear potential:
V (x) = a|x|; (b) the quartic potential: V (x) = ax*.

«xProblem 7.2 Find the best bound on E ¢ for the one-dimensional harmonic oscil-

lator using a trial wave function of the form

¥(x) =

x2 4 b2’

where 4 is determined by normalization and b is an adjustable parameter.

Problem 7.3 Find the best bound on E, for the delta-function potential —a8(x —
a/2), using the triangle trail function (Equation 7.10). (This time a is an adjustable
parameter.)
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Problem 7.4

(a) Prove the following corollary to the variational principle: If (|/,) = 0, then
(H) > E, where E[ is the energy of the first excited state.

Thus, if we can find a trial function that is orthogonal to the exact ground state, we
can get an upper bound on the first excited state. In general, it’s difficult to be sure
that v is orthogonal to ¥, since (presumably) we don’t know the latter. However, if
the potential ¥ (x) is an even function of x, then the ground state is likewise even, and
hence any odd trial function will automatically meet the condition for the corollary.

(b) Find the best bound on the first excited state of the one-dimensional harmonic
oscillator using the trial function

vx) = Axe 7,

Problem 7.5

(@) Use the variational principle to prove that first-order nondegenerate perturbation
theory always overestimates (or at any rate never underestimates) the ground-
state energy.

(b) In view of (a), you would expect that the second-order correction to the ground
state is always negative. Confirm that this is indeed the case, by examining
Equation 6.14.

7.2 THE GROUND STATE OF HELIUM

The helium atom (Figure 7.3) consists of two electrons in orbit around a nucleus
containing two protons (also some neutrons, which are irrelevant to our purpose).
The Hamiltonian for this system (ignoring fine structure and smaller corrections) is

h? e (2 2 1
H=—— (V2 +V3) — —_ = = . 7.14
Zm( 1 + 2) 47[6() (i‘] + r |l'1 - l'2|> [ ]

Our problem is to calculate the ground-state energy, Eg—the amount of energy it
would take to strip off the two electrons. (Given Ej it is easy to figure out the
“jonization energy” required to remove a single electron—see Problem 7.6.) E, has
been measured very accurately in the laboratory:

E, =—78975eV (experimental). [7.15]

This is the number we would like to reproduce theoretically.
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IF1-72l

—9 -2

+2e Figure 7.3: The helium atom.

It is curious that such a simple and important problem has no known exact
solution.” The trouble comes from the electron-electron repulsion,

e2 1

= — [7.16]
4meg |1y — 17|

If we ignore this term altogether, H splits into two independent hydrogen Hamilto-
nians (only with a nuclear charge of 2e, instead of e); the exact solution is just the
product of hydrogenic wave functions:

8
Yo(ry, 12) = Yri00(X ) Yi00(r2) = me_z(”“”/a, [7.17]

and the energy is 8E; = —109 eV (Eq. [5.31]).* This is a long way from —79 eV,
but it’s a start.

To get a better approximation for £, we’ll apply the variational principle, using
1o as the trial wave function. This is a particularly convenient choice because it’s an
eigenfunction of most of the Hamiltonian:

Hyy = (BE| + Vee)¥o. [7.18]
Thus
(H) =8E; + (Vee), [7.19]
where? ,
2 8 —4(ri+r2)/a
Vee) = ( c ) (—3> f Prdn [7.20]
4mey ma r; — 13|

3There doexist exactly soluble three-body problems with many of the qualitative features of helium,
but using non-Coulombic potentials (see Problem 7.15).

“Here a is the ordinary Bohr radius and E, = —13.6/n2 ¢V is the nth Bohr energy; recall that
for a nucleus with atomic number Z, E, — Z2E, anda — a /Z (Problem 4.17). The spin configuration
associated with Equation 7.17 will be antisymmetric (the singlet).

5You can, if you like, interpret Equation 7.19 as first-order perturbation theory, with V., as H'.
However, I regard this as a misuse of the method, since the perturbation is roughly equal in size to the
unperturbed potential. I prefer, therefore, to think of it as a variational calculation, in which we are looking
for an upper bound on E,.
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Figure 7.4: Choice of coordinates for the r; integral (Equation 7.20).

I'll do the r integral first; for this purpose ry is fixed, and we may as well orient the
r, coordinate system so that the polar axis lies along r; (see Figure 7.4). By the law
of cosines,

Iry — | = r12 + r22 — 2rirpcos b, [7.21]
and hence
*4rz/a —4r2/a
L= f r2 sin 6y dryd6rdes. [7.22]
|r1 - r2| \/ + 73 — 2riryco86;

The ¢, integral is trivial (27r); the 9, integral is

do, =
r3+r? —2rirycos; hir 0

/ sin 6, \/;’12 +r? —2rrc086; |2

1
= — ( r]2+r22 + 21y — rl2 +r22 —2r1r2>

nr;

2/1‘1, ifr2<r1,
2/1‘2, ifr2 >n.

1 r o
L =4n (— f e~%2/a 2dr2 +f e /ey, dr2>
r Jo |

3
- [1 - (1 + 34) —4’1/“] . [7.24]
81‘1

1
=—I(rn+mrn)—In—nll= { [7.23]
rnr

Thus



264

Chap. 7 The Variational Principle

It follows that (V,,) is equal to

2 8 2
T E——

The angular integrals are easy (47), and the r; integral becomes

o 2r? 5a*
—4rja “r —8r/a dr = 2.
/ [’e (”L a)e } "

Finally, then,

Ve = = () = 25y = 34 [7.25
“rT 4q 4meg ) p=ore o |
and therefore
(Hy=—109eV +34eV = —75eV. [7.26°

Not bad (remember, the experimental value is —79 eV). But we can do better.

Can we think of a more realistic trial function than vy (which treats the two
electrons as though they did not interact at all)? Rather than completely ignoring
the influence of the other electron, let us say that, on the average, each electron
represents a cloud of negative charge which partially shields the nucleus, so that the
other electron actually sees an effective nuclear charge (Z) that is somewhat Jess than 2.
This suggests that we use a trial function of the form

Z3
Yi(ry, 1) = me‘”’“"z)/“. [7.27]

We’ll treat Z as a variational parameter, picking the value that minimizes (H).

This wave function is an eigenstate of the “unperturbed” Hamiltonian (neglect-
ing electron repulsion), but with Z, instead of 2, in the Coulomb terms. With this in
mind, we rewrite H (Equation 7.14) as follows:

o, . et (Z Z
H=—-—(Vi+V; - -+ —
2m ry 2

47[6()
[7.28]
e? ((Z-2) (Z-2) 1
+ + .
dmeg r r Iry — 1o
The expectation value of H is evidently
) e? 1
(HYy =2Z"E1+2Z —2) (=) + (Vee). [7.29]
drey ) 1

Here (1/r) is the expectation value of 1/7 in the (one-particle) hydrogenic ground
state yrig0 (but with nuclear charge Z); according to Equation 6.54,

<l> = —Z— [7.30]
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The expectation value of ¥, is the same as before (Equation 7.25), except that instead
of Z = 2 we now want arbitrary Z—-so we multiply a by 2/Z:

2
V) = 22 ( ‘ ) LN [7.31]
Ra

Putting all this together, we find
(H) = [2Z2 —4Z(Z-2)— (5/4Z] E, = [—2Z% 4+ (27/4)Z1E;. [1.32]

According to the variational principle, this quantity exceeds E, for any value
of Z. The lowest upper bound occurs when {H) is minimized:

d
—(H) =[-4Z + (27 E, =
dZ( ) =[—4Z + (27/4)]E, =0,
from which it follows that .
= — = 1.69. 7.33
6 [ ]

This is a reasonable result; it tells us that the other electron partially screens the
nucleus, reducing its effective charge from 2 down to 1.69. Putting in this value for
Z,we find
316

(H) = = (E) Ey=-T75¢eV. [7.34]

The ground state of helium has been calculated with great precision in this way,
using increasingly complicated trial wave functions with more and more adjustable
parameters.® But we're within 2% of the correct answer, and, frankly, at this point
my own interest in the problem begins to fade.

Problem 7.6 Using E; = —79.0 eV for the ground-state energy of helium, cal-
culate the ionization energy (the energy required to remove just one electron). Hint:
First calculate the ground-state energy of the helium ion, He*, with a single electron
orbitting the nucleus; then subtract the two energies.

«Problem 7.7 Apply the techniques of this Section to the H™ and Li* ions (each has
two electrons, like helium, but nuclear charges Z = 1 and Z = 3, respectively). Find
the effective (partially shielded) nuclear charge, and determine the best upper bound
on E,, for each case. Note: In the case of H™ you should find that (H) > —13.6 eV,
which would appear to indicate that there is no bound state at all, since it is energet-
ically favorable for one electron to fly off, leaving behind a neutral hydrogen atom.
This is not entirely surprising, since the electrons are less strongly attracted to the
nucleus than they are in helium, and the electron repulsion tends to break the atom
apart. However, it turns out to be incorrect. With a more sophisticated trial wave

SE. A. Hylleraas, Z. Phys. 65,209 (1930); C. L. Pekeris, Phys. Rev. 115, 1216 (1959).
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function (see Problem 7.16) it can be shown that £, < —13.6 eV, and hence tha:
a bound state does exist. It’s only barely bound, however, and there are no excited
bound states,” so H™ has no discrete spectrum (all transitions are to and from the
continuum). As a result, it is difficult to study in the laboratory, although it exists ir
great abundance on the surface of the sun.®

7.3 THE HYDROGEN MOLECULE ION

Another classic application of the variational principle is to the hydrogen molecule
ion, HY, consisting of a single electron in the Coulomb field of two protons (Figure
7.5). We shall assume for the moment that the protons are fixed in position, a specified
distance R apart, although one of the most interesting byproducts of the calculation
is going to be the actual value of R. The Hamiltonian is

72 2 11
H:——Vz—e—(—+l>, [7.35]

2m dmeg \r1  n

where 7| and r, are the distances to the electron from the respective protons. As
always, the strategy will be to guess a reasonable trial wave function, and invoke
the variational principle to get a bound on the ground-state energy. (Actually, our
main interest is in finding out whether this system bonds at all—that is, whether its
energy is less than that of a neutral hydrogen atom plus a free proton. If our trial wave
function indicates that there is a bound state, a betfer trial function can only make the
bonding even stronger.)

To construct the trial wave function, imagine that the ion is formed by taking a
hydrogen atom in its ground state (Equation 4.80),

1
PYe(r) = “\/ﬁe_r/a, [7.36]

and then bringing in a proton from far away and nailing it down a distance R away.
If R is substantially greater than the Bohr radius, a, the electron’s wave function

—-e

Figure 7.5: The hydrogen molecule
* B +e lom, Hj.

"Robert N. Hill, J. Math. Phys. 18, 2316 (1977).

8For further discussion, see Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (New York: Plenum 1977), Section 34.
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probably isn’t changed very much. But we would like to treat the two protons on an
equal footing, so that the electron has the same probability of being associated with
either one. This suggests that we consider a trial function of the form

¥ = A[Yg(r) + Yg(r2)] . [7.37]

(Quantum chemists call this the LCAO technique, because we are expressing the
molecular wave function as a /inear combination of atomic orbitals.)
Our first task is to normalize the trial function:

1= [weae= ] [ oo Pas

+ / Vg(r2)* d’r +2 / Ve W(ry) d*r . [7.38]

The first two integrals are 1 (since v, itself is normalized); the third is more tricky.
Let

1
I = (Yo(r)Ye(r2)) = — / e~ ritra Py [7.39]

Picking coordinates so that proton 1 is at the origin and proton 2 is on the z-axis at
the point R (Figure 7.6), we have

¥l =randr = Vr2 + R2 — 2rRcosd, [7.40]
and therefore
1 J—— .
I=— [ eleeVriHRimrReostla 2 sing drdode. [7.41]
Ta
ZA

2
) ro=r2+R?-2rRcos 8

r1=r

<Y

X

Figure 7.6: Coordinates for the calculation of / (Equation 7.39).
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The ¢ integral is trivial (277). To do the 9 integral, let

y=+/r2+ R2— 2rRcosf, so that d(y*) =2ydy = 2rRsin6 do.

Then
T AR Roms 1 iR
/ eV +R2—2rRcosf/a sing do = — e—Y/ﬂydy
0

FR Ji—ri

— [T+ Rt @) — e — R+ a)].
;

The r integral is now straightforward:

2 0 R
I = <] R/ (r+R+a)e ?rdr + e ®* | (R=r+a)rdr
3
a‘R 0 0

o
—f—eR/“/ (r = R+a)e /% dr].
R

Evaluating the integrals, we find (after some algebraic simplification),

2
" [l H(B) 1 (5) } 7.42)
a 3\a

I is called an overlap integral; it measures the amount by which ,(r;) overlaps
Yg(r2) (notice that it goesto 1 as R — 0, and to 0 as R — ©00). In terms of /, the
normalization factor (Equation 7.38) is

|A> = L [7.43)
2(0+1)

Next we must calculate the expectation value of H in the trial state . Noting

that
Pt m £ L) i = Bt
- r) = F
2m 471'60 7 g\t Pl
(where E; = —13.6 eV is the ground-state energy of atomic hydrogen)—and the

same with 7 in place of »;—we have

h2 2
HY = A [——vz _ € (l + %)} [We(r) + Ve ()]

2m 4eg \ 1y

62

1 1
=Ev— A4 (47‘[60) l:gllfg(rl) + ;Wg(h)]-

It follows that
2

(H) = E, —2|A|2< ¢

dre ) l: I//g(rl)l_hpg(rl) Ilfg(rl)l_llpg(rZ) :I [7.44]
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I'll let you calculate the two remaining quantities, the so-called direct integral,

1
D= a<1//g(rl)|;;|1pg(rl)>a [7.45]
and the exchange integral,
1
X=a <Wg(r1)la Wg(rz)>. [7.46]
The results (see Problem 7.8) are
a a
D= - (145)e2R0 7.47
2 +x)e [7.47]
and
R —R/a
X=[(14+—])e . [7.48]
a

Putting all this together, and recalling (Equations 4.70 and 4.72) that
E| = —(e?/4meg)(1/2a), we conclude that

(D + X)]

— | E}.
1+

According to the variational principle, the ground-state energy is less than (H). Of

course, this is only the electron’s energy—there is also potential energy associated
with the proton-proton repulsion:

(H) = [1 +2 [7.49]

e 1 2a
pp = 4]‘[60—]5 — ——RTEI [750]

Thus the total energy of the system, in units of — £ and expressed as a function of
x = R/a, is less than

[7.51]

- 2yp—x —2x
F(x)=_1+z{(1 2/3)xYe™ + (1 + x)e }
X

14+ +x4+(1/3)x2)e*

This function is plotted in Figure 7.7. Evidently bonding does occur, for there exists
aregion in which the graph goes below —1, indicating that the energy is less than that
of a neutral atom plus a free proton (to wit, —13.6 eV). The equilibrium separation
of the protons is about 2.4 Bohr radii, or 1.27 A.

xProblem 7.8 Evaluate D and X (Equations 7.45 and 7.46). Check your answers
against Equations 7.47 and 7.48.

xxProblem 7.9 Suppose we used a minus sign in our trial wave function (Equa-
tion 7.37):
¥ = AlYg(r) — Ye(r)]. [7.52]
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Figure 7.7: Plot of the function F(x), Equation 7.51, showing existence of a
bound state.

Without doing any new integrals, find F(x) (the analog to Equation 7.51) for this
case, and construct the graph. Show that there is no evidence of bonding. (Since
the variational principle only gives an upper bound, this doesn’t prove that bonding
cannot occur for such a state, but it certainly doesn’t look promising). Note: Actually.
any function of the form

¥ = AlYg(r) + €Yo (r)] [7.53]

has the desired property that the electron is equally likely to be associated with ei-
ther proton. However, since the Hamiltonian (Equation 7.35) is invariant under the
interchange P:rj <> 1, its eigenfunctions can be chosen to be simultaneously eigen-
functions of P. The plus sign (Equation 7.37) goes with the eigenvalue +1, and the
minus sign (Equation 7.52) with the eigenvalue —1; nothing is to be gained by con-
sidering the ostensibly more general case (Equation 7.53), though you’re welcome to
try it, if you’re interested.

sxsxxProblem 7.10 The second derivative of F(x), at the equilibrium point, can be used

to estimate the natural frequency of vibration (w) of the two protons in the hydrogen
molecule ion (see Section 2.3). If the ground-state energy (hiw/2) of this oscillator
exceeds the binding energy of the system, it will fly apart. Show that in fact the
oscillator energy is small enough that this will not happen, and estimate how many
bound vibrational levels there are. Nofe: You’re not going to be able to obtain the
position of the minimum—still less the second derivative at that point—analytically.
Do it numerically, on a computer.
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FURTHER PROBLEMS FOR CHAPTER 7

Problem 7.11 Find the lowest bound on the ground state of hydrogen you can get
using a gaussian trial wave function

() = de ",

where A is determined by normalization and b is an adjustable parameter. Answer:
—11.5eV.

x+Problem 7.12 If the photon had a nonzero mass (m, # 0), the Coulomb potential
would be replaced by a Yukawa potential, of the form

2 e

drey r
where 4 = m,c/h. With a trial wave function of your own devising, estimate the
binding energy of a “hydrogen” atom with this potential. Assume pa < 1, and give
your answer correct to order (ua)?.

Problem 7.13 Suppose you're given a quantum system whose Hamiltonian Hj
admits just two eigenstates, ¥, (with energy E,), and v, (with energy E;). They are
orthogonal, normalized, and nondegenerate (assume E, is the smaller of the two).
Now we turn on a perturbation H’, with the following matrix elements:

(Wal H'lYa) = (ol H' W) = 0; (Yl H' W) = (V| H'|Yha) = h. [7.55]

(a) Find the exact eigenvalues of the perturbed Hamiltonian.

{b) Estimate the energies of the perturbed system using second-order perturbation
theory.

(¢) Estimate the ground-state energy of the perturbed system using the variational
principle, with a trial function of the form

¥ = (cosp)a + (sing) Yy, [7.56]

where ¢ is an adjustable parameter. (Note that writing the linear combination
in this way guarantees that 1 is normalized.)

(d) Compare your answers to (a), (b), and (c). Why is the variational principle so
accurate in this case?

Problem 7.14 As an explicit example of the method developed in Problem 7.13,
consider an electron at rest in a uniform magunetic field B = B,k, for which the
Hamiltonian is (Equation 4.158):

Sz, [7.57]
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The eigenspinors, x, and x,, and the corresponding energies, E, and Ej, are given
in Equation 4.161. Now we turn on a perturbation, in the form of a uniform field in

the x direction:
eB,

m

H = Sk. [7.58!

(@) Find the matrix elements of H’, and confirm that they have the structure of
Equation 7.55. What is A?

(b) Using your result in Problem 7.13(b), find the new ground-state energy, in
second-order perturbation theory.

(c) Using your result in Problem 7.13(c), find the variational principle bound on
the ground-state energy.

xxxProblem 7.15 Although the Schridinger equation for helium itself cannot be
solved exactly, there exist “helium like” systems that do admit exact solutions. A
simple example® is “rubber-band helium”, in which the Coulomb forces are replaced
by Hooke’s law forces:

n? 1 A
H= —%(v% +V3) + Emw2(r12 +r3) - me2|r1 -k [7.59]

(a) Show that the change of variables from ry, ry, to

u= %(rl +r), v= %(r] —T7) [7.60]

turns the Hamiltonian into two independent three-dimensional harmonic oscil-
lators:

& 2, 1 5, s 2 1 2 2
H= —%Vu—f—zmwu + —ﬁVU—f—E(l—A)mwv . [7.61]

(b) What is the exact ground-state energy for this system?

(c) If we didn’t know the exact solution, we might be inclined to apply the method
of Section 7.2 to the Hamiltonian in its original form (Equation 7.59). Do so
(but don’t bother with shielding). How does your result compare with the exact
answer? Answer: (H) = 3how(1 — A/4).

xxxProblem 7.16 In Problem 7.7 we found that the trial wave function with shielding
(Equation 7.27), which worked well for helium, is inadequate to confirm the existence

For a more sophisticated model, see R. Crandall, R. Whitnell, and R. Bettega, Am. J. Phys. 52.
438 (1984).
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of a bound state for the negative hydrogen ion. Chandrasekhar'® used a trial wave
function of the form

Y(ry, 1) = A[Y1 (r) YR (r) + ()Y (m)], [7.62]

z3 Z3
Yi(r) = ;T—;lge_z‘r/a, and Y (r) = ﬁe_zﬂ/“. [7.63]

In effect, he allowed two different shielding factors, suggesting that one electron
is relatively close to the nucleus and the other is farther out. (Because electrons
are identical particles, the spatial wave function must be symmetrized with respect
to interchange. The spin state—which is irrelevant to the calculation—is evidently
antisymmetric.) Show that by astute choice of the adjustable parameters Z, and Z»
you can get (H) less than —13.6 eV. Answer:

where

£ 8 7, 60 15y 14 11 ¢ 14
Hy=——1[- 2 = — =Xy == —xy’ ==y ),
(H) x6+y6<x+x+2xy PV TRY Y T 2y>
where x = Z1 + Z; and y = 2/ Z{Z;. Chandrasekhar used Z; = 1.039 (since this
is larger than 1, the motivating interpretation as an effective nuclear charge cannot

be sustained, but never mind—it’s still an acceptable trial wave function) and Z, =
0.283.

Problem 7.17 The fundamental problem in harnessing nuclear fusion is getting the
two particles (say, two deuterons) close enough together for the attractive (but short-
range) nuclear force to overcome the Coulomb repulsion. The “brute force” method is
to heat the particles to fantastic temperatures and allow the random collisions to bring
them together. A more exotic proposal is muon catalysis, in which we construct a
“hydrogen molecule ion”, only with deuterons in place of protons, and a muon in place
of the electron. Predict the equilibrium separation distance between the deuterons in
such a structure, and explain why muons are superior to electrons for this purpose.'

105, Chandrasekhar, Astrophys. J. 100, 176 (1944).

" The classic paper on muon-catalyzed fusion is J. D. Jackson, Phys. Rev. 106, 330 (1957); for a
recent popular review, see J. Rafelski and S. Jones, Scientific American, November 1987, page 84.



CHAPTER 8

THE WKB
APPROXIMATION

The WKB (Wentzel, Kramers, Brillouin)' method is a technique for obtaining ap-
proximate solutions to the time-independent Schrodinger equation in one dimension
(the same basic idea can be applied to many other differential equations, and to the
radial part of the Schrodinger equation in three dimensions). It is particularly useful
in calculating bound-state energies and tunneling rates through potential barriers.

The essential idea is as follows: Imagine a particle of energy £ moving through
a region where the potential ¥ (x) is constant. If E > V, the wave function is of the
form

Y (x) = 4™, with k= 2m(E - V)/h.

The plus sign indicates that the particle is traveling to the right, and the minus sign
means it is going to the left (the general solution, of course, is a linear combination
of the two). The wave function is oscillatory, with constant wavelength A = 27 /k
and constant amplitude 4. Now suppose that ¥ (x) is not constant, but varies rather
slowly in comparison to A, so that over a region containing many full wavelengths
the potential is essentially constant. Then it is reasonable to suppose that i remains
practically sinusoidal, except that the wavelength and the amplitude change slowly
with x. This is the inspiration behind the WKB approximation. In effect, it identi-
fies two different levels of x-dependence: rapid oscillations, modulated by gradual
variation in amplitude and wavelength.

n Holland it’s KWB, in France it’s BWK, and in England it’s JWKB (for Jeffreys).
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By the same token, if £ < V' (and V' is constant), then ¢ is exponential:

Y(x) = Ae™*,  with « =/2m(V — E)/h.

And if ¥ (x) is not constant, but varies slowly in comparison with 1/x, the solution
remains practically exponential, except that 4 and k are now slowly varying functions
of x.

Now, there is one place where this whole program is bound to fail, and that is
in the immediate vicinity of a classical turning point, where £ = V. For here A (or
1/x) goes to infinity, and V' (x) can hardly be said to vary “slowly” in comparison.
As we shall see, a proper handling of the turning points is the most difficult aspect
of the WKB approximation, though the final results are simple to state and easy to
implement.

8.1 THE “CLASSICAL” REGION

The Schrédinger equation,

n d*y
5 +V )y =Ey,

can be rewritten in the following way:

d2 2
Ef— = —%w, [8.1]
where
p(x) = /2mlE — V (x)] [8.2]

is the classical formula for the momentum of a particle with total energy E and
potential energy V (x). For the moment, I'll assume that £ > V (x), so that p(x) is
real; we call this the “classical” region, for obvious reasons—classically the particle
is confined to this range of x (see Figure 8.1). In general, ¢ is some complex function;
we can express it in terms of its amplitude, A(x), and its phase, ¢ (x)—both of which
are real:

Y (x) = A(x)e' ™, (8.3]
Using a prime to denote the derivative with respect to x, we find

dy

L = (4 +id¢)e?,
dx

and
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Figure 8.1: Classically, the particle is confined to the region where E > V' (x).

dzlﬁ ” AT . " "2
—— =[4"+24'¢ +id¢" — A($)°). [8.4]
dx

Putting this into Equation 8.1,

p2

W
This is equivalent to two real equations, one for the real part and one for the imaginary
part:

A +24'¢ +idy' — A@) = -5 A. [8.5]

2 r 2
A" — A = —p—zA, or A"=4 L(qb’)2 - p—z] [8.6]
h h
and
24'¢' + A¢" =0, or (4%¢) =0. [8.7)

Equations 8.6 and 8.7 are entirely equivalent to the original Schrodinger equa-
tion. The second one is easily solved:

A2 =C?,  or A=i [8.8]
V&
where C is a (real) constant. The first one (Equation 8.6) cannot be solved in general—
so here comes the approximation: We assume that the amplitude A varies slowly, so
that the 4” term is negligible. (More precisely, We assume that A”/A is much less
than both (¢')% and p?/#%.) In that case we can drop the left side of Equation 8.6,
and we are left with
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and therefore

1
¢(x) = i;lfp(x) dx. [8.9]

(I’1l write this as an indefinite integral, for now—any constant of integration can be
absorbed into C, which thereby becomes complex.) It follows, then, that

Px) = —\/%ei%f"(x)dx, [8.10]

and the general (approximate) solution will be a linear combination of two such terms,
one with each sign.

Notice that s
IC]

P = 0 [8.11]
p(x)

which says that the probability of finding the particle at point x is inversely pro-
portional to its (classical) momentum (and hence its velocity) at that point. This is
exactly what you would expect—the particle doesn’t spend long in the places where
it is moving rapidly, so the probability of getting caught there is small. In fact, the
WKB approximation is sometimes derived by starting with this “semiclassical” ob-
servation, instead of by dropping the 4” term in the differential equation. The latter
approach is cleaner mathematically, but the former offers a more plausible physical
rationale.

Example: Potential well with two vertical walls. Suppose we have an
infinite square well with a bumpy bottom (Figure 8.2):

some specified function, if0 < x < a,
Vix)= ] [8.12]
00, otherwise.

> Figure 8.2: Infinite square well
with a bumpy bottom.
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Inside the well [assuming E > V' (x) throughout] we have

1 . .
~ l¢(X) —l¢(x)
1//(x) = —“—(x) [C+€ + C_e ],

or, more conveniently,

Yix) = T/}U](_T) [Cising (x) + Cacos ()], [8.13

where (exploiting the freedom noted earlier to impose a convenient lower limit on the
integral)

o(x) = 1/ p(x"dx'. [8.14
k Jo

Now ¥ (x) must go to zero at x = 0, so, since ¢(0) = 0, C; = 0. Also, ¥ (x) goes
to zero at x = q, SO

p@)=nr (n=1,2,3...). [8.15]

Conclusion:

f p(x)dx = nmh. [8.16]
0

This quantization condition is our main result; it determines the (approximate) allowed
energies.

For instance, if the well has a flat bottom [V (x) = 0], then p(x) = v/2mE (a
constant), and Equation 8.16 says pa = nwh, or

n2m2h?

"= 2ma?
which are precisely the energy levels of the original infinite square well (Equa-
tion 2.23). In this case the WKB approximation yields the exact answer (the am-

plitude of the true wave function is constant, so dropping A" cost us nothing).

+Problem 8.1 Use the WKB approximation to find the allowed energies (E,) of
an infinite square well with a “shelf”, of height ¥, extending half-way across (see
Figure 6.3):
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Vo, if0<x <a/2,
Vix)y=4 0, ifa/2 <x <a,

00, otherwise.

Express your answer in terms of V; and EC = (n7wh)?/2ma? (the nth allowed energy
for the “unperturbed” infinite square well, with no shelf). Assume that E ? > Vp, but
do not assume that E,, > V;. Compare your result with what we got in Section 6.1.2,
using first-order perturbation theory. Note that they are in agreement if either V; is
very small (the perturbation theory regime) or n is very large (the semiclassical WKB
regime).

x+xProblem 8.2 Anilluminating alternative derivation of the WKB formula (Equation
8.10) is based on an expansion in powers of . Motivated by the free particle wave
function, ¥ = A exp(xipx/h), we write
Y(x) = el

where f(x) is some complex function. (Note that there is no loss of generality here—
any nonzero function can be written in this way.)

(a) Put this into Schridinger’s equation (in the form of Equation 8.1), and show
that

inf" = (f)? +p*=0.
(b) Write f(x) as a power series in h:
) = o) +Rfi@) +R f00) + -,
and, collecting like powers of #, show that
P =p% ifg =2ffl, ifi =2ffi+(f)’, et

(c) Solve for fy(x) and fi(x), and show that—to first order in A—you recover
Equation 8.10.

Note: The logarithm of a negative number is defined by In(—z) = In(z) +insm, where
n is an odd integer. If this formula is new to you, try exponentiating both sides, and
you’ll see where it comes from.
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8.2 TUNNELING

So far, T have assumed that £ > ¥/, so that p(x) is real. But we can easily write down
the corresponding result in the nonclassical region (E < ¥')—it’s the same as before
(Equation 8.10), only now p(x) is imaginary®:

) = —eetr [ Il [8.17]
|p(x)]

Consider, for example, the problem of scattering from a rectangular barrier with
a bumpy top (Figure 8.3). To the left of the barrier (x < 0),

v(x) = Ae'** + Be i, [8.18]

where 4 is the incident amplitude, B is the reflected amplitude, and k = V2mE /A
(see Section 2.7). To the right of the barrier (x > a),

¥ (x) = Fe'*; (8.19]

F is the transmitted amplitude, and the tunneling probability is

_|FP

= [8.20]

In the tunneling region (0 < x < a), the WKB approximation gives

V(x)

Y

Figure 8.3: Scattering from a rectangular barrier with a bumpy top.

2In this case the wave function is real, and the analogs to Equations 8.6 and 8.7 do not follow
necessarily from Equation 8.5, although they are still sufficient. If this bothers you, study the alternative
derivation in Problem 8.2.
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Figure 8.4: Qualitative structure of the wave function, for scattering from a high,
broad barrier.
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But if the barrier is very high and/or very wide (which is to say, if the probability of
tunneling is small), then the coefficient of the exponentially increasing term (C) must
be small (in fact, it would be zero if the barrier were infinitely broad), and the wave
function looks something like® Figure 8.4. The relative amplitudes of the incident and
transmitted waves are determined essentially by the total decrease of the exponential
over the nonclassical region:

Lipy

e
14|

-4 [ lpehldx
9

so that

1 a
TX=e?, with y= fz_/ [p(x)|dx. [8.22]
0

Example: Gamow’s theory of alpha decay. In 1928, George Gamow (and,
independently, Condon and Gurney) used this result to provide the first theoretical
account of alpha decay (the spontaneous emission of an alpha particle—two protons
and two neutrons—by certain radioactive nuclei). Since the alpha particle carries a
positive charge (2e), it will be electrically repelled by the leftover nucleus (charge Ze)
as soon as it gets far enough away to escape the nuclear binding force. Gamow pictured
the potential energy curve for the alpha particle as a finite square well (representing
the attractive nuclear force), extending out to r; (the radius of the nucleus), joined
to a repulsive Coulombic tail (Figure 8.5). If E is the energy of the emitted alpha
particle, the outer turning point (r;) is determined by

3This heuristic argument can be made more rigorous—see Problem 8.10.
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V(r)

Coulomb repulsion

m
.\?/ -

n

l_— Nuclear binding

p

Figure 8.5: Gamow’s model for the potential energy of an alpha particle in a

radioactive nucleus.

1 2Z¢&
=E. [8.23]

4x € 2
The exponent y (Equation 8.22) is evidently*

1 [~ 1 2Ze 2mE (7]
}’=h-/- \/2m< ¢ —E)dr: ;ln f r—z-—ldr
n r r

dmey 1

[8.24]

v2mE
;ln [rz cos™ \/ri/r — rir — rl)] .

Typically, r; < r», and we can simplify this result. The argument of the inverse
cosine is close to zero, so the angle itself is close to /2. Callit 8 = (7/2) — €.

then
cos @ = cos(r/2) cos € + sin{r/2) sine = sine = ¢,
and hence
-1 /N7 r
cos —_——= - = -_
r 2 r

“4In this case the potential does not drop to zero on both sides of the barrier (moreover, this is really
a three-dimensional problem), but the essential inspiration, contained in Equation 8.22, is all we realiy

need.
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Thus
2mE z
y = 7:” [%rz - 2@] = K=~ Ko/Zry, [8.25]
where
2 2
K E< ¢ )” 2 1.980MeV'72, [8.26]
4meq h
and

2 172
4
K: = (4;0) T 148 (8.27]

(One fermi, fm, is 10713 m, which is about the size of a typical nucleus.)

If we imagine the alpha particle rattling around inside the nucleus, with an
average velocity v, the average time between “collisions” with the “wall” is about
2ri /v, and hence the frequency of collisions is v/2r|. The probability of escape at
each collision is e, so the probability of emission, per unit time, is (v/2r;)e2",
and hence the lifetime of the parent nucleus is about

_ 2r1

T="¢%, [8.28]

v
Unfortunately, we don’t know v—but it hardly matters, for the exponential factor
varies over a fantastic range (25 orders of magnitude) as we go from one radioac-
tive nucleus to another; relative to this the variation in v is pretty insignificant. In
particular, if you plot the logarithm of the experimentally measured lifetime against
1/+/E (related to y by Equation 8.25), the result is a beautiful straight line (Figure
8.6), confirming that the lifetime of an alpha emitter is governed by the difficulty of
penetrating the Coulomb barrier.

*Problem 8.3 Use Equation 8.22 to calculate the approximate transmission proba-
bility for a particle of energy E that encounters a finite square barrier of height V, > E
and width 2a. Compare the exact result (Prob. 2.32) in the WKB regime T « 1.

x+Problem 8.4 Calculate the lifetimes of U?*® and Po?2, using Equation 8.28, with
Equation 8.25 for y. Hint: The density of nuclear matter is relatively constant (i.e.,
the same for all nuclei), so (r;)? is proportional to A (the number of neutrons plus
protons). Empirically,

r = (1.07 fm)AlS3, [8.29]

The energy of the emitted alpha particle is determined by Einstein’s formula
(E = mc?):
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Figure 8.6: Graph of the logarithm of the lifetime versus 1/+E, for several alpha
emitters. From David Park, Introduction to the Quantum Theory, 3rd ed. (New
York: McGraw-Hill, 1992). (See acknowledgment in Preface.)

2 _myc? — myc?, [8.30]

E =myc
where m,, is the mass of the parent nucleus, m, is the mass of the daughter nucleus.
and m, is the mass of the alpha particle (which is to say, the He* nucleus). To figure
out what the daughter nucleus is, note that the alpha particle carries off two proton-
and two neutrons, so Z decreases by 2 and A by 4. Look up the relevant nuclear
masses. To estimate v, use £ = (1/2)myv?; this ignores the (negative) potential
energy inside the nucleus, and surely underestimates v, but it’s about the best we can
do at this stage. Incidentally, the experimental lifetimes are 6 x 10° years and 0.5 u.
respectively.

8.3 THE CONNECTION FORMULAS

In the discussion so far I have assumed that the “walls” of the potential well (or
the barrier) are vertical, so that the “exterior” solution is simple and the boundar
conditions trivial. As it turns out, our main results (Equations 8.16 and 8.22) are
reasonably accurate even when the edges are not so abrupt (indeed, in Gamow’s theory
they were applied to just such a case). Nevertheless, it is of some interest to study
more closely what happens to the wave function at a turning point (E = V), where
the “classical” region joins the “nonclassical” region and the WKB approximation
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itself breaks down. In this section I'll treat the bound-state problem (Figure 8.1); you
get to do the scattering problem for yourself (Problem 8.10).

For simplicity, let’s shift the axes over so that the right-hand turning point occurs
at x = 0 (Figure 8.7). In the WKB approximation, we have

3 0 /d/ i 0 /d/
\/h[Beifxp(X) o +Ce_ﬁfxp(x) X:I, ifx <0,
P(x) = *

—L [ pen) dx! .
—L_De ”fo lp(x)ldx, ifx > 0.

A/ |px)]

[Assuming that ¥ (x) remains greater than E for all x > 0, we can exclude the
positive exponent in this region, because it blows up as x — o0.] Our task is to
join the two solutions at the boundary. But there is a serious difficulty here: In the
WKB approximation, ¥ goes to infinity at the turning point, where p(x) — 0. The
true wave function, of course, has no such wild behavior—as anticipated, the WKB
method simply fails in the vicinity of a turning point. And yet, it is precisely the
boundary conditions at the turning points that determine the allowed energies. What
we need to do, then, is splice the two WKB solutions together, using a “patching”
wave function that straddles the turning point.

Since we only need the patching wave function (y,,) in the neighborhood of the
origin, we’ll approximate the potential by a straight line:

[8.31]

V{x)ZE+V'0)x, [8.32]

and solve the Schrodinger for this linearized V'

Linearized
potential
Turning
point
E
Patching
region
X
Classical 0 Nonclassical
region region

Figure 8.7: Enlarged view of the right-hand turning point.

3Warning: The following argument is quite technical, and you may wish to skip it on a first reading.
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;’; d;‘”;’ + (B + V0¥, = Ey,
or
d;;”;’ =d’xy,, [8.33]
where
Im 1/3
o= I:h—zV’(O):I : (8.34]

The «’s can be absorbed into the independent variable by defining

z=wx, [8.35]
so that
d*y,
T2 = zYp. [8.36]

This is Airy’s equation, and the solutions are called Airy functions.’ Since the Airy
equation is a second-order differential equation, there are two linearly independent

Table 8.1: Some properties of the Airy functions.

d?y
Differential Equation: i zy.
Solutions: Linear combinations of Airy Functions, 4i(z) and Bi(z).
1 e $3
Integral Representation: Ai(z) = — f cos (—3— + sz) ds
14
0
1 *® $ S3
Bi(z) = — e T fsin| = +sz) |ds
T Jy 3
Asymptotic Forms:
. 1 _232 . 1 . [2 32, T
Ai(z) 2ﬁ21/4 3 Ai(z) 77;2:;)1_” sln[g(—z) + 'Z
z>»0 | 5 2k 0
. 3/2 . 32, %
B B ~—_— Z(=n)3 ot
i(z) ~ «/— —=a¢ i(2) N7 cos[3( )7+ 4]

SClassically, a linear potential means a constant force, and hence a constant acceleration—the
simplest nontrivial motion possible, and the starting point for elementary mechanics. It is ironic that the
same potential in quantum mechanics gives rise to unfamiliar transcendental functions, and plays only a
peripheral role in the theory.
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Figure 8.8: Graph of the Airy functions.

Airy functions, 4i(z) and Bi(z); the general solution is a linear combination of these.
Ai and Bi are related to Bessel functions of order 1/3; some of their properties are
listed in Table 8.1 and they are plotted in Figure 8.8. Evidently the patching wave

function is

Vp(x) = adi(ax) + bBi(ax), [8.37]

for appropriate constants ¢ and b.

Now ¥, is the (approximate) wave function in the neighborhood of the origin;
our job is to match it to the WKB solutions in the overlap regions on either side
(see Figure 8.9). These overlap zones are close enough to the turning point that the
linearized potential is reasonably accurate (so that v, is a good approximation to the
true wave function), and yet far enough away from the turning point that the WKB
approximation is reliable.” In the overlap regions Equation 8.32 holds, and therefore
(ip the notation of Equation 8.34)

p(x) = \/2m(E — E—V'(0O)x) = ha’/?/=x. [8.38]

In particular, in overlap region 2,

TThis is a delicate double constraint, and it is possible to concoct potentials so pathological that no
such overlap region exists. However, in practical applications this seldom occurs. See Problem 8.8.
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Figure 8.9: Patching region and the two overlap zones.

X X 2
/ [pGNHldx’ = hoe3/2/ Vx'dx' = gh(oex)yz,
0 0
and therefore the WKB wave function (Equation 8.31) can be written as

~ D —%(@x)¥? [8.39]
VOOE T |

Meanwhile, using the large-z asymptotic forms® of the Airy functions (from Table
8.1), the patching wave function (Equation 8.37) in overlap region 2 becomes

Yp(x) = —ien’”? HCOR [8.40]

a b
2 /7 @)’ Jrlax)’

Comparing the two solutions, we see that

4
a=./—=D, and b=0, [8.41]
ah

Now we go back and repeat the procedure for overlap region 1. Once again.
p(x) is given by Equation 8.38, but this time x is negative, so

0
/ p(xdx = %h(—oex)y2 [8.42]

and the WKB wave function (Equation 8.31) is

8 At first glance it seems absurd to use a large-z approximation in this region, which after all is
supposed to be reasonably close to the tuming point at z = 0 (so that the linear approximation to the
potential is valid). But notice that the argument here is arx, and if you study the matter carefully (see
Problem 8.8) you will find that there is (typically) a region in which ax is large, but at the same time it is
reasonable to approximate ¥ (x) by a straight line.
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1
ﬁa3/4(_x)1/4

Meanwhile, using the asymptotic form of the Airy function for large negative z
(Table 8.1), the patching function (Equation 8.37, with » = 0) reads

¥(x) & [Berbt-en®” 4 Ceitmen™]. [8.43]

2 32 X
3( ox) +4i|

~ a .
Yp(x) = m sin

VL : YA 2l [/ e i e—f”/4e‘i§(‘“")3/2]. [8.44]
T{—ax I

Comparing the WKB and patching wave functions in overlap region 1, we find

4 ginj4 _ B and % /A — ¢

27 Vha 2i/m Vha

3

or, putting in Equation 8.41 for a,
B=—id™*D, and C =ie"/*D. [8.45]

These are the so-called connection formulas, joining the WKB solutions at either
side of the turning point. We’re done with the patching wave function now—its
only purpose was to bridge the gap. Expressing everything in terms of the one
normalization constant D, and shifting the turning point back from the origin to an
arbitrary point x;, the WKB wave function (Equation 8.31) becomes

j% sin [}l [ p(x)dx' + %], if x < xy;
Yx) = 1 fx ()] dx’ [8.46]
—L2_ iy if x > x,.

V1p@)l ’

Example: Potential well with one vertical wall. Imagine a potential well
that has one vertical side (at x = 0) and one sloping side (Figure 8.10). In this case
¥ (0) = 0, so Equation 8.46 says

1 [* 14
- pxX)dx +—=nn, (n=1,2,3,..),
hJo 4

or

/ 2 p(x)dx = (n - 1) mh. [8.47]
0 4

For instance, consider the “half-harmonic oscillator”,
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W(x)

X
Figure 8.10: Potential well with one vertical wall.
_J1 2,2 if 0
Vix) =4 smwx®, ifx >0, [8.48]
0, otherwise.
In this case
p(.X') = \/2m[E - (1/2)”16()2)(2] = Mw, /x22 — xz’
where

is the turning point. So

X2 X2 E
/ p(x)dx:ma)/ ,/x%—xzdxzzma)xzz:n——,
0 0 4 2w

and the quantization condition Equation 8.47 yields

1 37 1
E,=2n—-3 =z 50 =, . 4
(n 2)ha) (2 73 )ha) [8.49]
In this particular case the WKB approximation actually delivers the exact allowed
energies (which are precisely the odd energies of the full harmonic oscillator—see

Problem 2.38).

Example: Potential well with no vertical walls. Equation 8.46 con-
nects the WKB wave functions at a turning point where the potential slopes upward
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Figure 8.11: Upward-sloping and downward-sloping turning points.

(Figure 8.11a); the same reasoning, applied to a downward-sloping turning point
(Figure 8.11b), yields (Problem 8.9)

-+ [T e s’

ifx < xp;

[8.50]

N «/lp(x
Ok )
(x / p(xdx' + ], if x > xy.
p X1

In particular, if we’re talking about a potential well (Figure 8.11c), the wave function
in the “interior” region (x| < x < x3) can be written either as

Lo
Y(x) = sinf(x), where 6,(x) = 7?1,/ pxdx + %

2D
vV p(x)
(Equation 8.46), or as

/

~ 2D = ey - T
PYx) = mx_)smel(x), where 6,(x) = h/x1 p(x)dx )

(Equation 8.50). Evidently the arguments of the sine functions must be equal,
modulo 7:° 8; = 8; + nm, from which it follows that

X2 1
/ px)dx = (n - —2-) wh, with n=1,2,3,.... [8.51]

X1

This quantization condition determines the allowed energies for the “typical”
case of a potential well with two sloping sides. Notice that it differs from the formulas

9Not 2w—an overall minus sign can be absorbed into the normalization factors D and D/
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for two vertical walls (Equation 8.16) or one vertical wall (Equation 8.47) only in
the number that is subtracted from n (0, 1/4, or 1/2). Since the WKB approximation
works best in the semiclassical (large n) regime, the distinction is more in appearance
than in substance. In any event, the result is extraordinarily powerful, for it enables
us to calculate (approximate) allowed energies without ever solving the Schrodinger
equation, by simply evaluating one integral. The wave function itself has dropped
out of sight.

*+xProblem 8.5 Consider the quantum mechanical analog to the classical problem of
a ball (mass m) bouncing elastically on the floor.

(a)

(b)

()

(d)

What is the potential energy, as a function of height x above the floor? (For
negative x, the potential is infinite—the ball can’t get there at all.)

Solve the Schrédinger equation for this potential, expressing your answer in
terms of the appropriate Airy function [note that Bi(z) blows up for large z, and
hence does not yield a normalizable wave function]. Don’t bother to normalize

v (x).

Using g = 9.80 m/s? and m = 0.100 kg, find the first four allowed energies.
in Joules, correct to three significant digits. Hint: see Milton Abromowitz
and Irene A. Stegun, Handbook of Mathematical Functions (New York: Dover
1970), page 478; the notation is defined on page 450.

What is the ground state energy, in eV, of an electron in this gravitational field?
How high off the ground is this electron, on the average? Hint: Use the virial
theorem to determine (x).

*Problem 8.6 Analyze the bouncing ball (Problem 8.5) using the WKB approxima-

tion.

(a)
(b)

(c)

Find the allowed energies E, in terms of m, g, and .

Now put in the particular values given in Problem 8.5(c), and compare the WKB
approximation to the first four energies with the “exact” resuits.

About how large would the quantum number n have to be to give the ball an
average height of, say, 1 meter above the ground?

*Problem 8.7 Use the WKB approximation to find the allowed energies of the
harmonic oscillator.

Problem 8.8 Consider a particle of mass m in the nth stationary state of the har-
monic oscillator (angular frequency ).

(a)

Find the turning point x;.
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(b) How far (d) could you go above the turning point before the error in the linearized
potential (Equation 8.32, but with the turning point at x,) reaches 1%? That s,
if

V(xy+d) = Vin(x2 + d)
V(x2)

=0.01,

what is d?

(c) The asymptotic form of Ai(z) is accurate to 1% as long as z > 5. For the d in
part (b), determine the smallest n such that @d > 5. (For any n larger than this,
there exists an overlap region in which the linearized potential is good to 1%
and the large-z form of the Airy function is good to 1%.)

++«Problem 8.9 Derive the connection formulas at a downward-sloping turning point,
and confirm Equation 8.50.

s+xProblem 8.10 Use appropriate connection formulas to analyse the problem of
scattering from a barrier with sloping walls (Figure 8.12). Begin by writing the WKB
wave function in the form

e ’ ’ Y ’ ’
«/1( ) [Aeiﬂ P 1 getil, pmdx] (x <x1);
px

_W(x) ~ | 1 Ce%‘/: |p(x"ldx’ " De_%f"j Ip(x') dx’ () <x<x ); [852]
A 1Pl ’ 1 .

Y "y dx'
\/;T)C)I:Fe”f‘sz) x}, (x > x2).

Do not assume C = 0. Calculate the tunneling probability, T = | F|?/|4|?, and show
that your result reduces to Equation 8.22 in the case of a broad, high barrier.

V(x) A
S /\
E

|

|

|

|

!

X4 Xo X

Figure 8.12: Barrier with sloping walls.
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FURTHER PROBLEMS FOR CHAPTER 8

x+Problem 8.11 Use the WKB approximation to find the allowed energies of the
general power-law potential:

Vix) =alx]”,

where v is a positive number. Check your result for the case v = 2. Answer:
()
i+
E,=a|(-1/2h ) ———v 27 : 8.53
[( /2) ma T (111) [8.53]

x+Problem 8.12 Use the WKB approximation to find the bound-state energy for the
potential in Problem 2.48. Compare the exact answer. Answer:

—[9/8) — (1/V2)2a?/m.

Problem 8.13 For spherically symmetrical potentials, we can apply the WKB ap-
proximation to the radial equation, (Equation 4.37). Inthe case/ = 0, itis reasonable?
to use Equation 8.47 in the form

/ " p(rydr = (n— 1/4yeh, (8.54]
0

where rg is the turning point (in effect, we treat » = 0 as an infinite wall). Apply this
formula to estimate the allowed energies of a particle in the logarithmic potential

V(r) =Vyln@r/a)

(for constants Vy and a). Treat only the case / = 0. Show that the spacing between
the levels is independent of mass. Partial answer:

4
En+1—En =V01n(n+3/ )

n—1/4

++Problem 8.14 Use the WKB approximation in the form

/ " pr)ydr =(n—1/2)7h [8.55]

r

% Application of the WKB approximation to the radial equation raises some delicate and subtle
problems, which I will not go into here. The classic paper on the subject is R. Langer, Phys. Rev. 51, 669
(1937).



