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FURTHER PROBLEMS FOR CHAPTER 8

x+Problem 8.11 Use the WKB approximation to find the allowed energies of the
general power-law potential:

Vix) =alx]”,

where v is a positive number. Check your result for the case v = 2. Answer:
()
i+
E,=a|(-1/2h ) ———v 27 : 8.53
[( /2) ma T (111) [8.53]

x+Problem 8.12 Use the WKB approximation to find the bound-state energy for the
potential in Problem 2.48. Compare the exact answer. Answer:

—[9/8) — (1/V2)2a?/m.

Problem 8.13 For spherically symmetrical potentials, we can apply the WKB ap-
proximation to the radial equation, (Equation 4.37). Inthe case/ = 0, itis reasonable?
to use Equation 8.47 in the form

/ " p(rydr = (n— 1/4yeh, (8.54]
0

where rg is the turning point (in effect, we treat » = 0 as an infinite wall). Apply this
formula to estimate the allowed energies of a particle in the logarithmic potential

V(r) =Vyln@r/a)

(for constants Vy and a). Treat only the case / = 0. Show that the spacing between
the levels is independent of mass. Partial answer:

4
En+1—En =V01n(n+3/ )

n—1/4

++Problem 8.14 Use the WKB approximation in the form

/ " pr)ydr =(n—1/2)7h [8.55]

r

% Application of the WKB approximation to the radial equation raises some delicate and subtle
problems, which I will not go into here. The classic paper on the subject is R. Langer, Phys. Rev. 51, 669
(1937).
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Figure 8.13: Symmetric double well; Problem 8.15.

to estimate the bound state-energies for hydrogen. Don’t forget the centrifugal term
in the effective potential Equation 4.38. The following integral may help:

b
1
/ VG —a)b—x) = Z(b - Ja) [8.56]
« X 2
Note that you recover the Bohr levels when n >> [ and n > 1/2. Answer:

—13.6eV

E,; = . 8.57
T2+ /I D (8571

sx+xProblem 8.15 Consider the case of a symmetrical double-well, such as the one
pictured in Figure 8.13. We are interested in bound states with £ < V' (0).

(a) Write down the WKB wave functions in regions (i) x > x3, (il) x; < x < X,
and (iii) 0 < x < x;. Impose the appropriate connection formulas at x; and x
(this has already been done, in Equation 8.46, for x; you will have to work out
x1 for yourself), to show that

e FNLGTS 0
Vip(x)|
V=] 2D T T )
) sin | - : p(xdx' + 7| (1)
D LMl = b [ e
2cosfe J: +sinfe *JSx 7 , (il
J|p<x>|[ ) D

where

0= —/ 2 p(x)dx. [8.58]
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The WKB Approximation

Because V' (x) is symmetric, we need only consider even (+) and odd (—) wave
functions. In the former case ¥'(0) = 0, and in the latter case ¥ (0) = 0. Show
that this leads to the following quantization condition:

tanf = +2¢?, [8.59]
where
1 i ! !
¢Efl/ Ip(x"Hdx’. [8.60]
—x)

Equation 8.59 determines the (approximate) allowed energies (note that £ comes
into x; and x5, so 6 and ¢ are both functions of E).

We are particularly interested in a high and/or broad central barrier, in which
case ¢ is large and e is huge. Equation 8.59 then tells us that # must be very
close to a half-integer multiple of r. With this in mind, write § = (n+1/2)m +¢,
where || <1, and show that the quantization condition becomes

1 1
= (n + 5) nF 5e‘¢. [8.61]
Suppose each well is a parabola'':

1ma)z(x +a)?, ifx <0,

Vix)=1{2 [8.62]
%ma)z(x —a)?, ifx>0.
Sketch this potential, find 6 (Equation 8.58), and show that
1 h
EF=(n+=)hoF Leo, [8.63]
2 2

Note: If the central barrier were impenetrable (¢ — o), we would simply have
two detached harmonic oscillators, and the energies £, = (n+1/2)hw would be
doubly degenerate, since the particle could be in the left well or in the ri ght one.
When the barrier becomes finite, putting the two wells into “communication”,
the degeneracy is lifted. The even states (") have slightly lower energy, and
the odd ones (") have slightly higher energy.

UEvenif v (x) is not strictly parabolic in each well, this calculation of 6, and hence the result (Equa-

tion 8.63), will be approximately correct, in the sense discussed in Section 2.3, withw = /V"(xp)/m.
where xg is the position of the minimum.
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(e) Suppose the particle starts out in the right well—or, more precisely, in a state
of the form

1
V2

which, assuming the phases are picked in the “natural” way, will be concentrated
in the right well. Show that it oscillates back and forth between the wells, with
a period

W(x,00 = —=, +v,),

2 2
T = ie“’. [8.64]

w

() Calculate ¢, for the specific potential in part (d), and show that for ¥ (0) > E,
¢ ~ mowa*/h.




CHAPTER 9

TIME-DEPENDENT
PERTURBATION THEORY

20

Up to this point, practically everything we have done belongs to the subject that
might properly be called quantum statics, in which the potential energy function is
independent of time: V (r,t) = V (r). In that case the (time-dependent) Schrodinger
equation,
HVY = ih 3_\11
at

can be solved by separation of variables:
W(r, 1) = (e 57,
where () satisfies the time-independent Schrédinger equation,
Hyr = Evr.

Because the time dependence of W is carried by the exponential factor (e 7*£//*), which
cancels out when we construct the physically relevant quantity |¥|?, all probabilities
and expectation values are constant in time. By forming linear combinations of these
stationary states we obtain wave functions with more interesting time dependence,
but even then the possible values of the energy, and their respective probabilities, are
constant.

If we want to allow for transitions between one energy level and another, we
must introduce a time-dependent potential (quantum dynamics). There are precious
few exactly solvable problems in quantum dynamics. However, if the time-dependent
portion of the Hamiltonian is small compared to the time-independent part, it can be
treated as a perturbation. My purpose in this chapter is to develop time-dependent
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perturbation theory, and study its most important application: the emission or absorp-

tion of radiation by an atom—a process known in the old Bohr theory as a quantum
jump.

9.1 TWO-LEVEL SYSTEMS

To begin with, let us suppose that there are just two states of the (unperturbed) system,
¥, and . They are eigenstates of the unperturbed Hamiltonian Hy:

HOWa = ana and HOWb = Ebwb, [91]

and they are orthonormal:

(Walp) = 3ap- [9.2]

Any state can be expressed as a linear combination of them; in particular,
V(0) =ca¥, + co Ve [9.3]

The states v, and v, might be position-space wave functions, or spinors, or
something more exotic—it doesn’t matter. It is the time dependence that concerns
us here, so when I write W(¢), I simply mean the state of the system at time ¢.
In the absence of any perturbation, each component evolves with its characteristic
exponential factor:

W(t) = coprae B 4 cpyppe B [9.4]

We say that |c,|? is the “probability that the particle is in state v, —by which we
really mean the probability that a measurement of the energy would yield the value
E,. Normalization of W requires, of course, that

lcal® + |epl*> = 1. [9.5]

9.1.1 The Perturbed System

Now suppose we turn on a time-dependent perturbation H'(?). Since ¥, and ¥,
constitute a complete set, the wave function W () can still be expressed as a linear
combination of them. The only difference is that ¢, and ¢, are now functions of t:

W(t) = ca(t)Pae B+ cy(t) e o /R, [9.6]

[1 could absorb the exponential factors into ¢, (¢) and ¢5(t), and some people prefer to
do it this way, but I think it is nicer to keep visible that part of the time dependence that
would be present even without the perturbation.] The whole problem is to determine
¢, and ¢, as functions of time. If, for example, the particle started out in the state v,
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so that ¢,(0) = 1 and ¢, (0) = 0, and at some later time ¢; we find that ¢,(¢;) = 0.
cp(t)) = 1, we shall report that the system underwent a transition from v, to 5.

We solve for ¢, (¢) and ¢, (¢) by demanding that W (¢) satisfy the time- dependent
Schrédinger equation,

EN
HY =il where H=H+H(). [9.7]

From Equations 9.6 and 9.7, we find

cal Hovrae ™ /" + cyl Howple ™ /7 + o H'YrgJe™ /"

+ cb[H/wb]e—iEbt/fl = ih I:C-,awae—iEat/h + ébwbe_.iEb,/h

+eats (_1 a) e B g e (_1717) e—zEbt/h]‘

h

In view of Equation 9.1, the first two terms on the left cancel the last two terms on
the right, and hence

ca[H/wa]e—iE,,t/h + cb[H/wb]e—iEbt/h = ih [éa wae—ﬁ'Eat/h + C-,bwbe—iEbt/h] . [98]

To isolate ¢,, we use the standard trick: Take the inner product with ,, and
exploit the orthogonality of ¥, and v, (Equation 9.2):

Ca (walH/lwa)e_iEat/h + c[)(walH/lwb)e—iEbt/h — ihéae_iE"t/h.
For short, we define
H}; = (Wil H'lY); [9.9]

note that the Hermiticity of H' entails iji = (H};)*. Multiplying through by

—(i/h)e'Ea!/"  we conclude that
i
h

Similarly, the inner product with v, picks out ¢;:

[ca H, +cp H‘;be_i(E”_E”)'/h] . [9.10]

Cq =

ca(W | H'[Wa)e™ 5/ +cy (ol H'|Yp)e™ B0 = icye™ B,

and hence .

i

h

Equations 9.10 and 9.11 determine ¢,(¢) and c;(¢); taken together, they are

completely equivalent to the (time- dependent) Schrodinger equation, for a two-level

system. Typically, the diagonal matrix elements of H' vanish (see Problem 9.4 for
the more general case in which the diagonal terms are not zero):

ép = —= [coHyy + caHype' ErmER] [9.11]

H, = H), =0. [9.12]
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In that case the equations simplify:

Ca = —j Hye '™y, 0.13]
ép = —%H,;aei“’otca,
where
Ey— F
wo = —”—h— [9.14]

(We’ll assume that E > E,, so wy > 0.)

xProblem 9.1 A hydrogen atom is placed in a (time-dependent) electric field E =
E (t)lg. Calculate all four matrix elements Hi’j of the perturbation H' = —eEz
between the ground state (n = 1) and the (quadruply degenerate) first excited states
(n = 2). Also show that H;, = 0 for all five states. Note: There is only one integral
to be done here, if you exploit oddness with respect to z. As a result, only one of the
n = 2 states is “accessible” from the ground state by a perturbation of this form, and
therefore the system functions as a two-level configuration— assuming transitions to
higher excited states can be ignored.

xProblem 9.2 Solve Equation 9.13 for the case of a time-independent perturbation,
assuming that ¢, (0) = 1 and ¢,(0) = 0. Check that |c,()|> + |cp(£)|* = 1. Note:
Ostensibly, this system oscillates between “pure ¥7,” and “some v,”. Doesn’t this
contradict my general assertion that no transitions occur for time-independent pertur-
bations? No, but the reason is rather subtle: In this case v, and v, are not, and never
were, eigenstates of the Hamiltonian—a measurement of the energy never yields E,
or Ep. Intime-dependent perturbation theory we typically contemplate turning on the
perturbation for a while, and then turning it off again, in order to examine the system.
At the beginning, and at the end, ¥, and 1, are eigenstates of the exact Hamilto-
nian, and only in this context does it make sense to say that the system underwent
a transition from one to the other. For the present problem, then, assume that the
perturbation was turned on at time ¢ = 0, and off again at time r—this doesn’t affect
the calculations, but it allows for a more sensible interpretation of the result.

Problem 9.3 Suppose the perturbation takes the form of a delta function (in time):
H = Us(t — ty);

assume that U,, = Upp = 0, and let U,y = . If ¢,(—00) = 1 and ¢(—oc) = 0,
find ¢, (¢) and ¢ (¢), and check that |c,(#)|> + |cp(£)|> = 1. What is the probability
(P,_,p) that a transition occurs? Hint: Refer to Problem 2.24. Answer: P, =
(o /82 /(1 + |a? /40%)%.
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9.1.2 Time-Dependent Perturbation Theory

So far, everything is exact: We have made no assumption about the size of the pertur-
bation. But if H' is “small”, we can solve Equations 9.13 by a process of successive
approximations, as follows. Suppose the particle starts out in the lower state:

ca(0) =1, ¢p(0)=0. [9.15]

If there were no perturbation at all, they would stay this way forever:

Zeroth Order:
P =1, 2w =0. [9.16]

To calculate the first-order approximation, we insert these values on the right side of
Equation 9.13:

First Order: 4
Ca
=0 = =1
T c,'(t)
dey Lo it M L o
I = —szae = ¢ = ~ A H;,()e dt’. [9.17}

Now we insert these expressions on the right to obtain the second-order approxima-
tion:

Second Order:
d . ] . t ) ,
dcta - _%Hébe~m, (ﬁé)/ H, e di' =
0

1 wr | [ ot
c}}>(t)=1—h—2 /0 H,, (e '™ [ /0 Hy,t"e™" dt”] dr',  [9.18]

while ¢ is unchanged, 61(12) @) = c,gl)(t). [Notice that in my notation ¢{?(¢) includes

the zeroth order term; the second-order correction would be the integral term alone.]

In principle, we could continue this ritual indefinitely, always inserting the
n®-order approximation into the right side of Equation 9.13 and solving for the
(n + 1)® order. Notice that ¢, is modified in every even order, and ¢, in every
odd order. Incidentally, the error in the first-order approximation is evident in the fact
that ¢V (6)2 + |cP ()12 # 1 (the exact coefficients must, of course, obey Equation
9.5). However, [c{"(1)|* + |cl(,1)(t)|2 is equal to 1 to first order in H', which is all
we can expect from a first-order approximation. And the same goes for the higher
orders.
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x+Problem 9.4 Suppose you don’t assume that H), = Hj, = 0.
(@) Find ¢,(¢) and c,(¢) in first-order perturbation theory, for the case c,(0) =
1, ¢, (0) = 0. Show that Icél)(l‘)l2 + Ic,(,l)(t)l2 = 1, to first order in H'.
(b) There is a nicer way to handle this problem. Let

f 13

d, = e ft; H","(t/)d'/ca, dy=e"Jo H’;”('/)d'/cb. [9.19]
Show that
d, = —%ei"’Hébe_i“’O’db; dy = —%e“""’H,ﬁae"""”da, [9.20]
where g
P(t) = 5/0 (H,,(t" — H,,()]drt'. [9.21]

So the equations for d, and dj, are identical in structure to Equation 9.13 (with
an extra factor ’? tacked onto H').

(c) Use the method in part (b) to obtain c,(¢) and c;(¢) in first-order perturbation
theory, and compare your answer to (a). Comment on any discrepancies.

xProblem 9.5 Solve Equation 9.13 to second order in perturbation theory, for the
general case ¢,(0) = a, cp(0) = b.

xxProblem 9.6 Calculate c,(t) and c;(¢), to second order, for the perturbation in
Problem 9.2. Compare your answer with the exact result.

9.1.3 Sinusoidal Perturbations
Suppose the perturbation has sinusoidal time dependence:

H'(r,t) = V(r) cos(wt), [9.22]

so that
H, = Vgp cos(wt), [9.23]

where
Vab = (YalV [¥p). [9.24]

(As before, I'll assume that the diagonal matrix elements vanish, since this is almost
always the case in practice.) To first order (from now on we’ll work exclusively in
first order) we have (Equation 9.17)

. t . t
1 . ; iV . ’ . ’
cp(t) = —sza/ cos(wt’)e' " dt' = ——ﬂ/ [e'("’°+“’)t + e'(’”""“’)’] dr’
0 0
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[9.25]

Via PAC R | ellw—o) _ 1
2h [ wy + o wy — W ]

This is the answer, but it’s a little cumbersome to work with. Things simplify
substantially if we restrict our attention to driving frequencies (w) that are very close to
the transition frequency (wy), so that the second term in the square brackets dominates:
specifically, we assume

wy + 0> |wy — ol. [9.26]

This is not much of a limitation, since perturbations at other frequencies have a

negligible probability of causing a transition anyway.! Dropping the first term, we
have ” s

Voa €07 o2 —i(wo—

X227 [eflemw)/2 _ —iwe—w)i/2

() 2h wy—w [ ]

_ Yo sinl@o = /2] s, [9.27]

h wy— W
The transition probability—the probability that a particle which started out in the

state v, will be found, at time ¢, in the state y,—is

Vap)? sin®[(wo — w)t/2]

e —w)? [9.28]

Pas(®) = lesOP =]

The most remarkable feature of this result is that, as a function of time, the
transition probability oscillates sinusoidally (Figure 9.1). After rising to a maximum
of Va2 /0 (wo — w)?—necessarily much less than 1, else the assumption that the
perturbation is “small” would be invalid— it drops back down to zero! At times
t, = 2n7/|wy — w|, where n = 1, 2, 3, ..., the particle is certain to be back in the
lower state. If you want to maximize your chances of provoking a transition, you
should not keep the perturbation on for a long period: You do better to turn it off after
a time 7 /|wy — |, and hope to “catch” the system in the upper state. In Problem 9.7
it is shown that this “flopping” is not an artifact of perturbation theory—it also occurs
in the exact solution, though the flopping frequency is modified somewhat.

As I noted earlier, the probability of a transition is greatest when the driving
frequency is close to the “natural” frequency wy. This is illustrated in Figure 9.2,
where P,_,; is plotted as a function of w. The peak has a height of (|V|t /2h)? and
a width 47 /¢; evidently it gets higher and narrower as time goes on. (Ostensibly,
the maximum increases without limit. However, the perturbation assumption breaks
down before it gets close to 1, so we can believe the result only for relatively small ¢.
In Problem 9.7 you will see that the exact result never exceeds 1.)

UIn the following sections we will be applying this theory to the case of ligh, for which w ~ 104
Hz, so the denominator in both terms is huge, except (for the second one) in the neighborhood of wy.



Sec. 9.1: Two-Level Systems 305

P(t) 4

2n 4n 6n t
Joog ~ )] Jodg — @] |wg — w|

Figure 9.1: Transition probability as a function of time, for a sinusoidal pertur-
bation (Equation 9.28).

P(w)A

—Wf g w

(wg - 2n/t) (wq + 27/t)

Figure 9.2: Transition probability as a function of driving frequency (Equation 9.28).

x+Problem 9.7 The first term in Equation 9.25 comes from the ¢/ /2 part of cos(w?),
and the second from e~'*’ /2. Thus dropping the first term is formally equivalent to
writing H' = (V/2)e™'*, which is to say,

Vba —iwt

2 ¢
[The latter is required to make the Hamiltonian matrix Hermitian—or, if you prefer,
to pick out the dominant term in the formula analogous to Equation 9.25 for c,(z).]
If you make this so-called rotating wave approximation at the beginning of the
calculation, Equation 9.13 can be solved exactly, with no need for perturbation theory
and no assumption about the strength of the field.

Vab i
et

Hl;a = 2

H, = [9.29]

(@) Solve Equation 9.13 in the rotating wave approximation (Equation 9.29) for the
usual initial conditions: ¢,(0) = 1, ¢,(0) = 0. Express your results [c,(¢) and
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¢ ()] in terms of the Rabi flopping frequency,

1
w, = 5\/(70) — w0)? + ([Vas| /R)*. [9.30]

(b) Determine the transition probability, F,_.;(¢), and show that it never exceeds 1.
Confirm that |, (£)]? + |cp()]* = 1.

(C) Check that P,_,(t) teduces to the perturbation theory result (Equation 9.28)
when the perturbation is “small”, and state precisely what small means in this
context, as a constraint on V.

(d) At what time does the system first return to its initial state?

9.2 EMISSION AND ABSORPTION OF RADIATION

9.2.1 Electromagnetic Waves

An electromagnetic wave (I'll refer to it as “light,” though it could be infrared, ul-
traviolet, microwave, X-ray, etc.; these differ only in their frequencies) consists of
transverse (and mutually perpendicular) oscillating electric and magnetic fields (Fig-
ure 9.3). An atom, in the presence of a passing light wave, responds primarily to the
electric component. If the wavelength is long (compared to the size of the atom), we
can ignore the spatial variation in the field’; the atom, then, is exposed toa sinusoidally
oscillating electric field

E = E;cos(wr) k [9.31]
(for the moment "1l assume that the light is monochromatic and polarized along the
z-direction). The perturbing Hamiltonian is’

H' = —qEpz cos(wt), [9.32]
where g is the charge of the electron.® Evidently’

H,, = —pEgcos(wt), where g =q(Pplzlia). [9.33]

2For visible light A ~ 5000 A, while the diameter of an atom is around 1 A, so this approximation
is reasonable; but it would nor be for X-rays. Problem 9.20 explores the effect of spatial variation in the
field.

3The energy of a charge ¢ in a static field E is —¢ f E - dr. You may well object to the use of
an electrostatic formula for a manifestly time-dependent field. T am implicitly assuming that the period of
oscillation is long compared to the time it takes the charge to move around (within an atom).

4 As usual, we assume that the nucleus is heavy and stationary; it is the wave function of the electron
we are concerned with.

5The letter g is supposed to remind you of electric dipole moment (for which, in electrodynamics,
the letter p is customarily used—in this context it is rendered as a squiggly & to avoid confusion with
momentum). In fact, p is the off-diagonal matrix element of the z-component of the dipole moment
operator gr.
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Electric field
z
/ D|rect|on of
propagation
Magnetic field

Figure 9.3: An electromagnetic wave.

Typically, ¥ is an even or odd function of z; in either case z||? is odd, and integrates
to zero (see Problem 9.1 for some examples). This licenses our usual assumption that
the diagonal matrix elements of H’ vanish. Thus the interaction of light with matter
is governed by precisely the kind of oscillatory perturbation we studied in Section
9.1.3, with

Ve = — Eo. [9.34]

9.2.2 Absorption, Stimulated Emission, and Spontaneous Emission

If an atom starts out in the “lower” state ,, and you shine a polarized monochromatic
beam of light on it, the probability of a transition to the “upper” state ¥, is given by
Equation 9.28, which (in view of Equation 9.34) takes the form

5 p— [9.35]
In this process, the atom absorbs energy E; — E, = hay from the electromagnetic
field. We say that it has “absorbed a photon” (Figure 9.4a). [As I mentioned earlier,
the word “photon” really belongs to quantum electrodynamics (the quantum theory
of the electromagnetic field), whereas we are treating the field itself classically. But
this terminology is convenient, as long as you don’t read more into it than is really
there.]

ZKK

a) Absorption b) Stimulated emission c) Spontaneous emission

Fxgure 9.4: Three ways in Wthh light interacts with atoms. (a) absorption,
(b) stimulated emission, (c) spontaneous emission.

Pop(t) = (IS’JIEo)Z sinz[(a)o — a))t/Z].
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I could, of course, go back and run the whole derivation for a system that starts
off in the upper state [c,(0) = 0, ¢,(0) = 1]. Do it for yourself, if you like; it comes
out exactly the same—except that this time we’re calculating Py, = |¢, (t)|?, the
probability of a transition down to the lower level:

[9.36]

Po() = <|6<>|E0)2 sin”[(@o — w)t/2]
h (wp — w)?
(It has to come out this way—all we’re doing is switching a <> b, which substitutes
—awy for wg. When we get to Equation 9.25 we keep the first term, with —wp + @ in
the denominator, and the rest is the same as before.) But when you stop to think of it.
this is an absolutely astonishing result: If the particle is in the upper state, and you
shine light on it, it can make a transition to the lower state, and in fact the probability
of such a transition is exactly the same as for a transition upward from the lower state.
This process, which was first discovered by Einstein, is called stimulated emission.

In the case of stimulated emission the electromagnetic field gains energy hwo
from the atom; we say that one photon went in and rwo photons came out—the original
one that caused the transition plus another one from the transition itself (Figure 9.4b).
This raises the possibility of amplification, for if I could obtain a bottle of atoms, all
in the upper state, and trigger it with a single incident photon, a chain reaction would
occur, with the first photon producing 2, and these 2 producing 4, and so on. We'd
have an enormous number of photons coming out, all with the same frequency and
at virtually the same instant. This is, of course, the principle behind the laser (light
amplification by stimulated emission of radiation). Note that it is essential (for laser
action) to get a majority of the atoms into the upper state (a so-called population
inversion), because absorption (wWhich costs one photon) competes with stimulated
emission (which produces one); if you started with an even mixture of the two states,
you’d get no amplification at all.

There is a third mechanism (in addition to absorption and stimulated emission)
by which radiation interacts with matter; it is called spontaneous emission. Here an
atom in the excited state makes a transition downward, with the release of a photon but
without any applied electromagnetic field to initiate the process (Figure 9.4c). This is
the mechanism that accounts for the normal decay of an atomic excited state. At first
sight it is far from clear why spontaneous emission should occur at all. If the atom
is in a stationary state (albeit an excited one), and there is no external perturbation,
it should just sit there forever. And so it would, if it were really free of all external
perturbations. However, in quantum electrodynamics the fields are nonzero even in
the ground state—just as the harmonic oscillator (for example) has nonzero energy
(to wit, iw/2) in its ground state. You can turn out all the lights, and cool the room
down to absolute zero, but there is still some electromagnetic radiation present, and
it is this “zero-point” radiation that serves to catalyze spontaneous emission. When
you come right down to it, there is really no such thing as truly spontaneous emission;
it’s all stimulated emission. The only distinction to be made is whether the field that
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does the stimulating is one that you put there, or one that God put there. In this sense
itis exactly the reverse of the classical radiative process, in which it’s all spontaneous
and there is no such thing as stimulated emission.

Quantum electrodynamics is beyond the scope of this book,® but there is a lovely
argument due to Einstein” which interrelates the three processes (absorption, stimu-
lated emission, and spontaneous emission). Einstein did not identify the mechanism
responsible for spontaneous emission (perturbation by the ground-state electromag-
netic field), but his results nevertheless enable us to calculate the spontaneous emission
rate, and from that the natural lifetime of an excited atomic state. Before we turn to
that, however, we need to consider the response of an atom to non-monochromatic,
unpolarized, incoherent electromagnetic waves coming in from all directions—such
as it would encounter, for instance, if it were immersed in thermal radiation.

9.2.3 Incoherent Perturbations

The energy density in an electromagnetic wave is®

"= %"Eg, [9.37]

where E is (as before) the amplitude of the electric field. So the transition probability
(Equation 9.36) is (not surprisingly) proportional to the energy density of the fields:

,sin’[(wp — w)t /2]

(wp — w)?

2u
P, =— 9.38
b () 60h2|6’9| [ ]

But this is for a monochromatic perturbation, consisting of a single frequency w. In
many applications the system is exposed to electromagnetic waves at a whole range
of frequencies; in that case ¥ — p(w)dw, where p(w)dw is the energy density in the

SFor an especially nice treatment, see Rodney Loudon, The Quantum Theory of Light, 2nd ed.
(Oxford: Clarendon Press, 1983).

7Einstein’s paper was published in 1917, well before the Schrodinger equation. Quantum electro-
dynamics comes into the argument via the Planck blackbody formula (Equation 5.112), which dates from
1900.

8See, for example, D. Halliday and R. Resnick, Fundamentals of Physics, 3rd ed., extended (New
York: John Wiley & Sons, 1988), Section 38-5. In general, the energy per unit volume in electromagnetic
fields is

u = (e0/2)E* + (1/2u0) B
For electromagnetic waves, the electric and magnetic contributions are equal, so
U= eoE2 = eoEg cosz(wt),

and the average over a full cycle is (ep/2)E2, since the average of cos? (or sin?) is 1/2.
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frequency range dw, and the net transition probability takes the form of an integral:’

o0 . 2 _
Pb->a(t)=6—0%ls’=>|2 fo p(w){sm Lo ”)’/ZJ}dw. [9.39]

(wo — w)?

Ordinarily, the term in curly brackets is sharply peaked about wy (Figure 9.2),
whereas p(w) is relatively broad; in that case we may as well replace p(w) by p(wp)
and take it outside the integral:

Izsol2 O)f sin’[(wp — w)t/2]

o [9.40]

Changing variables to x = (wo—wo)?/2, extending the limits of integrationto x = oo
(since the integrand is essentially zero out there anyway), and looking up the definite

integral
00 12
/ P lix=m, [9.41]
o X
we find )
7|p]
Pya(t) = ——p(@o)t. [9.42]
6071

This time the transition probability is proportional to ¢. The bizarre “flopping” phe-
nomenon characteristic of a monochromatic perturbation gets “washed out” when we
hit the system with an incoherent spread of frequencies. In particular, the transition
rate (R = d P/dt) is now a constant:

b4
Roa = — 017 p(wp). [9.43]
Goh

So far, we have assumed that the perturbing wave is coming in along the
x-direction (Figure 9.3) and polarized in the z-direction. But we shall be interested
in the case of an atom bathed in radiation coming from all directions, and with all
possible polarizations; the energy in the fields [p(w)] is shared equally among these
different modes. What we need, in place of |p|?, is the average of |7 - g|?, where

® = q{Yplria) [9.44]

(generalizing Equation 9.33), and the average is over both polarizations () and over
all incident directions. This averaging can be carried out as follows.

9Equation 9.39 assumes that the perturbations at different frequencies are independent, so that the
total transition probability is a sum of the individual probabilities. If the different components are coherent
(phase correlated), then we should add amplitudes [cy ()], not probabilities (Ies(£)}?), and there will be
cross-terms. For the applications we will consider the perturbations are always incoherent.
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Polarization: For propagation in the z-direction, the two possible polarizations
are 7 and j, so the polarization average (subscript p) is

R 1 . . 1 1 .
G- gy, =310 )+ (G- p)]= S+ p)) =59 sin’0,  [945]
where 6 is the angle between g and the direction of propagation.
Propagation direction: Now let’s set the polar axis along g and integrate over

all propagation directions to get the polarization—propagation average (subscript pp):

2

G902, = = [[Lo2sin20]sinoavas = 2 ["sin*oa0 = 2. 046
n.p)pp_4ﬂ S sin" 6 | sin ¢ = i sin = 3.[. ]

So the transition rate for stimulated emission from state b to state a, under the
influence of incoherent, unpolarized light incident from all directions, is

b4

Ry = —|p|? , 947
b 360712 Ipl /0(0)0) [ ]

where @ is the matrix element of the electric dipole moment between the two states
{Equation 9.44) and p(wyp) is the energy density in the fields, per unit frequency,
evaluated at wy = (Ep — E;)/h.°

9.3 SPONTANEOUS EMISSION

9.3.1 Einstein’s A and B coefficients

Picture a container of atoms, N, of them in the lower state (¥,), and Nj of them in
the upper state (). Let 4 be the spontaneous emission rate,!! so that the number of
particles leaving the upper state by this process, per unit time, is N5 4. The transition
rate for stimulated emission, as we have seen (Equation 9.47), is proportional to
the energy density of the electromagnetic field—call it By, p(wp). The number of
particles leaving the upper state by this mechanism, per unit time, is Ny By, o (wyp).
The absorption rate is likewise proportional to p(wp)~—call it B,y 0 (wp); the number
of particles per unit time joining the upper level is therefore N, B,;p0(wp). All told,

then,
dN,
o= —NpA — NpBpap(wp) + NaBgpp(wp). [9.48]

10This is a special case of Fermi’s Golden Rule for time-dependent perturbation theory.
HNormally I"d use R for a transition rate, but out of deference to der Alte everyone follows Einstein’s
notation in this context.

12 Assume that N, and N are very large, so we can treat them as continuous functions of time, and
ignore statistical fluctuations.
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Suppose that these atoms are in thermal equilibrium with the ambient field, so
that the number of particles in each level is constant. In that case d Ny /dt = 0, and

it follows that
A

(Na/Nb)Bab - Bba '
On the other hand, we know from elementary statistical mechanics*? that the number

of particles with energy E, in thermal equilibrium at temperature 7, is proportional
to the Boltzmann factor, exp(— E/kpT), so

[9.49]

p(wp) =

N, e ElksT

e __ Shwo/kgT
N = EmT =¢ wo/ksT [9.50]

and hence
A
ehoo/kaT By — By,
But Planck’s blackbody formula Equation 5.112 tells us the energy density of
thermal radiation;

p(wo) = [9.51]

3

pl@) =3 ;W—,:TT]; [9.52]
comparing the two expressions, we conclude that
Bay = By, [9.53]
and o
A= %Bba- [9.54}

Equation 9.53 confirms what we already knew: that the transition rate for stimulated
emission is the same as for absorption. But it was an astonishing result in 1917—
indeed, Einstein was forced to “invent” stimulated emission in order to reproduce
Planck’s formula. Our present attention, however, focuses on Equation 9.54, for this
tells us the spontaneous emission rate (4)—which is what we are looking for—in
terms of the stimulated emission rate [By, p(wp)]—which we already know. From
Equation 9.47 we read off

By, =

T
el [9.55]
0

and it follows that the spontaneous emission rate is

_ Ip?

= . 9.56
3meghc? 5.56]

13See, for example, Charles Kittel and Herbert Kroemer, Thermal Physics, 2nd ed. (New York:
Freeman, 1980), Chapter 3.
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Problem 9.8 As a mechanism for downward transitions, spontaneous emission
competes with thermally stimulated emission (stimulated emission for which Planck
radiation is the source). Show that at room temperature (7 = 300 K) thermal stimula-
tion dominates for frequencies well below 5 x 10'2 Hz, whereas spontaneous emission
dominates for frequencies well above 5 x 10'? Hz. Which mechanism dominates for
visible light?

9.3.2 The Lifetime of an Excited State

Equation 9.56 is our fundamental result; it gives the transition rate for spontaneous
emission. Suppose, now, that you have a bottle full of atoms, with N;(¢) of them in
the excited state. As a result of spontaneous emission, this number will decrease as
time goes on; specifically, in a time interval dt you will lose a fraction 4 d¢ of them:

dNy = —AN,dt [9.57]

(assuming there is no mechanism to replenish the supply)."* Solving for Ny (¢), we
find
Ny(t) = Np(0)e™™; [9.58]

evidently the number remaining in the excited state decreases exponentially, with a
time constant

= [9.59]

We call this the lifetime of the state—technically, it is the time it takes for Ny(t) to
reach 1/e & 0.368 of its initial value.

I have assumed all along that there are only two states for the system, but
this was just for notational simplicity—the spontaneous emission formula (Equa-
tion 9.56) gives the transition rate for ¥, — ¥, regardless of any other allowed states
(see Problem 9.14). Typically, an excited atom has many different decay modes (that
is, ¥ can decay to a large number of different lower-energy states, ¥4,, Ya,» Yy, - - -)-
In that case the transition rates add, and the net lifetime is

1
T= )
A+ A+ A3+

[9.60]

Example. Suppose a charge ¢ is attached to a spring and constrained to oscillate
along the x-axis. Say it starts out in the state |n) (Equation 2.50) and decays by
spontaneous emission to state |n’). From Equation 9.44, we have

® = qlnlxin)i.

14 This situation is not to be confused with the case of thermal equilibrium, which we considered
in the previous section. We assume here that the atoms have been lifted out of equilibrium, and are in the
process of cascading back down to their equilibrium levels.
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You calculated the matrix elements of x back in Problem 3.50:

[ h
(n|x|n/> = “—__‘(V nlan,n’—l + \/E(Sn’,n—l),
2mw

where @ is the natural frequency of the oscillator (I use the overbar to distinguish it
from the frequency of the emitted radiation, although as we’ll see in a moment the
two turn out to be equal, and at that point I’1] drop the bar). But we’re talking about
emission, so n' must be lower than n; for our purposes, then,

nh .
=0 n_1l. [9.61]
2mw

Evidently transitions occur only to states one step lower on the “ladder,” and the
frequency of the photon emitted is
E, —E, 1/2aw — (0’ + 1/2)hw
w="n "t ARG - @ FVDRD s 5 9.62)
/] /]
Not surprisingly, the system radiates at the classical oscillator frequency. The transi-
tion rate (Equation 9.56) is

pP=9q

2 2
ng’w
- Mg 9.63
6megmc’ 9631
and the lifetime of the n'™ stationary state is
6megmc’
7 = mne [9.64]
ngw

Meanwhile, each radiated photon carries an energy A, so the power radiated is Ahw:

2,2

q*w
= —— (nhw),
6megmce? (nhe)

or, since the energy of an oscillator in the n'" state is £ = (n + 1 /2w,

2.2 1
p=_9¢ <E - 2hw> . [9.65]

6w egmc’

This is the average power radiated by a quantum oscillator with (initial) energy E.

For comparison, let’s determine the average power radiated by a classical os-
cillator with the same energy. According to classical electrodynamics, the power
radiated by an accelerating charge g is given by the Larmor formula:"

2.2
g4 [9.66]

6mepc’’

3See, for example, David J. Griffiths Introduction to Electrodynamics, 2nd ed. (Englewood Cliffs.
NIJ: Prentice-Hall, 1989), Section 9.1.4.
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For a harmonic oscillator with amplitude xo, x(¢) = xo cos(wt), and the acceleration
is @ = —xpw? cos(wt). Averaging over a full cycle, then,
7 xg ot
T 127epc3’

But the energy of the oscillator is £ = (1 /2)ma)2x§, 50 xg = 2E/mw?, and hence

2 2

g w
=——E. 9.67
6megme’ 671
This is the average power radiated by a classical oscillator with energy £. In the
classical limit (# — 0) the classical and quantum formulas agree'®; however, the
quantum formula (Equation 9.65) protects the ground state: If £ = (1/2)hw the

oscillator does not radiate.

Problem 9.9 The half-life (7//,) of an excited state is the time it would take for
half the atoms in a large sample to make a transition. Find the relation between ¢, 2
and t (the “lifetime” of the state).

+xxProblem 9.10 Calculate the lifetime (in seconds) for each of the four n = 2 states
of hydrogen. Hint: You’ll need to evaluate matrix elements of the form {(v100]x[¥200),
(¥100]¥|¥211), and so on. Remember that x = rsinf cos¢, y = rsiné sin ¢, and
z = r cos A. Most of these integrals are zero, so scan them before you start calculating.
Answer: 1.60 x 1072 seconds for all except 300, which is infinite.

9.3.3 Selection Rules

The calculation of spontaneous emission rates has been reduced to a matter of eval-
uating matrix elements of the form

(¥sr|¥a).

As you will have discovered if you worked Problem 9.10 (if you didn’t, go back right
now and do so!), these quantities are very often zero, and it would be helpful to know
in advance when this is going to happen, so we don’t waste a lot of time evaluating
unnecessary integrals. Suppose we are interested in systems like hydrogen, for which
the Hamiltonian is spherically symmetrical. In that case we may specify the states
with the usual quantum numbers 7, /, and m, and the matrix elements are

(n'I'm’{r|nlm).

161 fact, if we express P in terms of the energy above the ground state, the two formulas are
identical.
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Clever exploitation of the angular momentum commutation relations and the her-
miticity of the angular momentum operators yields a set of powerful constraints on
this quantity.

Selection rules involving m and m’: Consider first the commutators of L, with
x, y, and z, which we worked out in Chapter 4 (see Equation 4.122):

[L.,x]=ihy, [L;, yl=—ihx, [L,; z]=0. [9.68]
From the third of these it follows that
0= (n'I'm'|[L;, zllnlm) = (n'I'm'|(L.z — zL.)Inlm)
= (n'I'm'|[(m'h)z — z(mh)]|nlm) = (m' — m)A(n'I'm’|z|nlm).
Conclusion:
Either m’ = m, orelse (n'I'm’'|z|nlm) = 0. [9.69]

So unless m' = m, the matrix elements of z are always zero.
Meanwhile, from the commutator of L, with x we get

(w'l'm'|[L,, x]|nlm) = (0 I'm’|(L,x — xL,)|nlm)
= (m' —mh(n'l'm'|x|nlm) = ih(n'I'm'|y|nlm).
Conclusion:

(m' —m)(n'U'm'|x|nlm) = i(n'I'm’|y|nim) [9.70]

So you never have to compute matrix elements of y—you can always get them from
the corresponding matrix elements of x.
Finally, the commutator of L, with y yields

(n'U'm’|[L;, yllnlm) = (0'I'm'|(L,y — yL,)|nlm)
=(m —mh@n'I'm|yjnlm) = —ih(n'I'm’|x|nlm).
Conclusion:
(m' —m)(n'I'm’|\ylnim) = —i (n'U'm’|x|nlm) [9.71]
In particular, combining Equations 9.70 and 9.71,
(m' —m)*(n'I'm’\x|nlm) = i(m’ — m)(n'I'm’|y\nim) = (n'I'm’)x|nim),

and hence

either (m' — m)? = 1, orelse (n'I'm’|x|nlm) = (n'U'm'\ylnlm) = 0. [9.72]
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From Equations 9.69 and 9.72 we obtain the selection rule for m:

No transitions occur unless Am = £1 or 0. [9.73]

This is an easy result to understand if you remember that the photon carries
spin 1, and hence its value of m is 1, 0, or —1"; conservation of (the
z-component of ) angular momentum requires that the atom give up whatever the
photon takes away.

Selection rules involving / and /": In Problem 9.11 you are asked to derive the
following commutation relation:

[L%, (L% 1] = 2% (rL? + LPp). [9.74]

As before, we sandwich this commutator between (n'l’'m’| and |nim) to derive the
selection rule:

(' Um'|[L*, [L?, ] Inlm) = 20*(n'U'm’|(cL* + L) |nlm)
=201 + D) + V(I + DY’ U |xinlm) = (0’ I'm’|(L*[L?, ¥] — [L?, ¥]L%)|nim)
=R*I'A + 1) — I + DY Um/|[L?, ¥)|nlm)

=RV + 1) =11 + D)nUm'|(L*r — rL%)|nim)

=r*UA + D) = 1d + DP(n'Um|xnlm). [9.75]
Conclusion:
Either 21 + ) + /(' + D] =['d’ + 1) = I + D]?
or else (n'l'm’|r|nlm) = 0. [9.76]
But
U@+ —-id+D)=0"+1+Dd' =D
and

AL+ D+ + D= +1+ D+ =D -1,

so the first condition in Equation 9.76 can be written

[ +1+ 1> =1 =D*=11=0. [9.77]

7When the polar axis is along the direction of propagation, the middle value does not occur, and
if you are only interested in the number of linearly independent photon states, the answer is 2, not 3.
However, in this case the photon need not be going in the z-direction, and all three values are possible.
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=0 I=1 I=2 1=3
n=4
n=3
n=2
n=1

Figure 9.5: Allowed decays for the first four Bohr levels in hydrogen.

The first factor cannot be zero (unless I’ = | = 0—this loophole is closed in Prob-
lem 9.12), so the condition simplifies to I’ = [ £ 1. Thus we obtain the selection rule
for I:

No transitions occur unless Al = +£1. [9.78]

Again, this result (though scarcely trivial to derive) is easy to interpret. The photon
carries spin 1, so the rules for addition of angular momentum would allow // =141,
I'!'=1,orl' =1 —1 (for electric dipole radiation the middle possibility—though
permitted by conservation of angular momentum—does not occur).

Evidently not all transitions to lower-energy states can proceed by spontaneous
emission; some are forbidden by the selection rules. The scheme of allowed transi-
tions for the first four Bohr levels in hydrogen is shown in Figure 9.5. Note that the
2.8 state (Yr00) is “stuck”: It cannot decay, because there is no lower-energy state
with [ = 1. It is called a metastable state, and its lifetime is indeed much longer
than that of, for example, the 2 P states (211, ¥210, and ¥21_1). Metastable states do
eventually decay, either by collisions or by what are (misleadingly) called forbidden
transitions (Problem 9.20), or by multiphoton emission.

x+Problem 9.11 Prove the commutation relation Equation 9.74. Hint: First show

that
[L?, z) = 2ih(xL, — yL, — ihz).

Use this and the fact thatr - L = r - (r x p) = 0 to demonstrate that
[L%,[L% 2]] = 2% (zL* + L?2).

The generalization from z to r is trivial.
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Problem 9.12 Plug the “loophole” in Equation 9.78 by showing thatif ! =1 =0
then (n'I'm’|r|inim) = 0.

s+xProblem 9.13 An electron in the n = 3, = 0, m = 0 state of hydrogen decays
by a sequence of (electric dipole) transitions to the ground state.

(a) What decay routes are open to it? Specify them in the following way:

1300) — |nlm) — |n'U'm’y — ... — |100).

(b) If you had a bottle full of atoms in this state, what fraction of them would decay
via each route?

(C) What is the lifetime of this state? Hint: Once it’s made the first transition, it’s
no longer in the state |300), so only the first step in each sequence is relevant
in computing the lifetime. When there is more than one decay route open, the
transition rates add.

FURTHER PROBLEMS FOR CHAPTER 9

x% Problem 9.14 Develop time-dependent perturbation theory for a multilevel sys-
tem, starting with the generalization of Equations 9.1 and 9.2:

HOWn =E, Yns (wnwfm) = Sum. [979]
At time t = O we turn on a perturbation H'(t), so that the total Hamiltonian is

H=Hy+ H(@). [9.80]

(a) Generalize Equation 9.6 to read

V() =) calt)yme™ 5, [9.81]
and show that ]
lm = —;7 ;an,;ne“Em‘E")’/h, [9.82)
where
Hy = (Ym|H'|Yrn). [9.83]

(b) If the system starts out in the state ¥y, show that (in first-order perturbation
theory)

: t
cn(t) =1 - ;7/ Hyy@hdt [9.84)
0
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and .
e (t) = —Pil / H. (e En=ENB gy (m £ N). [9.85]
0

For example, suppose H' is constant (except that it was turned on at ¢ = 0 and
switched off again at some later time 7). Find the probability of transition from
state NV to state m (m # N), as a function of t. Answer:

, Sin’[(Ex — En)t/2h)
(EN - Em)2

41 H x| [9.86]

Now suppose H’ is a sinusoidal function of time: H' = V cos(wt). Making
the usual assumptions, show that transitions occur only to states with energy
E,, = En £ hw, and the transition probability is

5 Sin*[(Ey — Ep =+ ho)t/2R]
(EN - Em ihw)z

Suppose a multilevel system is immersed in incoherent electromagnetic radia-
tion. Using Section 9.2.3 as a guide, show that the transition rate for stimulated
emission is given by the same formula (Equation 9.47) as for a two-level system.

Problem 9.15 For the examples in Problem 9.14 (c) and (d), calculate ¢, (1), to
first order. Check the normalization condition:

D lem@F =1, [9.88]

and comment on any discrepancy. Suppose you wanted to calculate the probabil-
ity of remaining in the original state y»; would you do better to use |cy (2)]?, or

1- Zm;&]v |Cm(t)|2?

Problem 9.16 A particle starts out (at time ¢ = 0) in the N state of the infinite
square well. Now water leaks into the well, and then drains out again, so that the
bottom is at uniform potential ¥y (¢), with Vo(0) = Vo(T) = 0.

(@)

(b)

Solve the exact equation (Equation 9.82) for ¢, (¢), and show that the wave
function changes phase, but no transitions to other states occur. Find the phase
change ¢ (T') in terms of the function V().

Analyze the same problem in first-order perturbation theory, and compare your
answers.

Note: The same result holds whenever the perturbation simply adds a constant

(constant in x, that is, not in ¢) to the potential; it has nothing to do with the infinite
square well as such. See Problem 1.13.
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xProblem 9.17 A particle of mass m is initially in the ground state of the (one-
dimensional) infinite square well. At time ¢ = 0 a “brick” is dropped into the well,
so that the potential becomes
Vo, ifO0<x <a/2,
Vixy=430, ifa/2<x<a,
00, otherwise,
where Vo « E;. After a time T, the brick is removed, and the energy of the particle
is measured. Find the probability (in first-order perturbation theory) that the energy
is now Ej.

Problem 9.18 Justify the following version of the energy-time uncertainty prin-
ciple (due to Landau): AEAt > h/2, where At is the time it takes to execute a
transition involving an energy change AE, under the influence of a constant pertur-
bation (see Problem 9.14c¢.) Explain more precisely what A E and A¢ mean in this
context.

ssxProblem 9.19 An electron is at rest at the origin, in the presence of a magnetic
field whose magnitude (By) is constant but whose direction rides around at constant
angular velocity w on the lip of a cone of opening angle «:

B(t) = Bolsin @ cos(wt)? + sina sin(wt) ] + cos ak). [9.89]

(a) Construct the 2 x 2 Hamiltonian matrix (Equation 4.158) for this system.

(b) Find the exact solution to the (time-dependent) Schrodinger equation, assuming
the particle starts out with spin up. Hins: You can do it from scratch, or by
noting that in this case the rotating wave approximation is exact, and refering
to Problem 9.7. Answer:

_ (lcos(rt/2) + i[(w + w cos @) /A] sin(At /2)] e~ !/
X = ( i[(w; sina)/A] sin(rt/2)e'!/? , [9.90]

where

w) = —eBy/m and A= \/wz + w? 4 20w cosa. [9.91]

(c) Now treat the same problem by (first-order) time-dependent perturbation theory:
use Equation 9.17 to calculate the (approximate) probability of a transition from
spin up (the initial state) to spin down, as a function of time, and compare the
exact answer (from part b). State the criterion on the strength of the field that
determines whether perturbation theory is applicable in this case.

sxxProblem 9.20 In Equation 9.31 we assumed that the atom is so small (in compar-
ison to the wavelength of light) that spatial variations in the field can be ignored. The
true electric field would be

E(r,1) = Egcos(k - r — wt). [9.92]
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If the atom is centered at the origin, then k- r <« 1 over the relevant volume

(k|

= 2n/A, so k-r ~ r/A « 1), and that’s why we could afford to drop this

term. Suppose we Keep the first-order correction:

E(r, r) = Eg[cos(wt) + (k - r) sin{wr)]. [9.93]

The first term gives rise to the allowed (electric dipole) transitions we considered
in the text; the second gives rise to so-called forbidden (magnetic dipole and elec-
tric quadrupole) transitions (higher powers of k - r lead to even more “forbidden”
transitions, associated with higher multipole moments'®).

(@

(b)

(4]

Obtain the spontaneous emission rate for forbidden transitions (don’t bother to
average over polarization and propagation directions, though this should really
be done to complete the calculation). Answer:

2,,5

#l(al(ﬁ D)k - 1)|b)[%. [9.94]

Rb—)d =

Show that for a one-dimensional oscillator, the forbidden transitions go from
level n to level n — 2, and the transition rate (suitably averaged over 7 and k) is

hq*win(n — 1)

R =
157 egm?2cs

[9.95]
Find the ratio of the “forbidden” rate to the “allowed” rate, and comment on the
terminology. (Note: w is the frequency of the photon, not the oscillator.)

Show that the 25 — 1S transition in hydrogen is not possible even by a “for-
bidden” transition. (As it turns out, this is true for all the higher multipoles as
well; the dominant decay is in fact by a two-photon emission, and the lifetime
is about a tenth of a second.'®)

Problem 9.21 We have encountered stimulated emission, (stimulated) absorption,
and spontaneous emission ... how come there’s no such thing as spontaneous ab-
sorption?

8For a systematic treatment (including the role of the magnetic field), see David Park, Introduction

to the Quantum Theory, 3rd ed. ( New York: McGraw-Hill, 1992), Chapter 11.

19See Masataka Mizushima, Quantum Mechanics of Atomic Spectra and Atomic Structure, New

York: Benjamin, 1970), Section 5.6.



CHAPTER 10

THE ADIABATIC
APPROXIMATION

10.1 THE ADIABATIC THEOREM

10.1.1 Adiabatic Processes

Imagine a perfect pendulum, with no friction or air resistance, oscillating back and
forth in a vertical plane. If I grab the support and shake it in a jerky manner, the bob
will swing around in a wild chaotic fashion. But if I very gently and steadily move the
support (Figure 10.1), the pendulum will continue to swing in a nice, smooth way, in
the same plane (or one parallel to it) with the same amplitude. This gradual change
in the external conditions characterizes an adiabatic process. Notice that there are
two characteristic times involved: 7;, the “internal” time, representing the motion of
the system itself (in this case the period of the pendulum’s oscillations), and 7T, the
“external” time, over which the parameters of the system change appreciably (if the
pendulum were mounted on an oscillating platform, for example, 7, would be the
period of the platform’s motion). An adiabatic process is one for which 7, > T;.'
The basic strategy for analyzing an adiabatic process is first to solve the prob-
lem with the external parameters held fixed, and only at the end of the calculation
allow them to change with time. For example, the classical period of a pendulum
of (constant) length L is 2w 4/L/g; if the length is now gradually changing, the

For an interesting discussion of classical adiabatic processes, see Frank S. Crawford, Am. J. Phys.
58, 337 (1990).
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\ Figure 10.1: Adiabatic motion: If the
\ case is transported very gradually, the
\ pendulum inside keeps swinging with the
=i same amplitude, in a plane parallel to the
original one.

period will presumably be 27 \/L(t)/g. When you stop to think about it, we actually
use the adiabatic approximation (implicitly) all the time without noticing it. A case
in point is our discussion of the hydrogen molecule ion (Section 7.3). We began
by assuming that the nuclei were at rest, a fixed distance R apart, and we solved
for the motion of the electron. Once we had found the ground state energy of the
system as a function of R, we located the equilibrium separation and from the cur-
vature of the graph we obtained the frequency of vibration of the nuclei (Problem
7.10). In molecular physics this technique (beginning with nuclei at rest, calculating
electronic wave functions, and using these to obtain information about the positions
and—relatively sluggish—motion of the nuclei) is known as the Born-Oppenheimer
approximation.

In quantum mechanics, the essential content of the adiabatic approximation
can be cast in the form of a theorem. Suppose that the Hamiltonian changes gradually
from some initial form H’ to some final form H/ (Figure 10.2). The adiabatic
theorem states that if the particle was initially in the nth eigenstate of H', it will be

f
Hi /

~Y

Figure 10.2: A model for adiabatic change in the Hamiltonian, from H’ to H/.
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Ly - I ‘
2a x a 2a x a 2a x

(a) (b} (c)
Figure 10.3: (a) Particle starts out in the ground state of the infinite square well.
(b) If the wall moves slowly, the particle remains in the ground state. () If the
wall moves rapidly, the particle is left (momentarily) in its initial state.

carried (under the Schrodinger equation) into the nth eigenstate of H/. (I assume
that the spectrum is discrete and nondegenerate throughout the transition from H' to
H/, so there is no ambiguity about the ordering of the states; these conditions can
be relaxed, given a suitable procedure for “tracking” the eigenfunctions, but I'm not
going to pursue that here.)

For example, suppose we prepare a particle in the ground state of the infinite

square well (Figure 10.3a):
; 2
W) = \/jsin (£x>. [10.1]
a a

If we now gradually move the right wall out to 2a, the adiabatic theorem says that the
particle will end up in the ground state of the expanded well (Figure 10.3b):

1 b4
f _ - .
vl (x) =, p sin (——2ax) [10.2]

(apart, perhaps, from a phase factor). Notice that we’re not talking about a small
change in the Hamiltonian (as in perturbation theory)—this one is a huge change. All
we require is that it happen slowly. By contrast, if the well expands suddenly, the
resulting state is still ¥’ (x) (Figure 10.3c), which is a complicated linear combination
of eigenstates of the new Hamiltonian (Problem 3.48).

«sxxProblem 10.1 The case of an infinite square well whose right wall expands at a
constant velocity (v) can be solved exactly.” A complete set of solutions is

D, (x, 1) =,/ 2 sin (ﬂx) ¢l mvxi=2Ean /2w [10.3]
w w

where w(¢) = a+vt is the width of the well and E}, = n?n*h? /2ma? is the nthallowed

28 W. Doescher and M. H. Rice, Am. J. Phys. 37, 1246 (1969).
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energy of the original well (width a). The general solution is a linear combination
of the ®’s:

o0

W, 0) =) 6, ®u(x, 1); [10.4]

n=1

the coefficients ¢, are independent of t.

(a)

(b)

(0

(d

Check that Equation 10.3 satisfies the time-dependent Schrodinger equation,
with the appropriate boundary conditions.

Suppose a particle starts out (+ = 0) in the ground state of the initial well:

Y(x,0) = \/gsin (gx) .

Show that the expansion coefficients can be written in the form

T
¢, = _/ ¢~ sin(nz) sin(z) dz, [10.5]
7T Jo

where @ = mva/2n%h is a dimensionless measure of the speed with which
the well expands. (Unfortunately, this integral cannot be evaluated in terms of
elementary functions.)

Suppose we allow the well to expand to twice its original width, so the “exter-
nal” time is given by w(7,) = 2a. The “internal” time is the period of the
time-dependent exponential factor in the (initial) ground state. Determine
T, and T;, and show that the adiabatic regime corresponds to o <« 1, so that
e~*Z 2 | over the domain of integration. Use this to determine the expansion
coefficients ¢,. Construct W(x, r), and confirm that it is consistent with the

adiabatic theorem.

Show that the phase factor in W (x, t) can be written in the form
1 t
6(t) = 3 f E(t"hdt, [10.6]
0

where E,(t) = n*nin? /2mw2 is the n™ insrantaneous eigenvalue, at time ¢.
Comment on this result.
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10.1.2 Proof of the Adiabatic Theorem

The adiabatic theorem is simple to state, and it sounds plausible, but it is not easy
to prove.’ Suppose the time-dependent part of the Hamiltonian can be written in the
form*

H@) =Vf@, [10.7]

where f(t) is a function that starts out zero (atf = 0) and increases to 1 (att = T),
Figure 10.4. Assume that the particle starts out in the n' eigenstate of the original
Hamiltonian:

W) =y [10.8]

and evolves into some state ¥ (¢). Our problem is to show that if the function f(#) rises
very gradually, then the probability that the particle, at time T, is in the nth eigenstate
of the final Hamiltonian (1//,{ ) is 1. More precisely, we must demonstrate that

1, ifm =n,

2 —
(T | —{0’ ifm £ n. [10.9]

(Of course, if the first of these is true, the second has to be, and vice versa. But it is
not clear at this stage which condition will be easier to prove.)

Assume for the moment that ¥ is small, so we can use first-order time-
independent perturbation theory to determine 1//,{ . From Equation 6.12,

v,
Sy 5 — 2y, 10.10
V=Y ]#ZmEm_Ekwk [10.10]
A ()
1 \
|
|
|
|
| >
T t

Figure 10.4: The function f(t), in Equation 10.7.

3The adiabatic theorem is usually attributed to Ehrenfest, who studied adiabatic processes in early
versions of the quantum theory. The first proof in modern quantum mechanics was given by Born and
Fock, Zeit. f Physik 51, 165 (1928). Other proofs will be found in Messiah, Quantum Mechanics (New
York: John Wiley & Sons, 1962), Vol. 11, Chapter XVII, Section 12, and J-T. Hwang and Philip Pechukas,
J. Chem. Phys. 67,4640 (1977). The argument given here is suggested by Gasiorowicz, Quantum Physics
(New York: John Wiley & Sons, 1974), Chapter 22, Problem 6.

4The assumption that H' is the product of an operator (V') and a (real) function of ¢ is not necessary
for the theorem itself, but it does make the proof less cumbersome. In Section 10.1.3 we will encounter a
case in which the different matrix elements of H' have different (complex) time dependences. As long as
the adiabatic approximation (in the form of Equation 10.15) holds for each of them, the adiabatic theorem
itself is valid.
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where
Vim = (WlV [¥m). [10.11]

(To simplify the notation, I'll drop the superscript i on eigenfunctions and eigenvalues
of the initial Hamiltonian; these are the “unperturbed” states for the problem.)

Meanwhile, we use first-order time-dependent perturbation theory to determine
W (T). From Equation 9.81,

W)=Y et)pe B, [10.12]
1
where (Equation 9.84)
) =1~ %V,,,, /Ot fihde [10.13]
and (Equation 9.85)
alt) = —%V,,, fot NG e L T [10.14]
This last integral can be evaluated using integration by parts. Note that
ol E—EDI'/h El;_lhE—ndiﬂ [ei(El—E,,)t’/h:l,

SO

V] t d (E—E ’
n N2 i n)t/h] dt’
E,—E,,_/O U [e

() = —

Vi ; tdf /
— n ¢ i(Ej—E)t/h _/ i(Ej—E)t'/h dt/ .
E, - E, {f( e 0 dl/e

[1 dropped the lower limit in the first term, because f(0) = 0.] Now comes the

adiabatic approximation: We want f(¢) to be a very gradual function, so that d f/dt

is extremely small. Specifically, we assume that
df |El - Enl

I 5 f [10.15]

then the last term makes a negligible contribution to ¢;{¢), and we conclude that

Vind Vin _
W(T) = [(1 —i )wn -2 5 1/f1:|€ S 110.16)
I#n n

where 4 is the area under the graph of f(¢), fromOto T.



Sec. 10.1: The Adiabatic Theorem 329

Putting together Equations 10.10 and 10.16, and exploiting the orthonormality
of the initial eigenfunctions, we find that

W)= 1+:224 > Vial? | izt [10.17)
! h ksn (En - Ek)2 , '

while, for m # n,

o) = {14078 ]| e

h m En
— L + ViViem iE T/
Enw—En 5y (En— E)(En — E2)
A nnVnm V" V”l 4
_ | v, " Z Kk o EnT/h. [10.18]
W(En—En) 4 (En— EQ)(En — E)

But wait: These wave functions were only accurate to first order in V', so the second-
order terms in Equations 10.17 and 10.18 are spurious (we have already thrown away
quantities of comparable size). To first order, we have

W) = { [1+i%2]eBmm, m=n, [10.19]
0 m # n.
It follows that
(D> =1, [10.20]
while (for m # n)
(D) )? =0. [10.21]

Ostensibly, either of these would suffice to establish the desired result (Equa-
tion 10.9). However, Equation 10.20 is only accurate to first order (in V'), whereas
Equation 10.21 is accurate to second order (and for that matter to third order as
well).> In truth, Equation 10.20 tells us nothing (it would be valid also for a nonadi-
abatic transformation); the crucial point is the cancellation of the first-order terms in
Equation 10.18, for this tells us that there will be no transitions to other states.’

5See Problem 9.15 for a discussion of the analogous situation in ordinary perturbation theory.

6In this context the word “transition” means from an eigenstate V) of the initial Hamiltonian
(H") to a different eigenstate 1/;,{ of the final Hamiltonian (H/). The adiabatic theorem says that if the
Hamiltonian changes gradually from H' to H/, there will be no such transitions. By contrast, in the
previous chapter we were always dealing with eigenstates of the same (unperturbed) Hamiltonian. At the
end of the process the perturbation was (explicitly or implicitly) turned off, and a “transition” meant from
one eigenstate of the unperturbed Hamiltonian to another eigenstate of the unperturbed Hamiltonian. The
transition amplitudes were of first order in H’ (Equations 9.17 and 9.85) and the transition probabilities of
second order (for example, Equations 9.28, 9.86, and 9.87). The essence of the adiabatic theorem (as we
shall see in the next paragraph) is that the transition amplitudes are only second order, and the transition
probabilities fourth order in the (small) perturbation.
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This shows that if the change in the Hamiltonian is both adiabatic and very
small (so that first-order perturbation theory can be applied), then there will be no
transitions. But what if the change, though gradual, is not small? In that case we
chop the interval T into N subintervals, so that the change in the Hamiltonian during
a single subinterval (AV)is of order ¥ /N; if N it large, then AV is small, and we can
apply the previous argument to each subinterval. If the transition amplitude (Equation
10.18) were first order in the perturbation, then the fozal transition amplitude would
go like

v(Z) s 10.22]
(%) &

(N steps, each making a contribution proportional to AV). The net result would be
of order V', and if ¥ is large, so too would be the transition amplitude. But in fact the
transition amplitude is second order, so the total goes like

2 2
N(—}VV) - —I]/—v— [10.23]

In the limit as N — oo, the transition amplitude goes to zero, regardless of the size
of V. QED

Problem 10.2 In the beginning of this chapter, I characterized an adiabatic process
informally as one for which T, > T,. How is this related to the precise condition
(Equation 10.15) required in the proof (in other words, what are T, and 7; here)?

10.1.3 An Example
Imagine an electron (charge —e, mass m) at rest at the origin, in the presence
of a magnetic field whose magnitude (By) is constant but whose direction sweeps out

a cone, of opening angle «, at constant angular velocity w (Figure 10.5):

B(¢) = Bo[sina cos(wt)i + sina sin(wt) ] + cos ak. [10.24]

The Hamiltonian (Equation 4.158) is

h B
H(t) = fp.s= 250 [sina cos(wt)o, + sina sin(wt)o, + cos wo,]
m
howy { cosa e sina

- (ei“" sine  —cosa ) ’ (10.25]

where B
w = -0, [10.26]

m
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Figure 10.5: Magnetic field sweeps
around on a cone, at angular velocity w,
Equation 10.24.

The normalized eigenspinors of H(¢) are

X+(t)=< cos(@/2) ) [10.27]

e’ sin{ar/2)
and
_ sin(or/2) )
X—(t) - (_eia)t COS((Y/Z)) » [1028]

they represent spin up and spin down, respectively, along the instantaneous direction
of B(¢) (see Problem 4.31). The corresponding eigenvalues are

Es=F—5. [10.29]

Suppose the electron starts out with spin up, along B(0):

_ [ cos(a/2)
x0= (e, [10.30]

The exact solution to the time-dependent Schridinger equation is (Problem 10.3)
[cos(m /2) + i 2 gin(r /2)] cos(a/2)e""
() = ' . [1031]
[cos(m /2) + =) gin(rs /2)] sin(ar/2)e /2

where

A= \/a)z + w? + 20w cosa, [10.32]

or, writing it as a linear combination of y, and x_,

x@®) = [cos (%t) + i———(w1 * c;cos ) sin (%)] ey (1)

At .
+i [% sin o sin (7)} e 2y _(1). [10.33]
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Evidently the (exact) probability of a transition to spin down (along the current di-
rection of B) is

2
D lx_ ()2 = [% sina sin (%)] . [10.34]

The adiabatic theorem says that this transition probability should vanish in the
limit 7, > T;, where T, is the characteristic time for changes in the Hamiltonian (in
this case, 1/w) and T7; is the characteristic time for changes in the wave function [in
this case, i1 /(£ — E_) = 1/w]. Thus the adiabatic approximation means w < w;:
The field rotates slowly, in comparison with the phase of the (unperturbed) wave
functions. In the adiabatic regime A = w, and therefore

A\ T
1O x_ ()2 = [3 sina sin (-)] -0, [10.35]
[43]] 2
as advertised. The magnetic field leads the electron around by its nose, with the spin

always pointing in the direction of B. By contrast, if w > w then A = w, and the
system bounces back and forth between spin up and spin down (Figure 10.6).

AKX (2

(cosinoc)2 e

o

21/ A 4/ 6rn/A 8n/A t

Figure 10.6: Plot of the transition probability, Equation 10.34, in the nonadia-
batic regime (v < wi).

*xxProblem 10.3 Check that Equation 10.31 satisfies the time-dependent Schrodinger

equation for the Hamiltonian (Equation 10.25). Note: This is the same as Problem
9.19(b), except that now the electron starts out with spin up along B, whereas in
Equation 9.90 it started out with spin up along z. Also confirm Equation 10.33,
and show that the sum of the squares of the coefficients is 1, as required for proper
normalization.
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10.2 Berry’s Phase

10.2.1 Nonholonomic Processes

Let us return to the classical model I used (in Section 10.1.1) to develop the notion
of an adiabatic process: a perfectly frictionless pendulum whose support is carried
around from place to place. I claimed that as long as the motion of the supportis very
slow, compared to the period of the pendulum (so that the pendulum executes many
oscillations before the support has moved appreciably), it will continue to swing in
the same plane (or one parallel to it), with the same amplitude (and, of course, the
same frequency).

But whatif I took this ideal pendulum up to the North Pole, and set it swinging—
say, in the direction of Portland (Figure 10.7). (For the moment, I’ll pretend the earth
is not rotating.) Very gently (that is, adiabatically), I carry it down the longitude line
passing through Portland, and on beyond, down to the equator. At this stage it is
swinging north-south. Now I carry it (still swinging north-south) partway around the
equator. And finally, I carry it back up to the North Pole, along the new longitude
line. It is clear that the pendulum will no longer be swinging in the same plane as
it was when I set out—indeed, the new plane makes an angle ® with the old one,
where © is the angle between the southbound and the northbound longitude lines.
Now © is equal to the solid angle () subtended (at the center of the earth) by the
path around which I carried the pendulum. For this path surrounds a fraction ® /27
of the northern hemisphere, so its area is 4 = (1/2)(®/2m)4x R? = ®R? (where R
is the radius of the earth), and hence

®=A4/R*=Q. [10.36]

D Pendulum
>

(S]

Portland

Figure 10.7; Itinerary for adiabatic

transport of a pendulum on the surface
of the earth.
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Figure 10.8: Arbitrary path on the surface
of a sphere, subtending a solid angle .

This is a particularly nice way to express the answer, because it turns out to be
independent of the shape of the path (Figure 10.8).”

Incidentally, the Foucault pendulum is an example of precisely this sort of
adiabatic transport around a closed loop on a sphere—only this time instead of me
carrying the pendulum around, I let the rotation of the earth do the job. The solid
angle subtended by a latitude line 8, (Figure 10.9) is

Q= fsin() déde¢ = 2n(— COSG)IgO =27(1 — cosbp). [10.37]

Relative to the earth (which has meanwhile turned through an angle of 277), the daily
precession of the Foucault pendulum is 257 cos 6p—a result that is ordinarily obtained
by appeal to Coriolis forces in the rotating reference frame,® but is seen in this context
to admit a purely geometrical interpretation.

A system such as this, which does not return to its original state when transporied
around a closed loop, is said to be nonholonomic. (The “transport” in question need
not involve physical motion: What we have in mind is that the external parameters of

z

Figure 10.9: Path of a Foucault
pendulum in the course of one day.

7You can prove this for yourself, if you are interested. Think of the circuit as being made up of tiny
segments of great circles (geodesics on the sphere); the pendulum makes a fixed angle with each geodesic
segment, so the net angular deviation is related to the sum of the vertex angles of the spherical polygon.

8See, for example, Jerry B. Marion, Classical Dynamics, 2nd ed. (New York: Academic Press,
1970), Section 11.4. Geographers measure latitude (1) up from the equator, rather than down from the
pole, so cos 6y = sin A.
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the system are changed in some fashion that eventually returns them to their initial
values.) Nonholonomic systems are ubiquitous—in a sense, every cyclical engine is
a nonholonomic device: At the end of each cycle the car bas moved forward a bit, or
a weight has been lifted slightly, or something. The idea has even been applied to the
locomotion of microbes in fluids at low Reynolds number.” My project for the next
section is to study the quantum mechanics of nonholonomic, adiabatic processes. The
essential question is this: How does the final state differ from the initial state, if the
parameters in the Hamiltonian are carried adiabatically around some closed cycle?

10.2.2 Geometric Phase

If the Hamiltonian is independent of time, then a particle which starts out in the nth
eigenstate ¥, (),

Hyra (x) = Epin(x),

remains in the n? eigenstate, simply picking up a phase factor:
W, (x, £) = Pn(x)e Et/E, [10.38]

If the Hamiltonian changes with time, then the eigenfunctions and eigenvalues them-
selves are time dependent:

H(t)Yn(x, 1) = En(O)¥a(x, 1) (10.39]

But the adiabatic theorem tells us that when H changes very gradually, a particle
which starts out in the nth eigenstate will remain in the n'" eigenstate—picking up at
most a time-dependent phase factor—even as the eigenfunction itself evolves. That
is to say,

U, (0, 1) = Y (x, 1)e 5 Jo B4 gin), [10.40]
The term

t
8,(t) = —%/0 E,(thdt [10.41]

is known as the dynamic phase; it generalizes the “standard” factor (—E,t /h) to the
case where E,, is a function of time. (You will have encountered dynamical phase
factors already, if you worked Problems 9.16 and and 10.1.) Any “extra” phase,
¥a(2), is called the geometric phase. At the moment we don’t know what it is,
or what physical significance (if any) it carries; all we can say is that the adiabatic
theorem does not rule out such a factor, since the particle is still “in the n' eigenstate”,
whatever the value of y,. [More precisely, a measurement of the energy attime ¢ would
be certain to return the value E,(t).] Indeed, since the eigenvalue equation (Equa-

9The pendulum example is an application of Hannay’s angle, which is the classical analog to
Berry’s phase. For a collection of papers on both subjects, see Alfred Shapere and Frank Wilczek, eds.,
Geometric Phases in Physics, (Singapore: World Scientific, 1989).
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tion 10.39) and the normalization condition only determine ¥, (x, ¢) up to an arbitrary
phase, and since this arbitrary phase could in principle be chosen independently at
each instant of time [though in practice we shall always take ¥, (x, t) to be a smooth
function of 7], we have to allow for an arbitrary phase factor in Equation [10.40].1°
Notice, incidentally, that energy is not conserved here. Of course not: Whoever is
changing the Hamiltonian is pumping energy into or out of the system.

If we plug Equation 10.40 into the (time-dependent) Schrédinger equation,

ov
ih—é—;— = H@)W, [10.42]
there emerges a simple formula for the time development of the geometric phase:
1/fn 6, i6, i R an i6, i
h[ l n l}’n En " 10n 5l ¥Vn " 7 On lyn:l
i ” Ypere'’ + i 77 Yype'e

= [HYyle® e = E e e,

whence g d
;/I" +iYn— 7~ 0. [10.43]
Taking the inner product with s, (which I assume has been normalized), we obtain
dyy Ay,
T il 2, [10.44]

Now v, (x, ¢) depends on ¢ because there is some parameter R(¢) in the Hamil-
tonian that is changing with time. [In Problem 10.1, R(¢) would be the width of the
infinite square well, whose right wall is expanding.] Thus

9y, _ oY, dR
3% — 3R E—’ [10.45]
so that p oy, dR
yn n
dt =1l oR ) dt’
and hence
Yy Ry Yy
yn(t)=z/(1/fn| L2 >Wd’ fR (1//,,| v )dR [10.46]

where R; and Ry are the initial and final values of R(¢). In particular, if the Hamil-
tonian returns to its original form after time 7', so that Ry = R;, then y,(T) = 0
—nothing very interesting there!

10For this reason, most people assumed until quite recently that the geometric phase was of no
conceivable physical significance. It was Michael Berry’s inspiration to realize that if you carry the
Hamiltonian around a closed cycle, bringing it back to its original form at the end, the relative phase at the
beginning and at the end of the process is a nonarbitrary quantity, with profound physical implications.
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However, I assumed (in Equation 10.45) that there is only one parameter in
the Hamiltonian that is changing. Suppose there are N of them: R;(z), R(¢), ...,
Ry (1); in that case

8wn _ 8wn de 8wn dRZ + 8wn dRN

=(V d——ls [10.47]
_( an) dt’ .

3t  ORy dt ' R, dt | 3Ry dr
where R= (Ry, R,, ..., Ry), and Vg is the gradient with respect to these parameters.
This time we have R
Y
@ =i [l Vath) - dR, [10.48]
R;

and if the Hamiltonian returns to its original form after a time 7, the net geometric
phase change is

Y(T) =i fwnwm/m .dR. [10.49)

This is a line integral around a closed loop in parameter space, and it is not, in
general, zero. Equation 10.49 was first obtained by Berry in 1984," and y,(7T) is
called Berry’s phase. Notice that y, (T') depends only on the path taken, not on how
Jast that path is traversed (provided, of course, that it is slow enough to validate the
adiabatic hypothesis). By contrast, the accumulated dynamic phase,

1 T
gn(T):_ﬁ/ En(t/)dt/’
0

depends critically on the elapsed time.

The derivation of Berry’s phase raises several questions, which I would like to
address before turning to some examples and applications.

1. Is y,(¢) real? If it’s not, then ¢/ is not a phase factor at all, but an ex-
ponential factor, and the normalization of W, (in Equation 10.40) is lost. Since the
time-dependent Schrédinger equation conserves probability, it must preserve nor-
malization. It would be comforting to check this, by showing explicitly that Equa-
tion 10.48 yields areal y,. In fact, this is very easy to do. First note that

Ver{¥nl,) =0 [10.50]

(because by assumption v, is normalized). So

(VeVn|¥n) + (YnlVeVn) = ($ulVRYA)" + (¥u|Va) =0.

Since (Y| VrYr,) plus its complex conjugate is zero, it follows that
(¥|Vriy) isimaginary, [10.51]
and hence, by Equation 10.48, y, (¢) is real. [Incidentally, if ¥, itself is real, then so

M. V. Berry, Proc. R. Soc. Lond. A 392,45 (1984), reprinted in Shapere and Wilczek, (footnote
9). Itis astonishing, in retrospect, that such a fundamental result escaped notice for 60 years.
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(obviously) is (| Vz ¥, )—this quantity is both real and imaginary, and it must there-
fore be zero. Evidently the geometric phase vanishes whenever the eigenfunctions
(of H(¢t)) are real.]

2. Is Berry’s phase measurable? We are accustomed to thinking that the
phase of the wave function is arbitrary—physical quantities involve |¥|?, and the
phase factor cancels out. But y,(T) can be measured, if (for example) we take a
beam of particles (all in the state W) and split it in two, so that one beam passes
through an adiabatically changing potential, while the other does not. When the two
beams are recombined, the total wave function has the form

\1/—1\1/ +1xp ir [10.52]
—"2 O 2 Oe b .

where Wy is the “direct” beam wave function, and I is the extra phase (in part dynamic,
and in part geometric) acquired by the beam subjected to the varying ). In this case

i A _
W[* = 71'%'2 (1+eT)(1+e7T)
1

= E|\1/0|2(1 +cosT) = [W|* cos?(I'/2). (10.53]

So by looking for points of constructive and destructive interference (where I" is an
even or odd multiple of 7, respectively), one can easily measure I'. (Berry, and
other early writers, worried that the geometric phase might be swamped by a larger
dynamic phase, but it has proved possible to arrange things so as to separate out the
two contributions.)

3. Where does the derivation invoke the adiabatic hypothesis? At first
glance, the argument going from Equation 10.40 to Equation 10.48 appears to have
proved altogether too much. Why doesn’t the derivation work in reverse, showing that
as long as y, (¢) is given by Equation 10.48, the expression in Equation 10.40 satisfies
the Schrédinger equation exactly—whether or not the process is adiabatic(!) (This
would, of course, be nonsense; it would imply that the adiabatic theorem is empty:
No transitions ever occur, even if the change in the Hamiltonian is far from gradual.)
The answer is that the step following Equation 10.43, in which we take the inner
product, cannot in general be reversed: Although Equation 10.43 implies Equa-
tion 10.44, Equation 10.44 does not imply Equation 10.43. In fact, there is a serious
fraud in the derivation, which I did not confess at the time because it somewhat spoils
the beauty of the argument. The truth is that although Equation 10.44 is correct, Equa-
tion 10.43 is not.'> For Equation 10.40 is only true in the extreme adiabatic limit—the

2ndeed, if you take Equation 10.43 at face value, it can be solved directly for y,:

dy, .0 _ %)
7 _zat(lnllfn)=>wn(X,t)—¢n(x)e ,

and hence (going back to Equation 10.40), .
-4 f E,(t)dt
Wy (x,t) = gnlx)e " Jo .

The geometric phase, in effect, soaks up the time dependence acquired by the eigenfunction ¥, (x, t) asa
consequence of the change in H. But this is completely false, as we shail see in the examples.
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exact solution would contain admixtures of other states:

Wn(x, 8) = Y (x, NP VPO 4 € Y e (O Ym(x, 1), [10.54]
msn

where € = T;/T, characterizes the departure from adiabaticity (it goes to zero in the
adiabatic limit). Inclusion of this term modifies Equation 10.43, to read

n n _ig, — 0
agp o w,,dy = —oithg ,ynéz[( o En +d )wm+cm :)/f } (10.55]
msn

Both terms on the left are first order in € (if the Hamiltonian didn’t change at all,
both 8, /3¢ and y, would be zero), but so are the first two terms on the right. The
final term is second order, so it can legitimately be ignored, but dropping the first two
(as I did, implicitly, in my derivation of Equation 10.43), is illegal. For consistency
(noting, while I'm at it, that y,, is already first order, so ¢’** = 1 on the right), I should
have written

G/ dy, -
1/; + i 1/;,, y =—¢ '9”62( cmEn + )1/f,,,, [10.56]
ot o

instead of Equation 10.43. Fortunately, the inner product (with v, kills the extra
term, and that’s how it comes about that Equation 10.44 is correct, even though
Equation 10.43, from which it was obtained, was not. (See Problem 10.7.)

When the parameter space is three dimensional, R = (Ry, Ry, R;), Berry’s
formula (Equation 10.49) is reminiscent of the expression for magnetic flux in terms
of the vector potential A. The flux, ®, through a surface S bounded by a curve C
(Figure 10.10), is

= /B-da. [10.57]
N

If we write the magnetic field in terms of the vector potential (B = V x A), and apply
Stokes’ theorem:

:f(vXA)-dazyfA.dr. (10.58]
N C

Figure 10.10: Magnetic flux through a
surface S bounded by the closed curve C.
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Thus Berry’s phase can be thought of as the “flux” of a “magnetic field”
“B” =iVr X (Y| Vgr,), [10.59]

through the (closed-loop) trajectory in parameter space. In the three-dimensional
case, then, Berry’s phase can be written as a surface integral,

yo(T) = i / [V X (Y| V¥)] - da. 10.60]

The magnetic analogy can be carried much further, but for our purposes Equa-
tion 10.60 is merely a convenient alternative expression for y,(T).

«Problem 10.4

(a) Use Equation 10.46 to calculate the geometric phase change when the infinite
square well expands adiabatically from width w; to width w,. Comment on this
result.

(b) If the expansion occurs at a constant rate (dw/dt = v), what is the dynamic
phase change for this process?

(c) If the well now contracts back to its original size, what is Berry’s phase for the
cycle?

Problem 10.5 The delta-function well (Equation 2.96) supports a single bound
state (Equation 2.111). Calculate the geometric phase change when « gradually
increases from ¢ to ap. If the increase occurs at a constant rate (da/dt = ¢), what
is the dynamic phase change for this process?

Problem 10.6 As I noted in the text (and Problems 10.4 and 10.5 confirm), if
Y, (x, ) is real, the geometric phase vanishes. You might try to beat this rap by
tacking an unnecessary (but perfectly legal) phase factor onto the eigenfunctions:
v, (x,t) = €'y, (x, t), where ¢, (R) is an arbitrary (real) function. Try it. You'll
get a nonzero geometric phase, all right, but note what happens when you put it back
into Equation 10.40. And for a closed loop it gives zero. Moral: For nonzero Berry’s
phase, you need (1) more than one time-dependent parameter in the Hamiltonian, and
(2) a Hamiltonian that yields nontrivially complex eigenfunctions.

10.2.3 An Example

The classic example of Berry’s phase is an electron at the origin, subjected to a
magnetic field of constant magnitude but changing direction. Consider first the special
case (analyzed in Section 10.1.3) in which B(t) precesses around at a constant angular
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velocity w, making a fixed angle ¢ with the z-axis. The exact solution (for an electron
that starts out with “spin up” along B) is given by Equation 10.33. In the adiabatic
regime, w < w1,

2
A= a)l\/l +2f)— cosa + (3) = w (1 + gcosa) =w; +wcosa, [10.61]
(]

an w
and Equation 10.33 becomes

X(t) o~ eiwlt/Zei(wcosa)t/Ze—iwt/2X+(t)

+ i [2 sina sin (%ﬂ)] eI 2y (1). {10.62]

)

As w/w; — 0 the second term drops out completely, and the result matches the
expected adiabatic form (Equation 10.40). The dynamic phase is

wnt

1 t
0.(t)=—— | Ei(thdt = — 10.63
4+ () 7 fo +()d > ( ]
(where £ = —hw; /2 is taken from Equation 10.29), so the geometric phase is
t
Vo (t) = (cosa — 1)%. [10.64]

For a complete cycle T = 27 /w, and therefore Berry’s phase is

y(T) = m(cosa — 1). [10.65]

Now consider the more general case, in which the tip of the magnetic field
vector sweeps out an arbitrary closed curve on the surface of a sphere of radius
r = By (Figure 10.11). The eigenstate representing spin up along B(#) has the form
(see Problem 4.31)

_ cos(6/2)
X+ = (eid’ Sin(G/Z)) ) [10.66]

Figure 10.11: Magnetic field of constant
magnitude but changing direction sweeps
out a closed loop.
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where 8 and ¢ (the spherical coordinates of B) are now both functions of time.
Looking up the gradient in spherical coordinates, we find

Ox+,  10x4 2 I x4 4
Uy, = Xrpy WX - X+
= 5 T e e ?

1 —(1/2)sin6/2) \ 4 1 0 R
=7 ((1/2)ei¢ cos(e/z)) 0+ —-= (ie“f’ sin(0/2)) é.  [10.67]
Hence

(X+|Vxy) = %[— sin(6/2) cos(G/Z)é + sin(8/2) cos(6/2)é

+ 2i [10.68]

sin®(6/2) ] B isinz(G /2) -

sin g rsinf

For Equation 10.60 we need the cur! of this quantity:

1 o | . [isinf@/)\|. .
— _ = —7. 10.6
rsiné 06 [sm& ( rsiné g 2r2r [10.69]

According to Equation 10.60, then,

Vx (x4|Vx4) =

1 1,

The integral is over the area on the sphere swept out by B in the course of the cycle,
so da = r?dQ 7, and hence

1 1
yi(T) = "E/dQ =52, [10.71]

where € is the solid angle subtended at the origin. This is a delightfully simple
result, and tantalizingly reminiscent of the classical problem with which we began
the discussion (transport of a frictionless pendulum around a closed path on the surface
of the earth). It says that if you take a magnet, and lead the electron’s spin around
adiabatically in an arbitrary closed path, the net (geometric) phase change will be
minus one half the solid angle swept out by the magnetic field vector. In view of
Equation 10.37, the general result is consistent with the special case Equation 10.65,
as of course it had to be.

Problem 10.7 Consider, once again, the special case of the precessing field (Sec-
tion 10.1.3).

(a) Use the eigenspinor (Equation 10.27) to determine (x.4.|(9 x+/3¢t)), and put the
result into Equation 10.44, for an alternative derivation of Equation 10.64.
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(b) Show that Equation 10.43 does not work, in this case. Use Equation 10.62 to
determine c_ (in Equation 10.54). Confirm that the last term in Equation 10.55
is second order in w (don’t forget the ¢ = w/w; out front). Show that y, (¢)
(Equation 10.64) does satisfy the corrected version of Equation 10.43, Equa-
tion 10.56.

s+x+xProblem 10.8 Work out the analog to Equation 10.71 for a particle of spin 1.
Answer: —$2 (for spin s the result is —s2/2).

10.2.4 The Aharonov-Bohm Effect

In classical electrodynamics the potentials (¢ and A)" are not directly measurable—
the physical quantities are the electric and magnetic fields:

E=-Vop——, B=VxA. [10.72]

The fundamental laws of the theory (Maxwell’s equations and the Lorentz force law)
make no reference to potentials, which are (from a logical point of view) no more
than convenient but dispensible scaffolding for getting a better purchase on the real
structure (the fields). Indeed, you’re perfectly free to change the potentials:

dA
¢—>(p’=(p~8—t, A—> A=A VA, [10.73]
where A is an arbitrary function of position and time; this is called a gauge transfor-
mation, and it has no effect at all on the fields.
In quantum mechanics the potentials play a more significant role, for the Hamil-
tonian (Equation 4.201) is expressed in terms of ¢ and A, not E and B:

1 [ 2
H=—|{-V—-gA) +g4g¢p. [10.74]
2m \ i

Nevertheless, the theory is still invariant under gauge transformations (see Problem
4.53), and it was taken for granted until quite recently that there could be no elec-
tromagnetic influences in regions where E and B are zero—any more than there can
be in the classical theory. But in 1959 Aharonov and Bohm!* showed that the vector
potential can affect the quantum behavior of a charged particle that never encoun-
ters an electromagnetic field. I’ll work out a simple example first, then discuss the

131 m sorry, but we have reached a notational impasse: It is customary in quantum mechanics to use
the letter ¥ for potential energy, but in electrodynamics the same letter is reserved for the scalar potential.
To avoid confusion I'll use ¢ for the scalar potential. See Problems 4.51, 4.52, and 4.53 for background
on this material.

14Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). For a significant precursor, see W.
Ehrenberg and R. E. Siday, Proc. Phys. Soc. London B62, 8 (1949).
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Aharanov-Bohm effect itself, and finally indicate how it can be thought of as an
example of Berry’s phase.

Imagine a particle constrained to move in a circle of radius b (a bead on a
wire ring, if you like). Along the axis runs a solenoid of radius @ < b, carrying a
magnetic field B (see Figure 10.12). If the solenoid is extremely long, the field inside
is uniform, and the field outside is zero. But the vector potential outside the solenoid
is not zero; in fact (adopting the convenient gauge condition V - A = 0),"

o .
A=—¢, (>a), [10.75]
2ty

where ® = 7a’ B is the magnetic flux through the solenoid. Meanwhile, the solenoid
is uncharged, so the scalar potential ¢ is zero. In this case the Hamiltonian (Equa-
tion 10.74) becomes

1
H=5- [-7*V? + q*4% + 2ihgA - V]. [10.76]

But the wave function depends only on the azimuthal angle ¢, (§ = n/2and r = b)
so V — (¢/b)(d/d¢), and the Schrodinger equation reads

1 n d? g®\* ngd d _
%[-ﬁ%—ﬁ(ﬁ) i @) = Ev. 107

J

A" AT AVAVAVAvAvAvA S AvATATAvATAAAvATA A A AT A A" AT

Figure 10.12: Charged bead on a circular ring through which a long solenoid passes.

This is a linear differential equation with constant coefficients:

by dy _

15See, for instance, D. J. Griffiths, Introduction to Electrodynamics, 2nd ed. (Englewood Cliffs,
NI: Prentice Hall, 1989), Equation 5.65.
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where o o
_q _ 2mb°E 2
ﬁ = ij_h and € = h2 — /3 . [1079]
Solutions are of the form ‘
V= Ade'*?, [10.80]
with b
A=ﬁi\/ﬁ2+e=ﬁiﬁx/2mE. [10.81]
Continuity of ¥ (¢), at ¢ = 2, requires that A be an integer:
b
,B:tﬁx/ZmE=n, (10.82]
and it follows that
n? gd\?
n= T -——), =0,%1,42,...). 10.
e (n Znh) n=0 ) [10.83]

The solenoid lifts the twofold degeneracy of the bead on a ring (Problem 2.43):
Positive n, representing a particle traveling in the same direction as the current in
the solenoid, has a somewhat lower energy (assuming g is positive) than negative n,
describing a particle traveling in the opposite direction. And, more important, the
allowed energies clearly depend on the field inside the solenoid, even though the field
at the location of the particle is zero.'

More generally, suppose a particle is moving through a region where B is zero
(so V x A = 0), but A itself is not. (I'll assume that A is static, although the method
can be generalized to time-dependent potentials.) The (time-dependent) Schrddinger

equation,
1 (% g W
— | =-V—gA =ih— 10.84
I:Zm(i q)+V:|Lp SFPR [ ]

with potential energy V' -—which may or may not include an electrical contribution
q@—can be simplified by writing

U = ey, [10.85]

where

g(r) = 2 / rA(r’) -dr, [10.86]
hJo

1]t is a peculiar property of superconducting rings that the enclosed flux is quantized: ® =
(2mh/q)n’, where n' is an integer. In this case the effect is undetectable, since E, = (h%/2mb%)(n + n')2,
and (n + n') is just another integer. (Incidentally, the charge ¢ here turns out to be twice the charge of
an electron; the superconducting electrons are locked together in pairs.) However, flux quantization is
enforced by the superconductor (which induces circulating currents to make up the difference), not by the
solenoid or the electromagnetic field, and it does not occur in the example considered here.
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and @ is some (arbitrarily chosen) reference point. Note that this definition makes
sense only when V x A = 0 throughout the region in question—otherwise the line
integral depends entirely on the path taken from O to r, and hence does not define a
function of r. In terms of W', the gradient of W is

VU = e8(iVg)W' 4 8(VI);

but Vg = (g /R)A, so
/] ho,
(—'V - qA) v = 7e'gV\IJ', [1087]
i i

and it follows that )
h A
(—,v - qA) U = 12 SV, [10.88]
1

Putting this into Equation 10.84, and canceling the common factor of '8, we are left

with
2 ’

I gy +VV = iha )
2m ot
Evidently U’ satisfies the Schrodinger equation without A. If we can solve Equa-
tion 10.89, correcting for the presence of a (curl-free) vector potential is trivial: You

just tack on the phase factor ¢’¢.

Aharonov and Bohm proposed an experiment in which a beam of electrons is
split in two, and passed either side of a long solenoid, before being recombined (Fig-
ure 10.13). The beams are kept well away from the solenoid itself, so they encounter
only regions where B = 0. But A, which is given by Equation 10.75, is not zero, and
(assuming ¥ is the same on both sides), the two beams arrive with different phases:

[10.89]

4

Beam
recombined

Beam
split

A A"A-a-a-a-a-a-a-a g VVV\\lfvvaVVV oo

Solenoid

Figure 10.13: The Aharonov-Bohm effect: electron beam splits, with half pass-
ing either side of a long solenoid.
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q qP 1. A q
== | A .dr=-— -¢ - dp) =+-—. 10.90
g h/ =5 <r¢) (r¢de) 7 [10.90]
The plus sign applies to the electrons traveling in the same direction as A—which is
to say, in the same direction as the current in the solenoid. The beams arrive out of
phase by an amount proportional to the magnetic flux their paths encircle:

®
phase difference = ?h—. (10.91]

This phase shift leads to measurable interference (as in Equation 10.53), and has been
confirmed experimentally by Chambers and others."”

The Aharonov-Bohm effect can be regarded as an example of geometric phase,
as Berry himself noted in his first paper. Suppose the charged particle is confined to a
box (which is centered at point R outside the solenoid) by a potential ¥ (r — R)—see
Figure 10.14. (In a moment we’re going to transport the box around the solenoid,
so R will become a function of time, but for now it is just some fixed vector.) The
eigenfunctions of the Hamiltonian are determined by

1 [ 2
{ﬁ [—,V—qA(r)} + V(r—R)] Y = Euv,. [10.92]
z
We have already learned how to solve equations of this form:
Yn =€y, [10.93]
[~ ———]
(F-R

——
Figure 10.14: Particle confined to a box, by a potential ¥ (r — R).

17R. G. Chambers, Phys. Rev. Lett. 5,3 (1960).
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where!®

g=2 f A(r) - dr’ [10.94]
h Jr

and v’ satisfies the same eigenvalue equation, only with A — 0:

2
[—h—Vz +V(r-— R)} Y, = E. ;. [10.95]
2m

Notice that v, is a function only of the combination (r — R), not (like ¥r,) of r and
R separately.

Now let’s carry the box around the solenoid (in this case the process doesn’t
even have to be adiabatic). To determine Berry’s phase, we must first evaluate the
quantity (¥,,|Vz¥,). Noting that

Va¥a = Vi [e2¥,(r —R)] = —i%A(R)e"gx/f,’, (r — R) + €¥VRy, (r — R),

we find

(¥nl VRYn)
= fe—fg[w; r—R)e® [—i%A(R)t//,’, (r —R) + Vi, (r — R)] d’r

4
/]

A(R) — / [¥! (r — RV (r — R)d°r. [10.96]

The V with no subscript denotes the gradient with respect to r, and I used the fact
that Vz = —V, when acting on a function of (r — R). But the last integral is
i /h times the expectation value of momentum, in an eigenstate of the Hamiltonian
—(h*/2m)V? + ¥, which we know from Section 2.1 is zero. So

(V| VRY) = —i%A(R). [10.97]
Putting this into Berry’s formula (Equation 10.49), we conclude that
q q qe

() = = PAR) -dR == [ (V A)-da="—, [10.98]

which neatly confirms the Aharonov-Bohm result (Equation 10.91), and reveals that
the Aharonov-Bohm effect is a particular instance of geometric phase.'

181t is convenient to set the reference point O at the center of the box, for this guarantees that we
recover the original phase convention for ¥, when we complete the journey around the solenoid. If you use
a fixed point in space, for example, you’ll have to readjust the phase “by hand”, at the far end; this leads to
exactly the same answer, but it’s a crude way to do it. In general, when choosing the phase convention for
the eigenfunctions in Equation 10.39, you want to make sure that ¥, (x, T') = ¥, (x, 0) so thatno spurious
phase changes are introduced.

9Tncidentally, in this case the analogy between Berry’s phase and magnetic flux (Equation 10.59)
becomes almost an identity: “B” = (¢ /h)B.
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What are we to make of the Aharonov-Bohm effect? Evidently our classical
preconceptions are simply mistaken: There can be electromagnetic effects in regions
where the fields are zero. Note, however, that this does not make A itself measurable—
only the enclosed flux comes into the final answer, and the theory remains gauge
invariant.

Problem 10.9

(a) Derive Equation 10.76, from Equation 10.74.
(b) Derive Equation 10.88, starting with Equation 10.87.

FURTHER PROBLEMS FOR CHAPTER 10

+ % xProblem 10.10 Suppose the one-dimensional harmonic oscillator (mass m, fre-
quency w) is subjected to a driving force of the form F(t) = mao? f(t), where f(t) is
some specified function [I have factored out ma? for notational convenience; notice
that f(¢) has the dimensions of length]. The Hamiltonian is

2 52
d 1

2m a2 + Ema)zx2 — ma)zxf(t). [10.99]

Assume that the force was first turned on at time ¢t = 0: f(t) = 0 fort < 0.

This system can be solved exactly, both in classical mechanics and in quantum

mechanics.?

H(t) = —

(a) Determine the classical position of the oscillator, assuming it started out at rest
at the origin [x.(0) = X.(0) = 0]. Answer:

X () =w f F(t) sin[w(t — t)]dr. [10.100]
0

(b) Show that the solution to the (time-dependent) Schrodinger equation for this
oscillator, assuming it started out in the nth state of the undriven oscillator
[W(x,0) = ¥, (x), where ¥, (x) is given by Equation 2.50], can be written as

W(x,t) = Yulx — xc)e;',[—(n+%)hwt+mxc(x—%)+¢ j(.: f(t’)xc(t’)dt’]. (10.101]

(C) Show that the eigenfunctions and eigenvalues of H(¢) are

Un(x, ) = Yu(x — ) Ent) = (n + %) ho — %ma)zfz. (10.102]

0See Y. Nogami, Am. J. Phys. 59, 64 (1991) and references therein.
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(d) Show thatin the adiabatic approximation the classical position (Equation 10.100)
reduces to x.(t) = f(¢). Hint: Use the integration-by-parts trick of Section
10.1.2. State the precise criterion—analogous to Equation 10.15—for adia-
baticity.

(e) Confirm the adiabatic theorem for this example, by using the results in (c) and
(d) to show that

W(x,t) = P,(x, 1) D@ [(10.103]

Check that the dynamic phase has the correct form (Equation 10.41). Is the
geometric phase what you would expect?

x+xProblem 10.11 In time-dependent perturbation theory, we used the completeness
of the unperturbed eigenfunctions (of Hp) to expand W(x, t) (see Equation 9.81).
But we could as well use the instantaneous eigenfunctions of H(¢) (Equation 10.39),
since they, too, are complete:

W(x,t) = ch(t)l//n(x, 1)e', (10.104]

where 6,(¢) is given by Equation 10.41. We can use this expansion to develop an
adiabatic series, whose leading term is the adiabatic approximation itself and whose
successive terms represent the departure from perfect adiabaticity.

(a) Insert Equation 10.104 into the (time-dependent) Schrédinger equation, and
obtain the following formula for the coefficients:

. oY, 6 —
ém =~Z(Iﬁm| ;'/; Y, e @ om) [10.105)

(b) Suppose the system starts out in the N'h state; in the adiabatic approximation, it
remains in the N state, picking up (at most) a time-dependent geometric phase
(compare Equations 10.40 and 10.104):

cn(t) = 8, ye'®, [10.106]

Substitute this into the right side of Equation 10.105, and obtain the “first cor-
rection” to adiabaticity:

t
0 o
m(1) =cm(0)*f (Wml%)e”’”e’(g”“g'")dt’. [10.107]
0
This enables us to calculate transition probabilities in the nearly adiabatic

regime. To develop the “second correction,” we would insert Equation 10.107
on the right side of Equation 10.105, and so on.
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(C) As an example, apply Equation 10.107 to the driven-oscillator (Problem 10.10).
Show that (in the near-adiabatic approximation}) transitions are possible only to
the two immediately adjacent levels, for which

t
e () =i /’Z—;’D«/N+1f fhe' e ar,
0

enai() =i |22 N / fhe e dr'.
V 2n o

(The transition probabilities are the absolute squares of these, of course.)




CHAPTER 11

SCATTERING

11.1 INTRODUCTION

ey

11.1.1 Classical Scattering Theory

Imagine a particle incident on some scattering center (say, a proton fired at a heavy
nucleus). It comes in with an energy £ and an impact parameter b, and it emerges at
some scattering angle §—see Figure 11.1. (I'll assume for simplicity that the target
is azimuthally symmetrical, so the trajectory remains in one plane, and that the target
is very heavy, so the recoil is negligible.) The essential problem of classical scattering

Figure 11.1 The classical scattering
- problem, showing the impact parameter b
Scattering center and the scattering angle 6.
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theory is this: Given the impact parameter, calculate the scattering angle. Ordinarily,
of course, the smaller the impact parameter, the greater the scattering angle.

Example: Hard-sphere scattering. Suppose the target is a billiard ball, of
radius R, and the incident particle is a BB, which bounces off elastically (Figure
11.2). In terms of the angle o, the impact parameter is » = R sina, and the scattering
angle is 6 = 7 — 2a, so

T 6 6
b=Rsin|——=) = -1}. 11.1
sm(2 2) Rcos(2> [ ]
Evidently
2cos Y (b/R), ifb<R
= ’ = 11.2
o {0, if b > R. [11.2]

More generally, particles incident within an infinitesimal patch of cross-sectional
area do will scatter into a corresponding infinitesimal solid angle 42 (Figure 11.3).
The larger do is, the bigger d2 will be; the proportionality factor, D(9) = do/d<2,
is called the differential (scattering) cross-section':

do = D(8)dS. [11.3]

Figure 11.2: Elastic hard-sphere scattering.

I'This is terrible language: D isn’t a differential—if anything, it’s a derivative—and it isn’t a
cross-section. Tomy ear, the words “differential cross-section” would apply more properly to do. ButI'm
afraid we’re stuck with this terminology. I should also warn you that the notation D(#) is nonstandard:
Most people just call it do/d$2, but I think it will be less confusing if we give the differential cross-section
its own symbol.
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do

Figure 11.3: Particles incident in the area do scatter into the solid angle 4.

In terms of the impact parameter and the azimuthal angle ¢, do = bdbd¢ and
dQ2 = sin6 dbd¢, so

b
DO) = —

sin @

db
de
(Since 6 is typically a decreasing function of b, the derivative is actually negative—
hence the absolute value sign.)

. [11.4]

Example: Hard-sphere scattering (continued). In the case of hard-sphere
scattering (Equation 11.1),
db 1 . /8
d—9—=—§RSIH (5), [115]

SO

D@®) =

. 2
Rcos(8/2) ( Rsm(9/2)) _ R [11.6]

siné 2 4’
This example is unusual in that the differential cross-section is actually independent
of 6.

The total cross-section is the integral of D(8) over all solid angles:

o EfD(G)dQ; [11.7]

roughly speaking, it is the total area of incident beam that is scattered by the target.
For example, in the case of the hard sphere,

o= (R2/4)fd52 = R?, [11.8]
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which is just what we would expect: It’s the cross-sectional area of the sphere; BBs
incident within this area will hit the target, and those farther out will miss it completely.
But the virtue of the formalism developed here is that it applies just as well to “soft”
targets (such as the Coulomb field of a nucleus) that are not simply “hit or miss.”

Finally, suppose we have a beam of incident particles, with uniform intensity
(or luminesity, as particle physicists call it):

£ = number of incident particles per unit area, per unit time. [11.9]

The number of particles entering area do (and hence scattering into solid angle d<2),
per unit time, is dN = Ldo = LD(8) d2, so

1dN
DB = =—. 11.10
® 740 [ 1
This is often taken as the definition of the differential cross-section, because it makes
reference only to quantities easily measured in the laboratory: If the detector accepts
particles scattering into a solid angle d€2, we simply count the number recorded, per
unit time, divide by d€2, and normalize to the luminosity of the incident beam.

sxxProblem 11.1 Consider the problem of Rutherford scattering: An incident par-
ticle of charge ¢; and kinetic energy E scatters off a heavy stationary particle of
charge g3.

(a) Derive the formula relating the impact parameter to the scattering angle. Note:
This is not easy, and you might want to refer to a book on classical me-
chanics, such as Jerry B. Marion, Classical Dynamics of Particles and Sys-
tems, 2nd ed. (New York: Academic Press, (1970)), Section 9.5. Answer:
b = (q192/8meoE) cot(6/2).

(b) Determine the differential scattering cross-section. Answer:

2
q192
D@®) = . 11.11

© [léneoEsin2(9/2)] [ ]

(C) Show that the total cross-section for Rutherford scattering is infinite.

11.1.2 Quantum Scattering Theory

In the quantum theory of scattering, we imagine an incident plane wave, ¥ (z) =
Ae'*, traveling in the z-direction, which encounters a scattering potential, producing
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an outgoing spherical wave (Figure 11.4).2 That is, we will look for solutions to the
Schrodinger equation of the general form

etkr

V(r6)~ A le”‘z + f(6) } for large r. [11.12]

r

(The spherical wave must carry a factor of 1/r, because this portion of |¢ | must go
like 1/#2 to conserve probability.) The wave number & is related to the energy of the
incident particles in the usual way:

2mE
P

(As before, I shall assume the target is azimuthally symmetrical; in the more general
case the amplitude f of the outgoing spherical wave could depend on ¢ as well as 8.)
The whole problem is to determine the scattering amplitude f(6); it tells
you the probability of scattering in a given direction 6, and hence is related to the
differential cross-section. Indeed, the probability that the incident particle, traveling
at speed v, passes through the infinitesimal area do, in time dt, is (see Figure 11.5)

dP = [Yincigem|* dV = |A)* (v dt) do.

k= [11.13]

eikr

oikz

Figure 11.4: Scattering of waves; incoming plane wave generates outgoing
spherical wave.

ZFor the moment, there’s not much quantum mechanics in this; what we’re really talking about
is the scattering of waves, as opposed to classical particles, and you could even think of Figure 11.4
as a picture of water waves encountering a rock, or (better, since we’re interested in three-dimensional
scattering) sound waves bouncing off a basketball. In that case we’d write the wave function in the real
form
A{cos(kz) + f(9)costkr + 8)/r},

and f(8) would represent the amplitude of the scattered sound wave in the direction 8.
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do

vdt
Figure 11.5: The volume 4V of incident beam that passes through area do in time d¢.

But this is equal to the probability that the particle later emerges into the corresponding
solid angle d2:

A 2 2
dP = lecattered|2dV = d l2f| (vdt)rde,
¥

from which it follows that do = | f1* d€2, so

d
D) = E% = /) [11.14]

Evidently the differential cross-section (which is the quantity of interest to the ex-
perimentalist) is equal to the absolute square of the scattering amplitude (which is
obtained by solving the Schrodinger equation). In the next sections we will study
two techniques for calculating the scattering amplitude: partial wave analysis and
the Born approximation.

Problem 11.2 Construct the analogs to Equation 11.12 for one-dimensional and
two-dimensional scattering.

11.2 PARTIAL WAVE ANALYSIS

11.2.1 Formalism
As we found in Chapter 4, the Schrodinger equation for a spherically symmetrical
potential ¥ () admits the separable solutions

Y(r,0,9) = RN, ), [11.15]

where Y;" is a spherical harmonic (Equation 4.32) and u(r) = r R(r) satisfies the
“radial equation” (Equation 4.37):

" d*u BRIl + 1)
_ b = Eu. 11.
o 372 + [V(r) + 2 ]u Eu [11.16]
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At very large r the potential goes to zero, and the centrifugal term is negligible, so

d’u
— &~ —k*u.
dr?
The general solution is ' '
u(r) = Ce'* + De~ir,

the first term fepresents an outgoing spherical wave, and the second an incoming
one—for the scattered wave, we evidently want D = 0. At very large r, then,
eikr
r

as we already deduced (on qualitative grounds) in the previous section (Equation
11.12),

That’s for very large r (more precisely, for k» > 1; in optics it would be called
the radiation zone). As in one-dimensional scattering theory, we assume that the
potential is “localized,” in the sense that exterior to some finite scattering region it is
essentially zero (Figure 11.6). In the intermediate region (where V' can be ignored
but the centrifugal term cannot),’ the radial equation becomes

d’u Il +1) )
T u= Tk
and the general solution (as we found in Section 4.1.3) is a linear combination of
spherical Bessel functions (Equation 4.45):

{11.17]

u(r) = Arji(kr) + Brn;(kr). [11.18]

However, neither j; (which is something like a sine function) nor r; (which is a sort
of generalized cosine function) represents an outgoing (or an incoming) wave. What
we need are the linear combinations analogous to ¢'*” and e='*"; these are known as
spherical Hankel functions:

BP(x) = i) +imx); AP () = jix) — in(x). [11.19]

The first few spherical Hankel functions are listed in Table 11.1. At large r, hl(l) (kr)

(the “Hankel function of the firstkind”) goes like ¢’*” / r, whereas & 1(2) (kr) (the “Hankel
function of the second kind™) goes like e ~#" /r; for outgoing waves we evidently need
spherical Hankel functions of the first kind:

R(r) = Ch" (kr). [11.20]

3What follows does not apply to the Coulomb potential, since 1/7 goes to zero more slowly than
1/r%, as r — 00, and the centrifugal term does not dominate in this region. In this sense the Coulomb
potential is not “localized.”
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kryd

Radiation
zone

Figure 11.6: Scattering from a
localized potential: the scattering region
(shaded), the intermediate region (where
V = 0), and the radiation zone

(where kr > 1).

Scattering
region

Thus the exact wave function, in the exterior region [where V (r) = 0], is

V(r.0,¢) =A le“‘z + Y CrmhV (kr)Y O, ¢)} : [11.21]
Im
Now, for very large r, the Hankel function goes like (—i)'*'e*" /kr (Table 11.1), so
ikr
V(. 0.6) ~ A {e"’“ + £0.9)° ] , [11.22]
¥
where
1
f6,9)= % Z(—i)lHCz,mYzm(a ®). [11.23]

I,m

This confirms more rigorously the general structure postulated in Equation 11.12,
and tells us how to compute the scattering amplitude, f (6, ¢), in terms of the partial
wave amplitudes C; ,,. Evidently the differential cross-section is

1 , ,
DO,¢)=1f6. ) = — @O C G (VY Y, [11.24]
k

Im I'.m’

Table 11.1: Spherical Hankel functions, 4" (x) and 1 (x).

(1 iz 2) et

hy' =—is- hy =i%

M _ (_ i _ 1Y),z @] i _ 1\ iz
hl —( 22 )e hl (zz Z)e

M _ (30 _ 3 i),z @ 33 i,z
h2 _( z z2+l)e h2 (z3 22 u)e
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and the total cross-section is

, 1
7= 5 2 L O CuCm [PV d = 5 T (Gl 111251
Im

Im I'\m

(Iused the orthonormality of the spherical harmonics, Equation 4.33, in the last step.)
In the previous paragraph I kept the possible ¢ dependence because it cost me
nothing. But if (as is ordinarily the case) V' is independent of ¢, then only terms with

m = ( survive (remember, Y ~ €™?). Now (from Equations 4.27 and 4.32)

21+1

Y26, ¢) = Py(cos 9), [11.26]

where F; is the /th Legendre polynomial. So for the case of azimuthal symmetry, the
exact wave function (in the exterior region) is

& 2+
Y 0) =4 [e"” + ;,/T;—clhfl)(krm(coso)] : [11.27]

the scattering amplitude is

£(6) = Z )’“‘/ 1C,P,(cose) [11.28]

=0

and the total cross-section is
1 [e.¢]
o= Yal [11.29]
1=0

11.2.2 Strategy

All that remains is to determine the partial wave amplitudes C; for the potential in
question. This is accomplished by solving the Schrédinger equation in the interior
region [where V (r) is distinctly nonzero] and matching this to the exterior solution
(Equation 11.27), using the appropriate boundary conditions. But first I need to do
a little cosmetic work, because as it stands my notation is hybrid: 1 used spherical
coordinates for the scattered wave, but Cartesian coordinates for the incident wave.
Before proceeding, it is useful to rewrite the wave function in a more consistent
notation.
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Of course, ¢** satisfies the Schrodinger equation with ¥ = 0. On the other
hand, T just argued that the general solution to the Schrodinger equation with V' = 0
can be written in the form

> [y m jikr) + B umi k)] (6, ).
Im

In particular, then, it must be possible to express e’** in this way. But e** is finite
at the origin, so no Neumann functions are allowed in the sum [n;(k7) blows up at
r = 0], and since z = r cos @ has no ¢ dependence, only m = 0 terms occur. The
expansion of a plane wave in terms of spherical waves is sometimes called Rayleigh’s
formula*:

o0

k2 =) "i' @1+ 1) jikr) Pi(cos ). [11.30]

1=0
Thus the wave function, in the exterior region, can be written in the more consistent
form

Yre)y=4y [il(zl + D) jikr) + 21—+1c,h§“(kr)] P(cos6).[11.31]
= 4

Example: Hard-sphere scattering. Suppose

oo, forr <a,
Ve = {0, forr > a. [11.32]

The boundary condition, then, is

¥ (a,6) =0, [11.33]
SO
Z[ Q@+ l)jl(ka)+‘/—2—l— h“’(ka)] Pcos®) =0  [11.34]
=0

for all 6, from which it follows (Problem 11.3) that

il i 2 *_ [11.35]

(1) (ka)

In particular, the total cross-section is

47 & Jika)
o= 2N\ +1)| 2LED [11.36]
K ; hy" (ka)

4For a guide to the proof, see George Arfken, Mathematical Methods for Physicists, 3rd ed.
(Orlando, FL: Academic Press, 1985), Exercise 12.4.7, page 665.
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That’s the exact answer, but it’s not terribly illuminating, so let’s consider the
limiting case of low-energy scattering: ka < 1. (Since k = 2m/A, this amounts to
saying that the wavelength is much greater than the radius of the sphere.) Referring
to Table 4.3, we note that n;(z) is much larger than Ji(2), for small z, so

VIR 1) R 16)
RV @) +in(2) n(z)

I . -}
et 2 2 (1137]
—@D1z=1 20 T 20+ 1 | @)
and hence
dr &1 27t
~ — = ka)H+2.
T St [(21)!] (ka)

But we’re assuming ka « 1, so the higher powers are negligible—in the low-energy
approximation the scattering is dominated by the / = 0 term. (This means that the
differential cross-section is independent of 6, just as it was in the classical case.)
Evidently

o~ 4ra?, [11.38]

for low-energy hard-sphere scattering. Surprisingly, the scattering cross-section is
four times the geometrical cross-section—in fact, o is the fotal surface area of the
sphere. This “larger effective size” is characteristic of long-wavelength scattering (it
would be true in optics, as well); in a sense, these waves “feel” their way around the
whole sphere, whereas classical particles only see the head-on cross-section.

Problem 11.3 Derive Equation 11.35, starting with Equation 11.34.

*x+Problem 11.4 Consider the case of low-energy scattering from a spherical delta-

function shell:

V(r)=ad(r —a),

where o and a are constants. Calculate the scattering amplitude £ (), the differential
cross-section D(6), and the total cross-section 0. Assume kg < 1, so that only
the / = 0 term contributes significantly. (To simplify matters, throw out all / #
0 terms right from the start. The main problem, of course, is to determine Cy.)
Express your answer in terms of the dimensionless quantity ¢ = 2maa/h>. Answer-:
o = 4na*¢?/(1 + ¢)2.




Sec. 11.3: The Born Approximation 363

11.3 THE BORN APPROXIMATION

11.3.1 Integral Form of the Schrédinger Equation

The time-independent Schrodinger equation,

h2
— — VY + V¢ =EY, {11.39]
2m
can be written more succinctly as
(V' + Ky = Q, [11.40]
where
2mE 2m
k= h and Q= ?Vw. [11.41]

This has the superficial form of the Helmholtz equation; note, however, that the
“inhomogeneous” term (Q) itself depends on . Suppose we could find a function
G(r) that solves the Helmholtz equation with a delta-function “source™:

(V2 + )G ) =8 ). [11.42]

Then we could express v as an integral:
Y(r) = / G(r — o) Q(xg) d°ry. [11.43]

For it is easy to show that this satisfies Schrédinger’s equation, in the form of Equation
11.40:

(¢+%5w&ﬁjfﬁw+k5G@—mﬂQ@wfm

=/¥u—MQmm%=Qm.

G(r) is called the Green’s function for the Helmholtz equation. (In general, the
Green’s function for a given differential equation represents the “response” to a delta-
function source.)

Qur first task® is to solve Equation 11.42 for G(r). This is most easily accom-
plished by taking the Fourier transform, which turns the differential equation into an
algebraic equation. Let

Gr) / e Tg(s)d’s. [11.44]

_ 1
- (2m)3/2

5Warning: You are approaching two pages of heavy analysis, including contour integration; if you
wish, skip straight to the answer, Equation 11.55.
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Then 1
(V*+1HG() = s / [(V* + KHe™ T] g(s) ds.
But
VieS T = —g2eiST, [11.45]
and (see Equation 2.126)
8 = Gy /e"“d3s, [11.46]

so Equation 11.42 says

1 2 . 1 ,
- _ k2 is-r 3¢ — / is.r d3
)7 /( s+ ket Tgs)ds ) e s
It follows® that |
g(s) = G RRE =) [11.47]
Putting this back into Equation 11.44, we find
1 is-r 1 3

Now r is fixed, as far as the s integration is concerned, so we may as well choose
spherical coordinates (s, 8, ¢) with the polar axis along r (Figure 11.7). Thens - r =
srcos 8, the ¢ integral is trivial (277), and the 6 integral is

T isrcosf o 2 si
/ ezsrcosG sin@ d6 = _e . — SlIl(S}’)‘ [1149]
0 isr 10 sr
Thus 1 2 [ gsi (s7) 1 00 in(s#)
s sin(sr § sin(sr
= = ds = ds. 11.
G(r) Gir ) B S = 13 _/;OO 2 _g2 8 [11.50]

The remaining integral is not so simple. It pays to revert to exponential notation
and factor the denominator:

; 00 se'sT 00 seisT
G0 =g [/_oo CEG T /_oo m"‘}

i
= —— 1 — D). 11.51
877.'27'( 1 2) [ ]
These two integrals can be evaluated using Cauchy’s integral formula:
1@y = o fa. [11.52]
(z —z0)

SThis is clearly sufficient, but it is also necessary, as you can easily show by combining the two
terms into a single integral and using Plancherel’s theorem, Equation 2.85.
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i3

\
\
\
\
\
|
‘[
¢ N \ Figure 11.7: Convenient coordinates for
t the integral in equation (11.48].

if zy lies within the contour (otherwise the integral is zero). In the present case the
integration is along the real axis, and it passes righs over the pole singularities at
+k. We have to decide how to skirt the poles—I'll go over the one at —k and under
the one at +k (Figure 11.8). (You’re welcome to choose some other convention if
you like—even winding seven times around each pole; you’ll get a different Green’s
function, but, as I'll show you in a minute, they’re all equally acceptable.)

For each integral in Equation 11.51 I must “close the contour” in such a way
that the semicircle at infinity contributes nothing. In the case of I, the factor e'*"
goes to zero when s has a large positive imaginary part; for this one I close above
(Figure 11.9a). The contour encloses only the singularity at s = +k, so

seisr 1 seisr
L = =2mi
! ,(ﬁlis—f-kils—kds m[s+k]

In the case of L, the factor e~**" goes to zero when s has a large negative imaginary
part, so we close below (Figure 11.9b); this time the contour encloses the singularity
ats = —k (and it goes around in the clockwise direction, so we pick up a minus sign):

se—isr 1 se—isr
L =— ds = —2mi
2 fﬁ[s—k]s—}-k s m[s—kil

=izt [11.53]
s=k

= —ime®. [11.54]

s=—k

AlL,S

‘:‘ * o
A\
S=-k S=+k Res

Figure 11.8: Skirting the poles in the contour integral (Equation 11.51).
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@ (b)
Figure 11.9: Closing the contour in equations [11.53] and [11.54].

Conclusion: "
i ) tr . ) etkr
G = o [(ime™™) = (—ime'™)] = = [11.55]

This, finally, is the Green’s function for the Helmholtz equation—the solution
to Equation 11.42, (If you got lost in all that analysis, you might want to check the
result by direct differentiation—see Problem 11.5.) Or rather, it is a Green’s function
for the Helmholtz equation, for we can add to G(r) any function Go(r) that satisfies
the homogeneous Helmholtz equation:

(V> + E)Go(r) = 0; [11.56)

clearly, the result (G + G ) still satisfies Equation 11.42. This ambiguity corresponds
precisely to the ambiguity in how to skirt the poles—a different choice amounts to
picking a different function G(r).

Returning to Equation 11.43, the general solution to the Schrodinger equation
takes the form

m

mo ey, & 115
, 1.57
s [V v g [11.57)

¥ (r) = Yo(r) —

where v/, satisfies the free particle Schrédinger equation,
(V2 + K)o = 0. [11.58]

Equation 11.57 is the integral form of the Schriodinger equation; it is entirely
equivalent to the more familiar differential form. At first glance it looks like an ex-
plicit solution to the Schrédinger equation (for any potential)—which is too good to
be true. Don’t be deceived: There’s a Y under the integral sign on the right-hand
side, so we can’t do the integral unless we already know the solution! Nevertheless,
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the integral form can be very powerful, and it is particularly well suited to scattering
problems, as we’ll see in the following section.

Problem 11.5 Check that Equation 11.55 satisfies Equation 11.42, by direct sub-
stitution. Hint: V*(1/r) = —4n83(r).

xxProblem 11.6 Show that the ground state of hydrogen (Equation 4.80) satisfies
the integral form of the Schrodinger equation, for the appropriate ' and E (note that
E is negative, so k = ix, where k = /—2mE [h).

11.3.2 The First Born Approximation

Suppose V (1) is localized about ry = O—that is, the potential drops to zero outside
some finite region (as is typical for a scattering problem), and we want to calculate
¥ (r) at points far away from the scattering center. Then |r| >> |ro| for all points that
contribute to the integral in Equation 11.57, so

r-r
|r—r0|2=r2+rg—2r.r0;r2(1—2 20), [11.59]
r
and hence
|r——r0|2r—f-r0. [1160]
Let
k = k7 [11.61]
then
eikll‘—l‘ol ~ eikre-—ik-l‘o’ [11.62]
and therefore ] ]
ezk|r-—r0| ezkr )
rp— = — ek, [11.63]

[In the denominator we can afford to make the more radical approximation
|r — rg| = r; in the exponent we need to keep the next term. If this puzzles you, try
writing out the next term in the expansion of the denominator. What we are doing
is expanding in powers of the small quantity (ry/r) and dropping all but the lowest
order.]

In the case of scattering, we want

Yo(r) = A, [11.64]
representing an incident plane wave. For large r, then,
eikr

Y(r) = 4" -

271,7'2 r ‘/e_ik'roV(rO)w(rO) d3r0- [1165]

7See, for example, D. J. Griffiths, Introduction to Electrodynamics, 2nd ed. (Englewood Cliffs, NJ:
Prentice Hall, 1989), p. 52.
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This is in the standard form (Equation 11.12), and we can read off the scattering
amplitude:

m - Ty
1O.6)= - / RV (T (o) d . [11.66]

So far, this is exact. Now we invoke the Born approximation: Suppose the
incoming plane wave is not substantially altered by the potential; then it makes sense
to use

¥ (o) & Yo(rg) = Ae*® = AeKTo, [11.67]

where

k' =&z, [11.68]

inside the integral. (This would be the exact wave function, if V were zero; it is
essentially a weak potential approximation.) In the Born approximation, then,

0, 9) = —# 0Ty (1) #Pr,. [11.69]

(In case you have lost track of the definitions of k and k’, they both have magnitude
k, but the former points in the direction of the incident beam, while the latter points
toward the detector—see Figure 11.10.)

In particular, for low-energy (long-wavelength) scattering, the exponential
factor is essentially constant over the scattering region, and the Born approximation
simplifies to

f6,9)=- / V() d’r, (low energy). [11.70]

2h?

(I dropped the subscript on r, since there is no occasion for confusion at this point.)

Figure 11.10: Two wave vectors in the
Born approximation: k points in the incident

direction, K’ in the scattered direction.
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Example: Low-energy soft-sphere® scattering. Suppose

Vo, ifr <a,
V(r)={0° o [11.71]
In this case the low-energy scattering amplitude is
m 4
f@,¢) = _Zﬁ?VO (§7m3> [11.72]
(independent of 6 and ¢), the differential cross-section is
2
do - {2mVya®
g == (——3h2 ) , [11.73]
and the total cross-section is
2mVoad\
o4y (";—hg“—) . [11.74]

For a spherically symmetrical potential, V' (r) = ¥ (r), (but not necessarily
at low energy), the Born approximation again reduces to a simpler form. Define

Kk =k —Kk, [11.75]

and let the polar axis for the r( integral lie along k, so that

(K —K) - 1y = k79 c0s 6. [11.76]
Then

N m
1e= 2mh?

The ¢ integral is trivial (277), and the 6, integral is one we have encountered before
(see Equation 11.49). Dropping the subscript on #, we are left with

/ eikr() cos V(ro)rg sin 6y dro déy d¢0 [1 177]

2 oo
fo) = _}z—;—n- / rV (r) sin(xr) dr, (spherical symmetry). [11.78]
K Jo

8You can’t apply the Born approximation to hard-sphere scattering (Vo = oo)—the integral blows
up. The point is that we assumed the potential is weak, and doesn’t change the wave function much in the
scattering region. But a hard sphere changes it radically—from Ae'** 1o zero.
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The angular dependence of f is carried by «; from Figure 11.10 we see that

« = 2kssin(0/2). [11.79]

Example: Yukawa scattering. The Yukawa potential (which is a crude
model for the binding force in an atomic nucleus) has the form

—ur

Vi) = pi—, [11.80]
r
where 8 and u are constants. The Born approximation gives
2mp > _ . 2mpB
)= ——— e Wsin(kr)dr = ——5———. 11.81
fo=-25" | (r) Fod D [11.81]

(You get to work out the integral for yourself in Problem 11.8.)

Example: Rutherford scattering. If we putin 8 = q1q2/4mey, 4 = 0,
the Yukawa potential reduces to the Coulomb potential, describing the electrical
interaction of two point charges. Evidently the scattering amplitude is

_ 2mqq2

0= ———, 11.82
1) A egh’? [ 1
or (using Equations 11.79 and 11.41),
9192
0= - - . [11.83]
! 167 €0 E sin’(9/2)
The differential cross-section is the square of this:
d 2
a9 =[ Nz } , [11.84]
a2 167 €y E sin“(6/2)

which is precisely the Rutherford formula (Equation 11.11). It happens that for the
Coulomb potential, classical mechanics, the Born approximation, and quantum field
theory all yield the same result. In computer parlance, the Rutherford formula is
amazingly “robust.”

xProblem 11.7 Find the scattering amplitude, in the Born approximation, for soft-
sphere scattering at arbitrary energy. Show that your formula reduces to Equation
11.72 in the low-energy limit.

Problem 11.8 Evaluate the integral in Equation 11.81 to confirm the expression
on the right.

=xProblem 11.9 Calculate the total cross-section for scattering from a Yukawa po-

tential in the Born approximation. Express your answer as a function of E.
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*Problem 11.10 For the potential in Problem 11.4,

(@) calculate f(0), D(0), and o, in the low-energy Born approximation;
(b) calculate f(6) for arbitrary energies, in the Born approximation;

{(c) show that your results are consistent with the answer to Problem 11.4, in the
appropriate regime.

11.3.3 The Born Series

The Born approximation is similar in spirit to the impulse approximation in classical
scattering theory. In the impulse approximation we begin by pretending that the
particle keeps going in a straight line (Figure 11.11), and compute the transverse
impulse that would be delivered to it in that case:

I=/Fldt. [11.85]

If the deflection is relatively small, this should be a good approximation to the trans-
verse momentum imparted to the particle, and hence the scattering angle is

6 =tan"'(I/p), [11.86]

where p is the incident momentum. This is, if you like, the “first-order” impulse
approximation (the zeroth-order is what we started with: no deflection at all). Like-
wise, in the zeroth-order Born approximation the incident plane wave passes by with
no modification, and what we explored in the previous section is really the first-order
correction to this. But the same idea can be iterated to generate a series of higher-order
corrections, which presumably converge to the exact answer.

Actual
F, trajectory
T e m— .1_. - _’.E./ ____________
b
Y .
Scattering center

Figure 11.11: The impulse approximation assumes that the particle continues
undeflected, and calculates the transverse momentum delivered.
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Figure 11.12: Diagrammatic interpretation of the Born series, Equation 11.91.

The integral form of the Schrodinger equation reads

Y (r) = Yo(r) + / g(r — ro)V (ro)y (ro) d°ro, (11.87]
where 1y is the incident wave,
eikr
g = T [11.88]

is the Green’s function (into which I have now incorporated the factor 2m /#?, for
convenience), and V is the scattering potential. Schematically,

¥ = o +/gV1/f' (11.89]

Suppose we take this expression for i, and plug it in under the integral sign:

v=vo+ / Vo + / ey, [11.90]

Iterating this procedure, we obtain a formal series for ¥:

¥ = o +/ng0 +/ngVwo +/ngVngo +oo +f(gV)"vfo +o (1191

In each term only the incident wave function (o) appears, together with more and
more powers of gV The first Born approximation truncates the series after the second
term, but it is clear now how one generates the higher-order corrections.

The Born series can be represented diagrammatically as shown in Figure 11.12.
In zeroth order ¥ is untouched by the potential; in first order it is “kicked” once, and
then “propagates” out in some new direction; in second order it is kicked, propagates
to a new location, is kicked again, and then propagates out; and so on. In this
context the Green’s function is sometimes called the propagator—it tells you how
the disturbance propagates between one interaction and the next. The Born series was
the inspiration for Feynman’s formulation of relativistic quantum mechanics, which
is expressed entirely in terms of vertex factors (V) and propagators (g), connected
together in Feynman diagrams.
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Problem 11.11 Calculate # (as a function of the impact parameter) for Rutherford
scattering, in the impulse approximation. Show that your result is consistent with the
exact expression (Problem 11.1a) in the appropriate limit.

xx+xProblem 11.12 Find the scattering amplitude for low-energy soft-sphere scattering
in the second Born approximation. Answer: —(2mVoa® /3h%)[1 — (4mVoa?/5h%)].

FURTHER PROBLEMS FOR CHAPTER 11

x++Problem 11.13 Find the Green’s function for the one-dimensional Schrodinger
equation, and use it to construct the integral form (analogous to Equation 11.57).
Answer:

im oo ik|x—xo)
e OV (x0) ¥ (x0) dxo. [11.92]

V(x) = Yolx) — renll B

»x+Problem 11.14 Use your result in Problem 11.13 to develop the Born approxi-
mation for one-dimensional scattering. That is, choose yo(x) = A¢e**, and assume
¥ (xg) = o(xg) to evaluate the integral. Show that the reflection coefficient takes

the form
R = ( m )2
th

Problem 11.15 Use the one-dimensional Born approximation (Problem 11.14) to
compute the transmission coefficient (7' = 1 — R) for scattering from a delta function
(Equation 2.96) and from a finite square well (Equation 2.127). Compare your results
with the exact answers (Equations 2.123 and 2.151).

2
[11.93]

0 .
/ PV (x)dx

—00
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Now that you have (I hope) a sound understanding of what quantum mechanics says,
I should like to return to the question of what it means—continuing the story begun
in Section 1.2. The source of the problem is the indeterminacy associated with the
statistical interpretation of the wave function. For W (or, more generally, the quantum
state—it could be a spinor, for example) does not uniquely determine the outcome
of a measurement; all it provides is the statistical distribution of all possible results.
This raises a profound question: Did the physical system “actually have” the attribute
in question prior to the measurement (the so-called realist viewpoint), or did the act
of measurement itself “create” the property, limited only by the statistical constraint
imposed by the wave function (the orthodox position)—or can we duck the question
entirely, on the grounds that it is “metaphysical” (the agnostic response)?
According to the realist, quantum mechanics is an incomplete theory, for even
if you know everything quantum mechanics has to tell you about the system (to wit,
its wave function), you still cannot determine all of its features. Evidently there is
some other information, external to quantum mechanics, which (together with W) is
required for a complete description of physical reality. V
The orthodox position raises even more disturbing problems, for if the act of
measurement forces the system to “take a stand,” helping to create an attribute that was
not there previously,' then there is something very peculiar about the measurement
process. Moreover, to account for the fact that an immediately repeated measurement
yields the same result, we are forced to assume that the act of measurement collapses

!This may be strange, but it is not mystical, as some popularizers would like to suggest. The
so-called wave-particle duality, which Niels Bohr elevated into a cosmic principle (complementarity),
makes electrons sound like unpredictable adolescents, who sometimes behave like adults, and sometimes,
for no particular reason, like children. I prefer to avoid such language. When I say that a particle does not
have a particular attribute until a measurement intervenes, I have in mind, for example, an electron in the
spin state y = (é ; a measurement of the x-component of its angular momentum could return the value
#/2, or (with equal probability) the value —% /2, but until the measurement is made it simply does not have
a well-defined value of Sy.
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the wave function, in a manner that is difficult, at best, to reconcile with the normal
evolution prescribed by the Schrédinger equation.

In light of this, it is no wonder that generations of physicists retreated to the
agnostic position, and advised their students not to waste time worrying about the
conceptual foundations of the theory.

A.1 The EPR Paradox

In 1935, Einstein, Podolsky, and Rosen? published the famous EPR paradox, which
was designed to prove (on purely theoretical grounds) that the realist position is the
only sustainable one. I’ll describe a simplified version of the EPR paradox, due to
David Bohm. Consider the decay of the neutral pi meson into an electron and a
positron:

7% = e + et
Assuming the pion was at rest, the electron and positron fly off in opposite directions
(Figure A.1). Now, the pion has spin zero, so conservation of angular momentum
requires that the electron and positron are in the singlet configuration:

L
V2

If the electron is found to have spin up, the positron must have spin down, and
vice versa. Quantum mechanics can’t tell you which combination you'll get, in
any particular pion decay, but it does say that the measurements will be correlated,
and you’ll get each combination half the time (on average). Now suppose we let
the electron and positron fly way off—10 meters, in a practical experiment, or, in
principle, 10 light years—and then you measure the spin of the electron. Say you get
spin up. Immediately you know that someone 20 meters (or 20 light years) away will
get spin down, if that person examines the positron.

To the realist, there’s nothing surprising in this—the electron really had spin
up (and the positron spin down) from the moment they were created—it’s just that
quantum mechanics didn’t know about it. But the “orthodox” view holds that neither
particle had either spin up or spin down until the act of measurement intervened:
Your measurement of the electron collapsed the wave function, and instantaneously
“produced” the spin of the positron 20 meters (or 20 light years) away. Einstein,
Podolsky, and Rosen considered any such “spooky action-at-a-distance” (Einstein’s
words) preposterous. They concluded that the orthodox position is untenable; the

(td+ = -1 (A.1]

Figure A.1: Bohm’s version of the EPR
_ 0 ,  experiment: 70 at rest decays into
(i ° i electron-positron pair.

2A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
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electron and positron must have had well-defined spins all along, whether quantum
mechanics can calculate them or not.

The fundamental assumption on which the EPR argument rests is that no in-
fluence can propagate faster than the speed of light. We call this the principle of
locality. You might be tempted to propose that the collapse of the wave function is
not instantaneous, but somehow “travels” out at some finite velocity. However, this
would lead to violations of angular momentum conservation, for if we measured the
spin of the positron before the news of the collapse had reached it, there would be a
50-50 probability of finding both particles with spin up. Whatever one might think
of such a theory in the abstract, the experiments are unambiguous: No such violation
occurs—the correlation of the spins is perfect.

A.2 Bell's Theorem

Einstein, Podolsky, and Rosen did not doubt that quantum mechanics is correct, as far
as it goes; they only claimed that itis an incomplete discription of physical reality: The
wave function is not the whole story—some other quantity, A, is needed, in addition to
W, to characterize the state of a system fully. We call A the “hidden variable” because,
at this stage, we have no idea how to calculate or measure it.” Over the years, a number
of hidden variable theories have been proposed, to supplement quantum mechanics;
they tend to be cumbersome and implausible, but never mind—until 1964 the program
seemed eminently worth pursuing. But in that year J. S. Bell proved that any local
hidden variable theory is incompatible with quantum mechanics.*

Bell suggested a generalization of the EPR/Bohm experiment: Instead of ori-
enting the electron and positron detectors along the same direction, he allowed them
to be rotated independently. The first measures the component of the electron spin
in the direction of a unit vector a, and the second measures the spin of the positron
along the direction b (Figure A.2). For simplicity, let’s record the spins in units of
#/2; then each detector registers the value -+1 (for spin up) or —1 (spin down), along
the direction in question. A table of results, for many 7° decays, might look like this:

electron  positron  product
+1 -1 -1
+1 +1 +1
-1 +1 -1
+1 -1 -1
-1 -1 +1

3The hidden variable could be a single number, or it could be a whole collection of numbers;
perhaps A is to be calculated in some future theory, or maybe it is for some reason of principle incalculable.
It hardly matters. All T am asserting is that there must be something—if only a list of the outcomes of
every possible experiment—associated with the system prior to a measurement.

4Bell’s original paper [Physics 1, 195 (1964)] is a gem: brief, accessible, and beautifully written.
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< °

-

Figure A.2: Bell’s version of the EPR-Bohm experiment: detectors independently
oriented in directions a and b.

Bell proposed to calculate the average value of the product of the spins, for a given
set of detector orientations. Call this average P(a, b). If the detectors are parallel
(b = a), we recover the original EPRB configuration; in this case one is spin up and
the other spin down, so the product is always —1, and hence so too is the average:

P(a,a) = —1. [A.2]
By the same token, if they are anti-paralle] (b = —a), then every product is +1, so
P(a, —a) = +1. [A.3]

For arbitrary orientations, quantum mechanics predicts

P(a,b)y=-a-b [A4]

(see Problem 4.44). What Bell discovered is that this result is impossible in any local
hidden variable theory.

The argument is stunningly simple. Suppose that the “complete” state of the
electron/positron system is characterized by the hidden variable(s) A; A varies, in
some way that we neither understand nor control, from one pion decay to the next.
Suppose further that the outcome of the electron measurement is independent of
the orientation (b) of the positron detector—which may, after all, be chosen by the
experimenter at the positron end just before the electron measurement is made, and
hence far too late for any subluminal message to get back to the electron detector.
(This is the locality assumption.) Then there exists some function 4(a, A) which
gives the result of an electron measurement, and some other function B(b, 1) for the
positron measurement. These functions can only’ take on the values £1:

A(a,2) = +1; B(b, 1) = £1. [A.5]

SThis already concedes far more than a classical determinist would be prepared to allow, for it aban-
dons any notion that the particles could have well-defined angular momentum vectors with simultaneously
determinate components. But never mind—the point of Bell’s argument is to demonstrate that quantum
mechanics is incompatible with any local deterministic theory—even one that bends over backward to be
accommodating.
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When the detectors are aligned, the results are perfectly (anti)correlated:
4(a,2) = —B(a, %), [A.6]

for all A.
Now, the average of the product of the measurements is

P(@a,b) = / p(A)A(a, A)B(b, A)dA, [A.7]

where p (1) is the probability density for the hidden variable. [Like any probability
density, it is nonnegative, and satisfies the normalization condition f pMydr =1,
but beyond this we make no assumptions about p(1); different hidden variable the-
ories would presumably deliver quite different expressions for p.] In view of Equa-
tion A.6, we can eliminate B:

P(a,b) = — / p(M)A(a, \)A(b, 1) dA. [A.8]
If ¢ is any other unit vector,
P(a,b) — P(a,¢) = — / p(M)[ A, 1) A(b, 1) — A(a, ) A(c, W] dAr. [A9]
Or, since [A(b, M)]? = 1:
P(a,b) — P(a,c) = ~/p(,\)[1 — A(b, 1) A(c, 1)]4(a, M) A(b, A)dAr. [A.10]

But it follows from Equation A5 that —~1 < [A4(a,A)4(b,A)] < +1, and
p(M)[1 — A(b,1)A(c, A)] >0, s0

|P(a,b) — P(a, ¢)| < /p(x)[l — A(b, M) A(c, 1)) dA, [A.11]

or, more simply,

lP(a, b) — P(a, c)‘ <1+ P, o). [A.12]

This is the famous Bell inequality. It holds for any local hidden variable theory
(subject only to the minimal requirements of Equations A.5-and A.6), for we have
made no assumptions whatever as to the nature or number of the hidden variables or
their distribution (p).

But it is easy to show that the quantum mechanical prediction (Equation A.4)
is incompatible with Bell’s inequality. For example, suppose all three vectors lie in
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b

45’ Figure A.3: An orientation of the
45° . detectors that demonsirates quantum
violations of Bell’s inequality.

oY

a plane, and ¢ makes a 45° angle with a and b (Figure A.3); in this case quantum
mechanics says

P(a,by=0, P(a,c)=P(b,c)=-0.707,
which is patently inconsistent with Bell’s inequality:
0.707 £ 1 — 0.707 = 0.293.

With Bell’s modification, then, the EPR paradox proves something far more
radical than its authors imagined: If they are right, then not only is quantum mechanics
incomplete, it is downright wrong. On the other hand, if quantum mechanics is right,
then no hidden variable theory is going to rescue us from the nonlocality Einstein
considered so preposterous. Moreover, we are provided with a very simple experiment
to settle the issue once and for all.

Many experiments to test Bell’s inequality were performed in the 1960s and
1970’s, culminating in the work of Aspect, Grangier, and Roger.® The details do not
concern us here (they actually used two-photon atomic transitions, not pion decays).
To exclude the remote possibility that the positron detector might somehow “sense”
the orientation of the electron detector, both orientations were set quasi-randomly after
the photons were already in flight. The resuits were in excellent agreement with the
predictions of quantum mechanics and clearly incompatible with Bell’s inequality.’

Ironically, the experimental confirmation of quantum mechanics came as some-
thing of a shock to the scientific community. But not because it spelled the demise of
“realism”—most physicists had long since adjusted to this (and for those who could

6A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).

7Bell’s theorem involves averages, and it is conceivable that an apparatus such as Aspect’s contains
some secret bias which selects out a nonrepresentative sample, thus distorting the average. Recently, an
improved version of Bell’s theorem has been proposed in which a single measurement suffices to distinguish
between the quantum prediction and that of any local hidden variable theory. See D. Greenberger, M. Horne,
A. Shimony, and A. Zeilinger, Am. J. Phys. 58, 1131, (1990) and N. David Mermin, Am. J. Phys. 58, 731,
(1990).
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Projector Bug

Screen

Figure A.4: The shadow of the bug moves across the screen at a velocity '
greater than ¢, provided that the screen is far enough away.

not, there remained the possibility of nonlocal hidden variable theories, to which
Bell’s theorem does not apply®). The real shock was the proof that nature itself is
Sfundamentally nonlocal. Nonlocality, in the form of the instantaneous collapse of the
wave function (and for that matter also in the symmetrization requirement for iden-
tical particles) had always been a feature of the orthodox interpretation, but before
Aspect’s experiment it was possibie to hope that quantum nonlocality was some-
how a nonphysical artifact of the formalism, with no detectable consequences. That
hope can no longer be sustained, and we are obliged to reexamine our objection to
instantaneous action at a distance.

Why are physicists so alarmed at the idea of superluminal influences? After all,
there are many things that travel faster than light. If a bug flies across the beam of a
movie projector, the speed of its shadow is proportional to the distance to the screen;
in principle, that distance can be as large as you like, and hence the shadow can move
at arbitrarily high velocity (Figure A.4). However, the shadow does not carry any
energy; nor can it transmit any message from one point to another on the screen. A
person at point X cannot cause anything to happen at point Y by manipulating the
passing shadow.

On the other hand, a causal influence that propagated faster than light would
carry unacceptable implications. For according to special relativity there exist inertial
frames in which such a signal propagates backward in time—the effect preceding the
cause—and this leads to inescapable logical anomalies. (You could, for example,
arrange to kill your infant grandfather.) The question is, are the superluminal influ-
ences predicted by quantum mechanics and detected by Aspect causal, in this sense,

81t is a curious twist of fate that the EPR paradox, which assumed locality to prove realism, led
finally to the repudiation of locality and left the issue of realism undecided—the outcome (as Mermin put
it) Einstein would have liked least. Most physicists today consider that if they can’t have local realism,
there’s not much point in realism at all, and for this reason nonlocal hidden variable theories occupy a rather
peripheral place. Still, some authors—notably Bell himself, in Speakable and Unspeakable in Quantum
Mechanics (Cambridge University Press, Cambridge, 1987)—argue that such theories offer the best hope
of bridging the gap between the measured system and the measuring apparatus, and for supplying an
intelligible mechanism for the collapse of the wave function.
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or are they somehow ethereal enough (like the motion of the shadow) to escape the
philosophical objection?

Well, let’s consider Bell’s experiment. Does the measurement of the electron
influence the outcome of the positron measurement? Assuredly it does—otherwise
we cannot account for the correlation of the data. But does the measurement of the
electron cause a particular outcome for the positron? Not in any ordinary sense of
the word. There is no way the person monitoring the electron detector could use his
measurement to send a signal to the person at the positron detector, since he does
not control the outcome of his own measurement (he cannot make a given electron
come out spin up, any more than the person at X can affect the passing shadow of
the bug). It is true that he can decide whether 1o make a measurement at all, but the
positron monitor, having immediate access only to data at his end of the line, cannot
tell whether the electron was measured or not. For the lists of data compiled at the
two ends, considered separately, are completely random. It is only when we compare
the two lists later that we discover the remarkable correlations. In another reference
frame, the positron measurements occur before the electron measurements, and yet
this leads to no logical paradox—the observed correlation is entirely symmetrical in
its treatment, and it is a matter of indifference whether we say the observation of
the electron influenced the measurement of the positron, or the other way around.
This is a wonderfully delicate kind of influence, whose only manifestation is a subtle
correlation between two lists of otherwise random data.

We are led, then, to distinguish two types of influence: the “causal” variety,
which produce actual changes in some physical property of the receiver, detectable by
measurements on that subsystem alone, and an “ethereal” kind, which do not transmit
energy or information, and for which the only evidence is a correlation in the data
taken on the two separate subsystems—a correlation which by its nature cannot be
detected by examining either list alone. Causal infiuences cannot propagate faster
than light, but there is no compeliing reason why ethereal ones should not. The
influences associated with the collapse of the wave function are of the latter type, and
the fact that they “travel” faster than light may be surprising, but it is not, after all,
catastrophic.®

A.3 What is a Measurement?

The measurement process plays a mischievous role in quantum mechanics: It is here
that indeterminacy, noniocality, the collapse of the wave function, and ali the atten-
dant conceptual difficulties arise. Absent measurement, the wave function evolves in
a leisurely and deterministic way, according to the Schrédinger equation, and quan-
tum mechanics looks like a rather ordinary field theory [much simpler than classical

% An enormous amount has been written about Bell’s theorem. My favorite is an inspired essay
by David Mermin in Physics Today (April 1985, page 38). An extensive bibliography will be found in
L. E. Ballentine, Am. J. Phys. 55, 785 (1987).



382

Afterword

electrodynamics, for example, since there is only one field (¥), instead of two (E
and B), and it’s a scalar]. It is the bizarre role of the measurement process that gives
quantum mechanics its extraordinary richness and subtlety. But what, exactly, is a
measurement? What makes it so different from other physical processes?'® And how
can we tell when a measurement has occurred?

Schrodinger posed the essential question most starkly, in his famous cat para-

dox:!!

A catis placed in a steel chamber, together with the following hellish contraption
.... In a Geiger counter there is a tiny amount of radioactive substance, so tiny
that maybe within an hour one of the atoms decays, but equally probably none
of them decays. If one decays then the counter triggers and via a relay activates
a little hammer which breaks a container of cyanide. If one has left this entire
system for an hour, then one would say the cat is living if no atom has decayed.
The first decay would have poisoned it. The wave function of the entire system
would express this by containing equal parts of the living and dead cat.

At the end of the hour, the wave function of the cat has the schematic form
1
V2
The cat is neither alive nor dead, but rather a linear combination of the two, until a
measurement occurs—until, say, you peek in the window to check. At that moment
your observation forces the cat to “take a stand”: dead or alive. And if you find it to

be dead, then it’s really you who killed it, by looking in the window.

Schrodinger regarded this as patent nonsense, and I think most physicists would
agree with him. There is something absurd about the very idea of a macroscopic object
being in a linear combination of two palpably different states. An electron can be
in a linear combination of spin up and spin down, but a cat simply cannot be in a
linear combination of alive and dead. How are we to reconcile this with the orthodox
interpretation of quantum mechanics?

The most widely accepted answer is that the triggering of the Geiger counter
constitutes the “measurement,” in the sense of the statistical interpretation, not the
intervention of a human observer. It is the essence of a measurement that some
macroscopic system is affected (the Geiger counter, in this instance). The measure-
ment occurs at the moment when the microscopic system (described by the laws of

1/, = (I//alive + 1//dead). [A13]

10There is a school of thought that rejects this distinction, holding that the system and the measur-
ing apparatus should be described by one great big wave function which itself evolves according to the
Schrodinger equation. In such theories there is no collapse of the wave function, but one must typically
abandon any hope of describing individual events—quantum mechanics (in this view) applies only to
ensembles of identically prepared systems. See, for example, Philip Pearle Am. J. Phys. 35, 742 (1967),
or, more recently, Leslie E. Ballentine, Quantum Mechanics, (Prentice Hall, Englewood Cliffs, NJ, 1990).

g, Schrodinger, Naturwiss. 48,52 (1935); translation by Josef M. Jauch, Foundations of Quantum
Mechanics, (Reading, MA: Addison-Wesley, 1968), p. 185.
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quantum mechanics) interacts with the macroscopic system (described by the laws of
classical mechanics) in such a way as to leave a permanent record. The macroscopic
system itself is not permitted to occupy a linear combination of distinct states. "

I would not pretend that this is an entirely satisfactory resolution, but at least
it avoids the stultifying solipsism of Wigner and others, who persuaded themselves
that it is the intervention of human consciousness that constitutes a measurement in
quantum mechanics. Part of the problem is the word “measurement” itself, which
certainly carries an suggestion of human involvement. Heisenberg proposed the word
“event”, which might be preferable. But 'm afraid “measurement” is so ingrained
by now that we’re stuck with it. And, in the end, no manipulation of the terminology
can completely exorcise this mysterious ghost.

A.4 The Quantum Zeno Paradox

The collapse of the wave function is undoubtedly the most peculiar feature of this
whole story. It was introduced on purely theoretical grounds, to account for the fact
that an immediately repeated measurement reproduces the same value. But surely
such a radical postulate must carry directly observable consequences. In 1977 Misra
and Sudarshan'® proposed what they cailed the guantum Zeno effect as a dramatic
experimental demonstration of the collapse of the wave function. Their idea was to
take an unstable system (an atom in an excited state, say) and subject it to repeated
measurements. Each observation collapses the wave function, resetting the clock,
and it is possible by this means to delay indefinitely the expected transition to the
lower state.'

Specificaily, suppose a system starts out in the excited state yr,, which has a
natural lifetime t for transition to the ground state vr;. Ordinarily, for times sub-
stantially less than 7, the probability of a transition is proportional to ¢ (see Equa-
tion 9.42); in fact, since the transition rate is 1/,

t
Py= o [A.14]

If we make a measurement after a time ¢, then, the probability that the system is still
in the upper state is

P)=1- % [A.15]

20f course, in some ultimate sense the macroscopic system is itself described by the laws of
quantum mechanics. But wave functions, in the first instance, describe individual elementary particles; the
wave function of a macroscopic object would be a monstrously complicated composite, built out of all the
wave functions of its 10%* constituent particles. Presumably somewhere in the statistics of large numbers
macroscopic linear combinations become extremely improbable.

13B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977).

14This phenomenon doesn’t have much to do with Zeno, but it is reminiscent of the old adage “a
watched pot never boils,” so it is sometimes called the watched pot effect.
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Suppose we do find it to be in the upper state. In that case the wave function collapses
back to yr,, and the process starts all over again. If we make a second measurement,
at 2¢, the probability that the system is szill in the upper state is evidently

2
(1—1) ~1o 2 [A.16]

T T

which is the same as it would have been had we never made the measurement at z.
This is certainly what one would naively expect; if it were the whole story there would
be nothing gained by observing the system, and there would be no quantum Zeno
effect.

However, for extremely short times, the probability of a transition is not pro-
portional to ¢, but rather to #* (see Equation 9.39)"*:

Py = at’. [A.17]

In this case the probability that the system is still in the upper state after the two

measurements is )
(1-at?)" ~1-2at? [A.18]

whereas if we had never made the first measurement it would have been
1 —a2t)? ~1—4at?. [A.19]

Evidently our observation of the system after time ¢ decreased the net probability of
a transition to the lower state!

Indeed, if we examine the system at # regular intervals, from ¢t = Qouttor =T
(that is, we make measurements at T /n, 2T /n, 3T /n, ..., T), the probability that
the system is still in the upper state at the end is

(1-a(@/n?) ~1-=17, [A.20]

which goes to 1 in the limit n — 00: A continuously observed unstable system never
decays at all! Some authors regard this as an absurd conclusion, and a proof that
the collapse of the wave function is fallacious. However, their argument hinges on a
rather loose interpretation of what constitutes “observation.” If the track of a particle
in a bubble chamber amounts to “continuous observation,” then the case is closed, for
such particles certainly do decay (in fact, their lifetime is not measureably extended
by the presence of the detector). But such a particle is only intermittently interacting
with the atoms in the chamber, and for the quantum Zeno effect to occur the successive
measurements must be made extremely rapidly to catch the system in the ¢ regime.

15Tn the argument leading to linear time dependence, we assumed that the function sin® (¢ /2) /¢
in Equation 9.39 was a sharp spike. However, the width of the “spike” is of order Aw = 4/, and for
extremely short ¢ this approximation fails, and the integral becomes (¢ /4) f p(w)dw.
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As it turns out, the experiment is impractical for spontaneous transitions, but it
can be done using induced transitions, and the results are in excelient agreement with
the theoretical predictions.'® Unfortunately, this experiment is not as compelling a
confirmation of the collapse of the wave function as its designers hoped; the observed
effect can be accounted for in other ways."

sk kkokkk

In this book I have tried to present a consistent and coherent story: The wave
function (W) represents the state of a particle (or system); particles do not in general
possess specific dynamical properties (position, momentum, energy, angular mo-
mentum, etc.) until an act of measurement intervenes; the probability of getting a
particular value in any given experiment is determined by the statistical interpreta-
tion of W; upon measurement the wave function collapses, so that an immediately
repeated measurement is certain to yield the same result. There are other possible
interpretations—nonlocal hidden variable theories, the many worlds picture, en-
semble models, and others—but I believe this one is conceptually the simplest, and
certainly it is the one shared by most physicists today. It has stood the test of time,
and emerged unscathed from every experimental challenge. But I cannot believe this
is the end of the story; at the very least, we have much to learn about the nature of
measurement and the mechanism of collapse. And it is entirely possible that future
generations will look back, from the vantage point of a more sophisticated theory,
and wonder how we could have been so gullible.

16w, M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41, 2295 (1990).

171, E. Ballentine, Found. Phys. 20, 1329 (1990); T. Petrosky, S. Tasaki, and L. Prigogine, Phys.
Lett. A 151, 109 (1990).
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Bose-Einstein distribution, 214
Boson, 179-81, 214
Bouncing ball, 292
Bound state, 51-52, 269-70
Boundary conditions, 25, 54
at a delta function, 55
Bra, 118-19
Bulk modulus, 198

C

Canonical:

commutation relations, 110, 122

momentum, 176
Cat paradox, 382-83
Cauchy’s integral formula, 364
Causal influence, 380-81
Centrifugal potential, 129
Chandrasekhar:

limit, 219

trial wave function, 273
Characteristic equation, 88
Chemical potential, 214-16
Classical:

electron radius, 155

region, 275-77, 284-85
Clebsch-Gordan:
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Time-independent:
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rate, 310
Translation, 86, 118
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WKB approximation, 274-97
bound states, 277-78, 289-92
scattering, 280-81, 293
spherically symmetric potentials, 294-95
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Watched pot effect, 383

Wave function, 1-2, 11, 20, 22
collapse, 4, 158-59, 374-75, 381-82, 385
delta function well, 55
finite spherical well, 132
finite square well, 61
harmonic oscillator, 35, 41
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hydrogen, 139
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Wave packet, 4647
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intermediate field, 24849
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