Introduction to
Quantum Mechanics

David ]. Griffiths
Reed College

Prentice Hall
Upper Saddle River, New Jersey 07458



Fundamental Equations

Schrédinger equation:

., 0¥

Time independent Schrodinger equation:

Hy=Ey V=g B/

Standard Hamiltonian: )
H = —E—VZ +V
2m

Time dependence of an expectation value:

g_(g_) - % ([H,Q)+ <%t9_>

Generalized uncertainty principle:

2

i

745 2 |5 14, B)

Heisenberg uncertainty principle:

0.0, > h/2

Canonical commutator:
[z,p] = ik

Angular momentum:

[Le,Ly] = ihL,, [Ly,L.,)=ihL,, [L.,L;)=ihL,

Pauli matrices:



Fundamental Constants

Planck’s constant : B = 1.05457x 10734 Js
Speed of light : c = 299792 x 108 m/s
Mass of electron : me = 9.10939 x 10~31 kg
Mass of proton : m, = 1.67262x107%" kg
Charge of electron : —e =-160218 x 1071°C

8.85419 x 10~12 C2/Im

Permittivity of space : ¢g

Boltzmann constant :  kp 1.38066 x 10~2 J/K

Hydrogen Atom

Fine structure constant : o = e?/4meohc = 1/137.036

Bohr radius : a = Admeoh®/m.e? = h/am,.c = 529177 x 1071 m
Bohr energies : E, = E/?(n=123,..)

Ground state energy : —E = m.et/24ne)?h? = a®m.c?/2 = 13.6057 eV

Wave function : Yo = 7:76"/ a

Rydberg formula: % = R (;13- - ;1';)

Rydberg constant : R = —FEi/27he = 1.09737 x 107 /m



Library of Congress Cataloging-in-Publication Data

Griffiths, David J. (David Jeffrey)
Introduction to quantum mechanics / David J. Griffiths.
. cm.
Includes bibliographical references and index.
ISBN 0-13-124405-1
1. Quantum theory. I Title.
QC174.12.G75 1994 94 -14133
530.12—dc20 CIP

Acquisitions Editor: Ray Henderson

Assistant Acquisition Editor: Wendy Rivers
Editorial Assistant: Pam Holland-Moritz
Production Editors: Rose Kernan and Fred Dahl
Copy Editor: Rose Kernan

Production Coordinator: Trudy Pisciotti

© 1995 by Prentice Hall, Inc.
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10

ISBN 0-13-124405-1

Prentice-Hall International (UK) Lirnited, London

Prentice-Hall of Australia Pty. Lirnited, Sydney ISBN 0-L3-L24405-1
Prentice-Hall of Canada, Inc., Toronto 20000
Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

97801311244054

Pearson Education Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro



CONTENTS

PREFACE, vii

PART I
THEORY

CHAPTER 1
THE WAVE FUNCTION, 1

1.1 The Schrodinger Equation, 1
1.2 The Statistical Interpretation, 2
1.3 Probability, 5

1.4 Normalization, 11

1.5 Momentum, 14

1.6 The Uncertainty Principle, 17

CHAPTER 2
THE TIME-INDEPENDENT SCHRODINGER EQUATION, 20

2.1 Stationary States, 20

2.2 The Infinite Square Well, 24

2.3 The Harmonic Oscillator, 31

2.4 The Free Particle, 44

2.5 The Delta-Function Potential, 50
2.6 The Finite Square Well, 60



iv Contents

2.7 The Scattering Matrix, 66
Further Problems for Chapter 2, 68

CHAPTER 3
FORMALISM, 75

3.1 Linear Algebra, 75

3.2 Function Spaces, 95

3.3 The Generalized Statistical Interpretation, 104
3.4 The Uncertainty Principle, 108

Further Problems for Chapter 3, 116

CHAPTER 4
QUANTUM MECHANICS IN THREE DIMENSIONS, 121

4.1 Schrodinger Equations in Spherical Coordinates, 121
4.2 The Hydrogen Atom, 133

4.3 Angular Momentum, 145

4.4 Spin, 154

Further Problems for Chapter 4, 170

CHAPTER 5
IDENTICAL PARTICLES, 177

5.1 Two-Particle Systems, 177

5.2 Atoms, 186

5.3 Solids, 193

5.4 Quantum Statistical Mechanics, 204
Further Problems for Chapter 5, 218

PART Il
APPLICATIONS

CHAPTER 6
TIME-INDEPENDENT PERTURBATION THEORY, 221

6.1 Nondegenerate Perturbation Theory, 221
6.2 Degenerate Perturbation Theory, 227
6.3 The Fine Structure of Hydrogen, 235

6.4 The Zeeman Effect, 244

6.5 Hyperfined Splitting, 250

Further Problems for Chapter 6, 252



Contents

CHAPTER 7
THE VARIATIONAL PRINCIPLE, 256

7.1 Theory, 256

7.2 The Ground State of Helium, 261
7.3 The Hydrogen Molecule Ion, 266
Further Problems for Chapter 7, 271

CHAPTER 8

THE WKB APPROXIMATION, 274
8.1 The “Classical” Region, 275
8.2 Tunneling, 280
8.3 The Connection Formulas, 284
Further Problems for Chapter 8, 293

CHAPTER 9
TIME-DEPENDENT PERTURBATION THEORY, 298

9.1 Two-Level Systems, 299

9.2 Emission and Absorption of Radiation, 306
9.3 Spontaneous Emission, 311

Further Problems for Chapter 9, 319

CHAPTER 10
THE ADIABATIC APPROXIMATION, 323

10.1 The Adiabatic Theorem, 323
10.2 Berry’s Phase, 333
Further Problems for Chapter 10, 349

CHAPTER 11
SCATTERING, 352

11.1 Introduction, 352

11.2 Fartial Wave Analysis, 357

11.3 The Born Approximation, 363
Further Problems for Chapter 11, 373

AFTERWORD, 374

INDEX, 386

v






PREFACE

Unlike Newton’s mechanics, or Maxwell’s electrodynamics, or Einstein’s relativity,
quantum theory was not created—or even definitively packaged—Dby one individual,
and it retains to this day some of the scars of its exhilirating but traumatic youth.
There is no general consensus as to what its fundamental principles are, how it should
be taught, or what it really “means.” Every competent physicist can “do” quantum
mechanics, but the stories we tell ourselves about what we are doing are as various
as the tales of Scheherazade, and almost as implausible. Richard Feynman (one of
its greatest practitioners) remarked, “I think I can safely say that nobody understands
quantum mechanics.”

The purpose of this book is to teach you how to do quantum mechanics. Apart
from some essential background in Chapter 1, the deeper quasi-philosophical ques-
tions are saved for the end. I do not believe one can intelligently discuss what quantum
mechanics means until one has a firm sense of what quantum mechanics does. But if
you absolutely cannot wait, by all means read the Afterword immediately following
Chapter 1.

Not only is quantum theory conceptually rich, it is also technically difficult,
and exact solutions to all but the most artificial textbook examples are few and far
between. It is therefore essential to develop special techniques for attacking more
realistic problems. Accordingly, this book is divided into two parts!; Part I covers
the basic theory, and Part II assembles an arsenal of approximation schemes, with
illustrative applications. Although it is important to keep the two parts logically
separate, it is not necessary to study the material in the order presented here. Some
instructors, for example, may wish to treat time-independent perturbation theory
immediately after Chapter 2.

I'This structure was inspired by David Park’s classic text Introduction to the Quantum Theory, 3td
ed., (New York: McGraw-Hill, 1992).
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Preface

This book is intended for a one-semester or one-year course at the junior or
senior level. A one-semester course will have to concentrate mainly on Part I; a
full-year course should have room for supplementary material beyond Part II. The
reader must be familiar with the rudiments of linear algebra, complex numbers, and
calculus up through partial derivatives; some acquaintance with Fourier analysis and
the Dirac delta function would help. Elementary classical mechanics is essential, of
course, and a little electrodynamics would be useful in places. As always, the more
physics and math you know the easier it will be, and the more you will get out of your
study. But I would like to emphasize that quantum mechanics is not, in my view,
something that flows smoothly and naturally from earlier theories. On the contrary,
it represents an abrupt and revolutionary departure from classical ideas, calling forth
a wholly new and radically counterintuitive way of thinking about the world. That,
indeed, is what makes it such a fascinating subject.

At first glance, this book may strike you as forbiddingly mathematical. We en-
counter Legendre, Hermite, and Laguerre polynomials, spherical harmonics, Bessel,
Neumann, and Hankel functions, Airy functions, and even the Riemann Zeta function
—not to mention Fourier transforms, Hilbert spaces, Hermitian operators, Clebsch-
Gordan coefficients, and Lagrange multipliers. Is all this baggage really necessary?
Perhaps not, but physics is like carpentry: Using the right tool makes the job easier,
not more difficult, and teaching quantum mechanics without the appropriate mathe-
matical equipment is like asking the student to dig a foundation with a screwdriver.
(On the other hand, it can be tedious and diverting if the instructor feels obliged to
give elaborate lessons on the proper use of each tool. My own instinct is to hand the
students shovels and tell them to start digging. They may develop blisters at first, but I
still think this is the most efficient and exciting way to learn.) At any rate, I can assure
you that there is no deep mathematics in this book, and if you run into something
unfamiliar, and you don’t find my explanation adequate, by all means ask someone
about it, or look it up. There are many good books on mathematical methods—I par-
ticularly recommend Mary Boas, Mathematical Methods in the Physical Sciences,
2nd ed., Wiley, New York (1983), and George Arfken, Mathematical Methods for
Physicists, 3rd ed., Academic Press, Orlando (1985). But whatever you do, don’t let
the mathematics—which, for us, is only a tool—interfere with the physics.

Several readers have noted that there are fewer worked examples in this book
than is customary, and that some important material is relegated to the problems. This
is no accident. I don’t believe you can learn quantum mechanics without doing many
exercises for yourself. Instructors should, of course, go over as many problems in
class as time allows, but students should be warned that this is not a subject about
which anyone has natural intuitions—you’re developing a whole new set of muscles
here, and there is simply no substitute for calisthenics. Mark Semon suggested that I
offer a “Michelin Guide” to the problems, with varying numbers of stars to indicate
the level of difficulty and importance. This seemed like a good idea (though, like the
quality of a restaurant, the significance of a problem is partly a matter of taste); I have
adopted the following rating scheme:
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* an essential problem that every reader should study;
**  asomewhat more difficult or more peripheral problem;
* * * an unusually challenging problem that may take over an hour.

(No stars at all means fast food: OK if you're hungry, but not very nourishing.) Most
of the one-star problems appear at the end of the relevant section; most of the three-star
problems are at the end of the chapter. A solution manual is available (to instructors
only) from the publisher.

I have benefited from the comments and advice of many colleagues, who sug-
gested problems, read early drafts, or used a preliminary version in their courses. I
would like to thank in particular Burt Brody (Bard College), Ash Carter (Drew Uni-
versity), Peter Collings (Swarthmore College), Jeff Dunham (Middlebury College),
Greg Elliott (University of Puget Sound), Larry Hunter (Amherst College), Mark
Semon (Bates College), Stavros Theodorakis (University of Cyprus), Dan Velleman
(Amherst College), and all my colleagues at Reed College.

Finally, T wish to thank David Park and John Rasmussen (and their publishers)
for permission to reproduce Figure 8.6, which is taken from Park’s Introduction to the
Quantum Theory (footnote 1), adapted from I. Perlman and J. O. Rasmussen, “Alpha
Radioactivity,” in Encyclopedia of Physics, vol. 42, Springer-Verlag, 1957.
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THEORY






CHAPTER 1

THE WAVE FUNCTION

1.1 THE SCHRODINGER EQUATION

Imagine a particle of mass m, constrained to move along the x-axis, subject to some
specified force F(x, t) (Figure 1.1). The program of classical mechanics is to deter-
mine the position of the particle at any given time: x(¢). Once we know that, we can
figure out the velocity (v = dx/dt), the momentum (p = mv), the kinetic energy
(T = (1/2)mv?), or any other dynamical variable of interest. And how do we go
about determining x (#)? We apply Newton’s second law: F' = ma. (For conservative
systems—the only kind we shall consider, and, fortunately, the only kind that occur
at the microscopic level—the force can be expressed as the derivative of a potential
energy function,' F = —3V /dx, and Newton’s law reads m d*x /dt? = —3V /9x.)
This, together with appropriate initial conditions (typically the position and velocity
att = (), determines x(z).

Quantum mechanics approaches this same problem quite differently. In this
case what we’re looking for is the wave function, ¥ (x, 1), of the particle, and we get
it by solving the Schrodinger equation:

ih— = ———— + V. [.1]

"Magnetic forces are an exception, but let’s not worry about them just yet. By the way, we shall
assume throughout this book that the motion is nonrelativistic (v « ¢).
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;mgl —> F(x 1)

x(t) X

Figure 1.1: A “particle” constrained to move in one dimension under the influ-
ence of a specified force.

Here i is the square root of —1, and % is Planck’s constant—or rather, his original
constant (k) divided by 27:

h
h=— =1.054573 x 1073J s. [1.2]
27

The Schrodinger equation plays a role logically analogous to Newton’s second law:
Given suitable initial conditions [typically, W(x, 0)], the Schrédinger equation de-
termines W (x, ¢) for all future time, just as, in classical mechanics, Newton’s law
determines x (¢) for all future time.

1.2 THE STATISTICAL INTERPRETATION

But what exactly is this “wave function”, and what does it do for you once you've got
it? After all, a particle, by its nature, is localized at a point, whereas the wave function
(as its name suggests) is spread out in space (it’s a function of x, for any given time
1). How can such an object be said to describe the state of a particle? The answer is
provided by Born’s statistical interpretation of the wave function, which says that
|W (x, )|* gives the probability of finding the particle at point x, at time /—or, more
precisely,”

[1.3]

W )P dx = { probability of finding the particle }

between x and (x 4+ dx), at time ¢,

For the wave function in Figure 1.2, you would be quite likely to find the particle in
the vicinity of point 4, and relatively unlikely to find it near point 5.

The statistical interpretation introduces a kind of indeterminacy into quantum
mechanics, for even if you know everything the theory has to tell you about the

2The wave function itself is complex, but |¥|2 = ¥* W (where ¥* is the complex conjugate of W)
is real and nonnegative—as a probability, of course, must be.
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Figure 1.2: A typical wave function. The particle would be relatively likely to be
found near 4, and unlikely to be found near B. The shaded area represents the
probability of finding the particle in the range dx.

particle (to wit: its wave function), you cannot predict with certainty the outcome
of a simple experiment to measure its position—all quantum mechanics has to offer
is statistical information about the possible results. This indeterminacy has been
profoundly disturbing to physicists and philosophers alike. Is it a peculiarity of
nature, a deficiency in the theory, a fault in the measuring apparatus, or what?

Suppose I do measure the position of the particle, and I find it to be at the point
C. Question: Where was the particle just before I made the measurement? There
are three plausible answers to this question, and they serve to characterize the main
schools of thought regarding quantum indeterminacy:

1. The realist position: The particle was at C. This certainly seems like a
sensible response, and it is the one Einstein advocated. Note, however, that if this is
true then quantum mechanics is an incomplete theory, since the particle really was at
C, and yet quantum mechanics was unable to tell us so. To the realist, indeterminacy
is not a fact of nature, but a reflection of our ignorance. As d’Espagnat put it, “the
position of the particle was never indeterminate, but was merely unknown to the
experimenter.”® Evidently ¥ is not the whole story—some additional information
(known as a hidden variable) is needed to provide a complete description of the
particle.

2. The orthodox position: The particle wasn’t really anywhere. It was the act
of measurement that forced the particle to “take a stand” (though how and why it
decided on the point C we dare not ask). Jordan said it most starkly: “Observations
not only disturb what is to be measured, they produce it. ... We compel [the particle]
to assume a definite position.”* This view (the so-called Copenhagen interpretation)
is associated with Bohr and his followers. Among physicists it has always been the

3Bernard d’Espagnat, The Quantum Theory and Reality, Scientific American, Nov. 1979
(Vol. 241), p. 165.

4Quoted in a lovely article by N. David Mermin, Is the moon there when nobody looks?, Physics
Today, April 1985, p. 38.
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most widely accepted position. Note, however, that if it is correct there is something
very peculiar about the act of measurement—something that over half a century of
debate has done precious little to illuminate.

3. The agnostic position: Refuse to answer. This is not quite as silly as it
sounds—after all, what sense can there be in making assertions about the status of
a particle before a measurement, when the only way of knowing whether you were
right is precisely to conduct a measurement, in which case what you get is no longer
“before the measurement”? It is metaphysics (in the perjorative sense of the word) to
worry about something that cannot, by its nature, be tested. Pauli said, “One should
no more rack one’s brain about the problem of whether something one cannot know
anything about exists all the same, than about the ancient question of how many angels
are able to sit on the point of a needle.”® For decades this was the “fall-back” position
of most physicists: They’d try to sell you answer 2, but if you were persistent they’d
switch to 3 and terminate the conversation.

Until fairly recently, all three positions (realist, orthodox, and agnostic) had
their partisans. But in 1964 John Beil astonished the physics community by showing
that it makes an observable difference if the particle had a precise (though unknown)
position prior to the measurement. Bell’s discovery effectively eliminated agnosticism
as a viable option, and made it an experimental question whether 1 or 2 is the correct
choice. I'll return to this story at the end of the book, when you will be in a better
position to appreciate Bell’s theorem; for now, suffice it to say that the experiments
have confirmed decisively the orthodox interpretation®: A particle simply does not
have a precise position prior to measurement, any more than the ripples on a pond do;
it is the measurement process that insists on one particular number, and thereby in a
sense creates the specific result, limited only by the statistical weighting imposed by
the wave function.

But what if I made a second measurement, immediately after the first? Would I
get C again, or does the act of measurement cough up some completely new number
each time? On this question everyone is in agreement: A repeated measurement (on
the same particle) must return the same value. Indeed, it would be tough to prove that
the particle was really found at C in the first instance if this could not be confirmed
by immediate repetition of the measurement. How does the orthodox interpretation
account for the fact that the second measurement is bound to give the value C?
Evidently the first measurement radically alters the wave function, so that it is now
sharply peaked about C (Figure 1.3). We say that the wave function collapses upon
measurement, to a spike at the point C (\ soon spreads out again, in accordance with
the Schrédinger equation, so the second measurement must be made quickly). There

3Quoted by Mermin (previous footnote), p. 40.

6This statement is a little too strong: There remain a few theoretical and experimental loopholes,
some of which I shall discuss in the Afterword. And there exist other formulations (such as the many
worlds interpretation) that do not fit cleanly into any of my three categories. But I think it is wise, at least
from a pedagogical point of view, to adopt a clear and coherent platform at this stage, and worry about the
alternatives later.
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Figure 1.3: Collapse of the wave function: graph of w2 immediately after a
measurement has found the particle at point C.

are, then, two entirely distinct kinds of physical processes: “ordinary” ones, in which
the wave function evolves in a leisurely fashion under the Schrédinger equation, and
“measurements”, in which ¥ suddenly and discontinuously collapses.”

1.3 PROBABILITY

Because of the statistical interpretation, probability plays a central role in quantum
mechanics, so 1 digress now for a brief discussion of the theory of probability. It is
mainly a question of introducing some notation and terminology, and I shall do it in
the context of a simple example.

Imagine a room containing 14 people, whose ages are as follows:

one person aged 14
one person aged 15
three people aged 16
two people aged 22
two people aged 24
five people aged 25.

If we let N () represent the number of people of age j, then

TThe role of measurement in quantum mechanics is so critical and so bizarre that you may well
be wondering what precisely constitutes a measurement. Does it have to do with the interaction between
a microscopic (quantum) system and a macroscopic (classical) measuring apparatus (as Bohr insisted),
or is it characterized by the leaving of a permanent “record” (as Heisenberg claimed), or does it involve
the intervention of a conscious “observer” (as Wigner proposed)? I'll return to this thorny issue in the
Afterword; for the moment let’s take the naive view: A measurement is the kind of thing that a scientist
does in the laboratory, with rulers, stopwatches, Geiger counters, and so on.



6 Chap. 1 The Wave Function

N()

K

o HH

1 11 1 | 1 1 i
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 1.4: Histogram showing the number of people, N(}), with age j, for the
example in Section 1.3.

N(14) =1
N(15) =1
N(16) =3
NQ22) =2
NQ4) =2
N@25) =5

while N(17), for instance, is zero. The fofal number of people in the room is
o0
N=Y N@). [1.4]
j=0

(In this instance, of course, N = 14.) Figure 1.4 is a histogram of the data. The
following are some questions one might ask about this distribution. -

Question 1. If you selected one individual at random from this group, what is
the probability that this person’s age would be 15? Answer: One chance in 14, since
there are 14 possible choices, all equally likely, of whom only one has this particular
age. If P(j) is the probability of getting age j, then P(14) = 1/14, P(15) =
1/14, P(16) = 3/14, and so on. In general,

[1.5]

Notice that the probability of getting either 14 or 15 is the sum of the individual
probabilities (in this case, 1/7). In particular, the sum of all the probabilities is 1—
you’re certain to get some age:

Y P(jH=1 [1.6]
j=1



Sec. 1.3: Probability 7

Question 2. What is the most probable age? Answer: 25, obviously; five
people share this age, whereas at most three have any other age. In general, the most
probable j is the j for which P () is a maximum.

Question 3. What is the median age? Answer: 23, for 7 people are younger
than 23, and 7 are older. (In general, the median is that value of j such that the
probability of getting a larger result is the same as the probability of getting a smaller
result.)

Question 4. What is the average (or mean) age? Answer:

(14) + (15) +3(16) + 2(22) + 2(24) + 5(25) _ 294

=21.
14 14
In general, the average value of j (which we shall write thus: {/)) is given by
) ING) S s
()= Z—’N—’ =>_JjPW). [1.7]
7=0

Notice that there need not be anyone with the average age or the median age—in this
example nobody happens to be 21 or 23. In quantum mechanics the average is usually
the quantity of interest; in that context it has come to be called the expectation value.
It’s a misleading term, since it suggests that this is the outcome you would be most
likely to get if you made a single measurement (that would be the most probable
value, not the average value)—but I’'m afraid we’re stuck with it.

Question 5. What is the average of the squares of the ages? Answer: You
could get 142 = 196, with probability 1/14, or 152 = 225, with probability 1/14, or
16° = 256, with probability 3/14, and so on. The average, then, is

oC
(A =Y PO (1.8]
J=0
In general, the average value of some function of j is given by
oC
(f =) _fHPY)- (1.9]
j=0

(Equations 1.6, 1.7, and 1.8 are, if you like, special cases of this formula.) Beware:
The average of the squares ({;2)) is not ordinarily equal to the square of the average
({j)%). For instance, if the room contains just two babies, aged 1 and 3, then (x?) =5,
but (x)? = 4.

Now, there is a conspicuous difference between the two histograms in Figure
1.5, even though they have the same median, the same average, the same most prob-
able value, and the same number of elements: The first is sharply peaked about the
average value, whereas the second is broad and flat. (The first might represent the
age profile for students in a big-city classroom, and the second the pupils in a one-
room schoolhouse.) We need a numerical measure of the amount of “spread” in a
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N(j)
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Figure 1.5: Two histograms with the same median, same average, and same
most probable value, but different standard deviations.

distribution, with respect to the average. The most obvious way to do this would be
to find out how far each individual deviates from the average,

Aj=j—={Jj) [1.10]

and compute the average of Aj. Trouble is, of course, that you get zero, since, by the
nature of the average, Aj is as often negative as positive:

=Y G=MPGY=D_JP() = ()Y P()

J)*<')“0

(Note that () is constant—it does not change as you go from one member of the
sample to another—so it can be taken outside the summation.) To avoid this irritating
problem, you might decide to average the absolute value of Aj. But absolute values
are nasty to work with; instead, we get around the sign problem by squaring before
averaging:

o® = (A7) [L.11]

This quantity is known as the variance of the distribution; o itself (the square root

of the average of the square of the deviation from the average—gulp!) is called the

standard deviation. The latter is the customary measure of the spread about ().
There is a useful little theorem involving standard deviations:

= ((A)D) =) (AD*PG) =Y (j — U)*P())
=Y (=2 +H(HIP)
=Y FPD =20 Y JPDO+ NI PU)
2 W2
or

o’ = (%) = () [1.12)

Equation 1.12 provides a faster method for computing o': Simply calculate (j2) and
(/)?, and subtract. Incidentally, I warned you amoment ago that ( j2) is not, in general,
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equal to {)2. Since o2 is plainly nonnegative (from its definition in Equation 1.11),
Equation 1.12 implies that

A = ()3 [1.13]

and the two are equal only when o = 0, which is to say, for distributions with no
spread at all (every member having the same value).

So far, I have assumed that we are dealing with a discrete variable—that is, one
that can take on only certain isolated values (in the example, j had to be an integer,
since I gave ages only in years). But it is simple enough to generalize to continuous
distributions. If I select a random person off the street, the probability that her age is
precisely 16 years, 4 hours, 27 minutes, and 3.3333 seconds is zero. The only sensible
thing to speak about is the probability that her age lies in some interval=—say, between
16 years, and 16 years plus one day. If the interval is sufficiently short, this probability
is proportional to the length of the interval. For example, the chance that her age is
between 16 and 16 plus two days is presumably twice the probability that it is between
16 and 16 plus one day. (Unless, I suppose, there was some extraordinary baby boom
16 years ago, on exactly those days—in which case we have chosen an interval too
long for the rule to apply. If the baby boom lasted six hours, we’ll take intervals of a
second or less, to be on the safe side. Technically, we’re talking about infinitesimal
intervals.) Thus

{ probability that individual (chosen at random)

lies between x and (x 4 dx) } =p)dx. [1.14]

The proportionality factor, p(x), is often loosely called “the probability of getting

x,” but this is sloppy language; a better term is probability density. The probability
that x lies between a and b (a finite interval) is given by the integral of p(x):

b
Pab=/ o(x)dx, [1.15]

and the rules we deduced for discrete distributions translate in the obvious way:

+00
/ px)dx =1, [1.16]
Joc
{x) =/ xp(x)dx, [1.17]
+o0
o= [ fwpeds, [1.18]

o? = ((Ax)Y) = (x?) — (x)*. [1.19]
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xProblem 1.1 For the distribution of ages in the example in Section 1.3,

(2) Compute (%) and (/).

(b) Determine A; for each j, and use Equation 1.11 to compute the standard devi-
ation.

(€) Use your results in (a) and (b) to check Equation 1.12.

Problem 1.2 Consider the first 25 digits in the decimal expansion of 7 (3, 1, 4, 1,
5,9,...).

(@) If you selected one number at random from this set, what are the probabilities
of getting each of the 10 digits?

(b) What is the most probable digit? What is the median digit? What is the average
value?

(c) Find the standard deviation for this distribution.

Problem 1.3 The needle on a broken car speedometer is free to swing, and bounces
perfectly off the pins at either end, so that if you give it a flick it is equally likely to
come to rest at any angle between 0 and 7.

(a) What is the probability density, p(8)? [p(8) d6 is the probability that the needle
will come to rest between 6 and (8 + d6).] Graph p(9) as a function of 8, from
—n/2to 37 /2. (Of course, part of this interval is excluded, so p is zero there.)
Make sure that the total probability is 1.

(b) Compute (8), (#*), and o for this distribution.

(c) Compute {sin8), (cos8), and {cos’ 6).

Problem 1.4 We consider the same device as the previous problem, but this time
we are interested in the x-coordinate of the needle point—that is, the “shadow”, or
“projection”, of the needle on the horizontal line.

(a) What is the probability density p(x)? [o(x) dx is the probability that the pro-
jection lies between x and (x 4 dx).] Graph p(x) as a function of x, from —2r
to +2r, where 7 is the length of the needle. Make sure the total probability is 1.
[Hint: You know (from Problem 1.3) the probability that 8 is in a given range;
the question is, what interval dx corresponds to the interval d67]

(b) Compute (x), (x?), and o for this distribution. Explain how you could have
obtained these results from part (¢) of Problem 1.3.
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xxProblem 1.5 A needle of length [ is dropped at random onto a sheet of paper ruled
with parallel lines a distance / apart. What is the probability that the needle will cross
a line? [Hint: Refer to Problem 1.4.]

xProblem 1.6 Consider the Gaussian distribution
p(x) = AeT
where A4, a, and A are constants. {Look up any integrals you need.)

(@) Use Equation 1.16 to determine 4.
(b) Find (x), (x?),and o.
(c) Sketch the graph of p(x).

1.4 NORMALIZATION

We return now to the statistical interpretation of the wave function (Equation 1.3),
which says that |W (x, 1)|? is the probability density for finding the particle at point x,
at time 7. It follows (Equation 1.16) that the integral of |W|? must be 1 (the particle’s
got to be somewhere):

+00
f W (x,1)]*dx = 1. [1.20]

oo

Without this, the statistical interpretation would be nonsense.

However, this requirement should disturb you: After all, the wave function is
supposed to be determined by the Schrédinger equation—we can’t impose an extrane-
ous condition on ¥ without checking that the two are consistent. A glance at Equation
1.1 reveals that if W(x, ¢} is a solution, so too is AW (x, t), where 4 is any (complex)
constant. What we must do, then, is pick this undetermined multiplicative factor so as
to ensure that Equation 1.20 is satisfied. This process is called normalizing the wave
function. For some solutions to the Schrodinger equation, the integral is infinite; in
that case no multiplicative factor is going to make it 1. The same goes for the trivial
solution ¥ = 0. Such non-normalizable solutions cannot represent particles, and
must be rejected. Physically realizable states correspond to the “square-integrable”
solutions to Schrodinger’s equation.®

8Evidently W(x, t) must go to zero faster than 1/,/]x], as |x| — oo. Incidentally, normalization
only fixes the modulus of A; the phase remains undetermined. However, as we shall see, the latter carries
no physical significance anyway.
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But wait a minute! Suppose I have normalized the wave function at time ¢ = 0.
How do I know that it will stay normalized, as time goes on and W evolves? (You can’t
keep renormalizing the wave function, for then 4 becomes a function of ¢, and you
no longer have a solution to the Schrodinger equation.) Fortunately, the Schrédinger
equation has the property that it automatically preserves the normalization of the wave
function—without this crucial feature the Schrodinger equation would be incompat-
ible with the statistical interpretation, and the whole theory would crumble. So we’d
better pause for a careful proof of this point:

+00

dt J o

+00

|\Il(x,t)|2dx=/ ;;I\I/(x,t)lzdx. [1.21]

[Note that the integral is a function only of ¢, so I use a total derivative (d/dt) in the
first term, but the integrand is a function of x as well as ¢, so it’s a partial derivative
(9/9t) in the second one.] By the product rule,

d d v gw*
— |V = — (V) = ¥ — v 1.22
3t| | az( ) ot + ot [1.22]
Now the Schriodinger equation says that
oV in PPV i
— =————-=VV¥ 1.23
9t 2max?2 n [1.23]
and hence also (taking the complex conjugate of Equation 1.23)
v h PWr
= +rw, [1.24]

3t  2m x| h

SO

a ih v 9w a [ in AV )
— W= (W — —— V)= — [~ (¥ — — —W¥])|.[125
8tl | 2m ( 9x? dx? ) dx I:Zm ( dx dx ):I 1231

The integral (Equation 1.21) can now be evaluated explicitly:

o0 ih v A +00
had Wi, P dy = — (vl 1y ‘ . 1.26
dt J_o Wix, D dx 2m ( ax ax ) —00 [1.26]

But W(x, r) must go to zero as x goes to (%) infinity—otherwise the wave function
would not be normalizable. It follows that

+00

- |W(x,H)*dx =0, [1.27]

and hence that the integral on the left is constant (independent of time); if W is
normalized at ¢t = O, it stays normalized for all future time. QED
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Problem 1.7 Attime ¢t = 0 a particle is represented by the wave function

Az/a, ifo0<z<a,
U(z,0)=q A(b—2x)/(b—a), ifa<az<h,
0, otherwise,

where A, a, and b are constants.

(@) Normalize W (that is, find A in terms of @ and b).
(b) Sketch ¥(z,0) as a function of z.
(C) Where is the particle most likely to be found, at £ = (?

(d) What is the probability of finding the particle to the left of a? Check your result
in the limiting cases b = @ and b = 2a.

(e) What is the expectation value of ©?

xProblem 1.8 Consider the wave function
U(zx,t) = Ae~Mzlg=iwt

where A, A, and w are positive real constants. [We’ll see in Chapter 2 what potential
(V') actually produces such a wave function.]

(a) Normalize .
(b) Determine the expectation values of = and z2.

(c) Find the standard deviation of z. Sketch the graph of |¥|?, as a function of z,
and mark the points ({(z) + o) and ({x) — o) to illustrate the sense in which ¢
represents the “spread” in z. What is the probability that the particle would be
found outside this range?

Problem 1.9 Let P,,(¢) be the probability of finding the particle in the range
(a <z < b), at time 1.

(@) Show that
dP, ab

dt

= J(a,t) — J(b,%)

where

ih ov* o
Jz, )= — [P —Pr— .
(%) 2m < ox ox )
What are the units of J(z,¢)? [J is called the probability current, because
it tells you the rate at which probability is “flowing” past the point . If P,;(t)

is increasing, then more probability is flowing into the region at one end than
flows out at the other.]
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(b) Find the probability current for the wave function in the previous problem. (This
is not a very pithy example, I’'m afraid; we’ll encounter some more substantial
ones in due course.)

xxProblem 1.10 Suppose you wanted to describe an unstable particle that sponta-

neously disintegrates with a “lifetime” . In that case the total probability of finding
the particle somewhere should not be constant, but should decrease at (say) an expo-
nential rate:

+oo

P@) = / W(x,)*dx =e'/".
-0

A crude way of achieving this result is as follows. In Equation 1.24 we tacitly assumed
that V' (the potential energy) is real. That is certainly reasonable, but it leads to the
conservation of probability enshrined in Equation 1.27. What if we assign to ¥ an
imaginary part:

V=V,—Iil,

where V) is the true potential energy and I' is a positive real constant?

(a) Show that (in place of Equation 1.27) we now get
dP 2r

dr —

(b) Solve for P(¢), and find the lifetime of the particle in terms of I".

1.5 MOMENTUM

For a particle in state W, the expectation value of x is

+00

(x) =f x|W(x, )| dx. [1.28]

oo

What exactly does this mean? It emphatically does not mean that if you measure the
position of one particle over and over again, | x|W|?dx is the average of the results
you’ll get. On the contrary, the first measurement (whose outcome is indeterminate)
will collapse the wave function to a spike at the value actually obtained, and the
subsequent measurements (if they’re performed quickly) will simply repeat that same
result. Rather, (x) is the average of measurements performed on particles all in the
state W, which means that either you must find some way of returning the particle
to its original state after each measurement, or else you prepare a whole ensemble of
particles, each in the same state W, and measure the positions of all of them: (x) is the
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average of these results. [I like to picture a row of bottles on a shelf, each containing
a particle in the state W (relative to the center of the bottle). A graduate student with
a ruler is assigned to each bottle, and at a signal they all measure the positions of
their respective particles. We then construct a histogram of the results, which should
match |W|2, and compute the average, which should agree with (x). (Of course, since
we’re only using a finite sample, we can’t expect perfect agreement, but the more
bottles we use, the closer we ought to come.)] In short, the expectation value is the
average of repeated measurements on an ensemble of identically prepared systems,
not the average of repeated measurements on one and the same system.

Now, as time goes on, {x) will change (because of the time dependence of W),
and we might be interested in knowing how fast it moves. Referring to Equations
1.25 and 1.28, we see that’

d{x) a 2 ih a oA A
— = —|W = — —_— W — 'Y . 1.29
dt /xBIl " dx 2m x8x dax ax dx [ ]
This expression can be simplified using integration by parts'®:
d(x) in W owr
—_ = yr— — W | dx. 1.30
dt 2m ( ox dx ) ¥ [1.30]

[T used the fact that dx/dx = 1, and threw away the boundary term, on the ground

that W goes to zero at (+) infinity.}] Performing another integration by parts on the
second term, we conclude that

d{x) ih oW

Frai v ™ dx. [1.31]

What are we to make of this result? Note that we’re talking about the “velocity”

of the expectation value of x, which is not the same thing as the velocity of the particle.

Nothing we have seen so far would enable us to calculate the velocity of a particle

it’s not even clear what velocity means in quantum mechanics. If the particle doesn’t

have a determinate position (prior to measurement), neither does it have a well-defined

velocity. All we could reasonably ask for is the probability of getting a particular

value. We’ll see in Chapter 3 how to construct the probability density for velocity,

9To keep things from getting too cluttered, I suppress the limits of integration when they are +o0.
10The product rule says that

af
e

b b
dg df b
—dx = - — .
f,, fodx f ——gdx+ fg],

Under the integral sign, then, you can peel a derivative off one factor in a product and slap it onto the other
one—it’ll cost you a minus sign, and you’ll pick up a boundary term.

9 e = 18
E(fg)—fdx+

from which it follows that



16

Chap. 1 The Wave Function

given W; for our present purposes it will suffice to postulate that the expectation value
of the velocity is equal to the time derivative of the expectation value of position:
d{x)
= —. 1.32
) P [1.32]

Equation 1.31 tells us, then, how to calculate (v) directly from W.

Actually, it is customary to work with momentum (p = mv), rather than ve-
locity:

LA [ (Y
(p)=m—-= = 171](\1/ ax) dx. [1.33]

Let me write the expressions for (x) and (p) in a more suggestive way:

{x) =/\I/*(x)\lldx, [1.34]
X
(p) =/\y (?E)Mx' [1.35]

We say that the operator'' x “represents” position, and the operator (/:)(9/0x)
“represents” momentum, in quantum mechanics; to calculate expectation values, we
“sandwich” the appropriate operator between W* and W, and integrate.

That’s cute, but what about other dynamical variables? The fact is, all such
quantities can be written in terms of position and momentum. Kinetic energy, for
example, is

and angular momentum is
L=rxmv=rxp

(the latter, of course, does not occur for motion in one dimension). To calculate the
expectation value of such a quantity, we simply replace every p by (h/i)(3/9x),
insert the resulting operator between W* and W, and integrate:

h 0
(O(x, p)) =/‘V*Q(x,—.—)\lldx. [1.36]
I 0x

11 An operator is an instruction to do something to the function that follows. The position operator
tells you to multiply by x; the momentum operator tells you to differentiate withrespect to x (and multiply
the result by —i#). In this book all operators will be derivatives (d /dt, d? /dt?, 82 /dxdy,etc.) or multipliers
(2,1, x2, etc.) or combinations of these.
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For example,

(T)—_h2 w*azwd [1.37]
T 2m axz ’

Equation 1.36 is a recipe for computing the expectation value of any dynamical
quantity for a particle in state V; it subsumes Equations 1.34 and 1.35 as special
cases. I have tried in this section to make Equation 1.36 seem plausible, given Born’s
statistical interpretation, but the truth is that this equation represents such a radically
new way of doing business (as compared with classical mechanics) that it’s a good
idea to get some practice using it before we come back (in Chapter 3) and put it on
a firmer theoretical foundation. In the meantime, if you prefer to think of it as an
axiom, that’s fine with me.

Problem 1.11 Why can’t you do integration by parts directly on the middle ex-
pression in Equation 1.29—pull the time derivative over onto x, note that dx /3¢ = 0,
and conclude that d{x)/dt = 0?

xProblem 1.12 Calculate d{p)/dt. Answer:

dp) _,
—= =) [1.38]

(This is known as Ehrenfest’s theorem; it tells us that expectation values obey
Newton’s second law.)

Problem 1.13 Suppose you add a constant ¥ to the potential energy (by “constant”
I mean independent of x as well as ¢). In classical mechanics this doesn’t change
anything, but what about quantum mechanics? Show that the wave function picks
up a time-dependent phase factor: exp(—i Vot /h). What effect does this have on the
expectation value of a dynamical variable?

1.6 THE UNCERTAINTY PRINCIPLE

Imagine that you’re holding one end of a very long rope, and you generate a wave by
shaking it up and down rhythmically (Figure 1.6). If someone asked you, ‘“Precisely
where is that wave?” you’d probably think he was a little bit nutty: The wave isn’t
precisely anywhere—it’s spread out over 50 feet or so. On the other hand, if he asked
you what its wavelength is, you could give him a reasonable answer: It looks like
about 6 feet. By contrast, if you gave the rope a sudden jerk (Figure 1.7), you'd get a
relatively narrow bump traveling down the line. This time the first question (Where
precisely is the wave?) is a sensible one, and the second (What is its wavelength?)
seems nutty—itisn’t even vaguely periodic, so how can you assign a wavelength to it?
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—

N, VY v A\ \/ —
(feet)

Figure 1.6: A wave with a (fairly) well-defined wavelength but an ill-defined
position.

Of course, you can draw intermediate cases, in which the wave is fairly well localized
and the wavelength is fairly well defined, but there is an inescapable trade-off here:
The more precise a wave’s position is, the less precise is its wavelength, and vice
versa.l> A theorem in Fourier analysis makes all this rigorous, but for the moment 1
am only concerned with the qualitative argument.

This applies, of course, to any wave phenomenon, and hence in particular to
the quantum mechanical wave function. Now the wavelength of W is related to the
momentum of the particle by the de Broglie formula':

h 2mh [1.39]
P=5= '
Thus a spread in wavelength corresponds to a spread in momentum, and our general
observation now says that the more precisely determined a particle’s position is, the
less precisely its momentum is determined. Quantitatively,

[1.40]

where oy is the standard deviation in x, and o), is the standard deviation in p. This
is Heisenberg’s famous uncertainty principle. (We’ll prove it in Chapter 3, but I
wanted to mention it here so you can test it out on the examples in Chapter 2.)

R —
A : : J\ : : :
/7 10 20 30 40 50
x(feet)

Figure 1.7: A wave with a (fairly) well-defined position but an ill-defined wave-
length.

12Thar’s why a piccolo player must be right on pitch, whereas a double-bass player can afford to
wear garden gloves. For the piccolo, a sixty-fourth note contains many full cycles, and the frequency (we’re
working in the time domain now, instead of space) is well defined, whereas for the bass, at a much lower
register, the sixty-fourth note contains only a few cycles, and all you hear is a general sort of “oomph,”
with no very clear pitch.

131°11 prove this in due course. Many authors take the de Broglie formula as an axiom, from
which they then deduce the association of momentum with the operator (/7)(3/3x). Although this isa
conceptually cleaner approach, it involves diverting mathematical complications that I would rather save
for later.
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Please understand what the uncertainty principle means: Like position mea-
surements, momentum measurements yield precise answers—the “spread” here refers
to the fact that measurements on identical systems do not yield consistent results. You
can, if you want, prepare a system such that repeated position measurements will be
very close together (by making W a localized “spike”), but you will pay a price: Mo-
mentum measurements on this state will be widely scattered. Or you can prepare a
system with a reproducible momentum (by making ¥ a long sinusoidal wave), but in
that case position measurements will be widely scattered. And, of course, if you’re in
a really bad mood you can prepare a system in which neither position nor momentum
is well defined: Equation 1.40 is an inequality, and there’s no limit on how big o, and
o, can be—just make W some long wiggly line with lots of bumps and potholes and
no periodic structure.

xProblem 1.14 A particle of mass m is in the state
\IJ(X t) — Ae_a[(mxz/h)-Ht],
where A4 and a are positive real constants.

(@) Find 4.

(b) For what potential energy function ¥ (x) does W satisfy the Schrodinger equa-
tion?

(c) Calculate the expectation values of x, x2, p, and p?.
P p 14

(d) Find o, and o,. Is their product consistent with the uncertainty principle?




CHAPTER 2

THE TIME-INDEPENDENT
SCHRODINGER EQUATION

2.1 STATIONARY STATES

In Chapter 1 we talked a lot about the wave function and how you use it to calculate
various quantities of interest. The time has come to stop procrastinating and confront
what is, logically, the prior question: How do you get W (x, ¢) in the first place—how
do you go about solving the Schrddinger equation? I shall assume for all of this
chapter (and most of this book) that the potential,' V', is independent of t. In that case
the Schrodinger equation can be solved by the method of separation of variables
(the physicist’s first line of attack on any partial differential equation): We look for
solutions that are simple products,

V(x, 1) =¥(x) f(), [2.1]

where V¥ (lowercase) is a function of x alone, and f is a function of ¢ alone. On its
face, this is an absurd restriction, and we cannot hope to get more than a tiny subset
of all solutions in this way. But hang on, because the solutions we do obtain turn out
to be of great interest. Moreover, as is typically the case with separation of variables,
we will be able at the end to patch together the separable solutions in such a way as
to construct the most general solution.

Ut is tiresome to keep saying “potential energy function,” so most people just call ¥ the “potential”,
even though this invites occasional confusion with electric potential, which is actually potential energy
per unit charge.
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For separable solutions we have

v df PV &y

at T dt’ axr  dx?
(ordinary derivatives, now), and the Schrédinger equation (Equation 1.1) reads
f n? d*y
hw 2m dx? VYL

Or, dividing through by ¥ /-

2 2

1 df = l l d_v/ [2.2]
f dt 2m ¥ dx?

Now the left side is a function of ¢ alone, and the right side is a function of x alone.?
The only way this can possibly be true is if both sides are in fact constant—otherwise,
by varying ¢, I could change the left side without touching the right side, and the two
would no longer be equal. (That’s a subtle but crucial argument, so if it’s new to you,
be sure to pause and think it through.) For reasons that will appear in a moment, we
shall call the separation constant £. Then

ldf
fdt =E,
or
df iE
CA 23
dt h /. 23]
and
R 1 d*y vk
2m ¢ dx? + ’
or
h2 dzl//
———— + VY =Ey. 2.
o dez TVY =EY [24]

Separation of variables has turned a partial differential equation into two ordi-
nary differential equations (Equations 2.3 and 2.4). The first of these is easy to solve
(just multiply through by dt and integrate); the general solution is C exp(—i Et /%),
but we might as well absorb the constant C into v (since the quantity of interest is
the product ¥ f). Then

f(@t) =e B/, [2.5]

The second (Equation 2.4) is called the time-independent Schridinger equation;
we can go no further with it until the potential ¥ (x) is specified.

2Note that this would not be true if ¥ were a function of ¢ as well as x.
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The rest of this chapter will be devoted to solving the time-independent Schro-
dinger equation, for a variety of simple potentials. But before we get to that I would
like to consider further the question: What'’s so great about separable solutions? After
all, most solutions to the (time-dependent) Schrédinger equation do not take the form
¥ (x) f(2). I offer three answers—two of them physical and one mathematical:

1. They are stationary states. Although the wave function itself,

W(x, 1) = Y(x)e E/R, [2.6]

does (obviously) depend on ¢, the probability density
W, )7 = W0 = yretF iy e 50 =y (o) [2.7]

does not—the time dependence cancels out.* The same thing happens in calculating
the expectation value of any dynamical variable; Equation 1.36 reduces to

hod
(0, p)) = / w0, Ly ax. 2.8]
i dx

Every expectation value is constant in time; we might as well drop the factor f(z)
altogether, and simply use v in place of V. (Indeed, it is common to refer to v
as “the wave function”, but this is sloppy language that can be dangerous, and it is
important to remember that the true wave function always carries that exponential
time-dependent factor.) In particular, (x) is constant, and hence (Equation 1.33)
{p) = 0. Nothing ever happens in a stationary state.

2. They are states of definite total energy. In classical mechanics, the total
energy (kinetic plus potential) is called the Hamiltonian:

2
Hx,pp =2 1+ v w. [2.9]
2m
The corresponding Hamiltonian operator, obtained by the canonical substitution p —

(h/i)(8/9x), is therefore”
SR
A== 4V (). (2.10]

Thus the time-independent Schrédinger equation (Equation 2.4) can be written

Hy = Evy, [2.11]

3For normalizable solutions, £ must be real (see Problem 2.1a).

4Whenever confusion might arise, I’ll put a “hat” (*) on the operator to distinguish it from the
dynamical variable it represents.
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and the expectation value of the total energy is

(H) =/1//*1§h//dx = E/|1//|2dx =E. [2.12]

(Note that the normalization of W entails the normalization of {.) Moreover,
By = H(HYy) = H(EY) = E(HY) = E*y,
and hence
(H?) = /x//*ﬁ%/f dx = E2/ Iy |2dx = E2.
So the standard deviation in H is given by
o} = (H* — (HY? = E*— E*=0. [2.13]

But remember, if o = 0, then every member of the sample must share the same value
(the distribution has zero spread). Conclusion: A separable solution has the property
that every measurement of the total energy is certain to return the value E. (That’s
why I chose that letter for the separation constant.)

3. The general solution is a linear combination of separable solutions. As
we’re about to discover, the time-independent Schrédinger equation (Equation 2.4)
yields an infinite collection of solutions (y1(x), ¥ (x), ¥3(x), ...), each with its
associated value of the separation constant (E|, E,, E3, ...); thus there is a different
wave function for each allowed energy:

Wi(x,t) = Yy (x)e B Wy(x, 1) = Yo (x)e B

Now (as you can easily check for yourself) the (time-dependent) Schrodinger equation
(Equation 1.1) has the property that any linear combination® of solutions is itself a
solution. Once we have found the separable solutions, then, we can immediately
construct a much more general solution, of the form

[o 8]

Vi, 1) = cyn(x)e B, [2.14]

n=1

It so happens that every solution to the (time-dependent) Schrodinger equation can be
written in this form—it is simply a matter of finding the right constants (¢;, ¢, ...)
so as to fit the initial conditions for the problem at hand. You’ll see in the following
sections how all this works out in practice, and in Chapter 3 we’ll put it into more
elegant language, but the main point is this: Once you’ve solved the time-independent

3 A linear combination of the functions fj(z), f2(2), ... is an expression of the form

S@Q=afid)+eh@)+---,

where ¢y, ¢z, . .. are any (complex) constants.
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Schrodinger equation, you're essentially done; getting from there to the general so-
lution of the time-dependent Schrddinger equation is simple and straightforward.

xProblem 2.1 Prove the following theorems:

(a) For normalizable solutions, the separation constant £ must be real. Hint: Write
E (in Equation 2.6) as E + i’ (with Eo and I real), and show that if Equation
1.20is to hold for all ¢, I" must be zero.

(b) Y can always be taken to be real (unlike ¥, which is necessarily complex).
Note: This doesn’t mean that every solution to the time-independent Schrodinger
equation is real; what it says is that if you’ve got one that is nof, it can always be
expressed as a linear combination of solutions (with the same energy) that are.
So in Equation 2.14 you might as well stick to ’s that are real. Hint: If  (x)
satisfies the time-independent Schrédinger equation for a given £, so too does
its complex conjugate, and hence also the real linear combinations (¢ + ¥*)
and i(yy — ¥™).

(c) If ¥V (x) is an even function [i.e., ¥ (—x) = V(x)], then ¥ (x) can always be
taken to be either even or odd. Hint: If v (x) satisfies the time-independent
Schrodinger equation for a given E, so too does ¥ (—x), and hence also the
even and odd linear combinations ¥ (x) £ ¥ (—x).

sProblem 2.2 Show that £ must exceed the minimum value of ¥ (x) for every
normalizable solution to the time-independent Schrédinger equation. What is the
classical analog to this statement? Hint: Rewrite Equation 2.4 in the form

>y 2m
o h—?_[V(x) — ElY;
if E < Viin, then ¥ and its second derivative always have the same sign—argue that
such a function cannot be normalized.

2.2 THE INFINITE SQUARE WELL

Suppose
0, if0<x<a,

00, otherwise [2.15]

Vix) = {
(Figure 2.1). A particle in this potential is completely free, except at the two ends
(x = 0 and x = a), where an infinite force prevents it from escaping. A classical
model would be a cart on a frictionless horizontal air track, with perfectly elastic
bumpers—it just keeps bouncing back and forth forever. (This potential is awfully
artificial, but I urge you to treat it with respect. Despite its simplicity—or rather,
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V(x)

. Figure 2.1: The infinite square well
X potential (Equation 2.15).

|

precisely because of its simplicity—it serves as a wonderfully accessible test case for
all the fancy stuff that comes later. We’ll refer back to it frequently.)

Outside the well, ¥ (x) = 0 (the probability of finding the particle there is zero).
Inside the well, where V' = 0, the time-independent Schrodinger equation (Equation
2.4) reads

h2 d2
_ EKVZI — £y, [2.16]
or ,
d v2mE
d—xf = —k*Y, wherek = 7:” . [2.17]

(By writing it in this way, I have tacitly assumed that £ > 0; we know from Problem
2.2 that £ < 0 doesn’t work.) Equation 2.17 is the (classical) simple harmonic
oscillator equation; the general solution is

Y(x) = Asinkx + Bcoskx, [2.18]

where 4 and B are arbitrary constants. Typically, these constants are fixed by the
boundary conditions of the problem. What are the appropriate boundary conditions
for ¥(x)? Ordinarily, both v and d+/dx are continuous, but where the potential
goes to infinity only the first of these applies. (I’ll prove these boundary conditions,
and account for the exception when ¥ = o0, later on; for now I hope you will trust
me.)

Continuity of (x) requires that

v (0) =¥ (@) =0, [2.19]

so as to join onto the solution outside the well. What does this tell us about 4 and
B7? Well,
¥ (0) = Asin0+ Bcos0O = B,

so B = 0, and hence
Y (x) = Asinkx. [2.20]

Then vyr(a) = Asinka, so either A = 0 [in which case we’re left with the trivial—
nonnormalizable—solution ¥ (x) = 0], or else sin ka = 0, which means that

ka =0, 7, 27, £3n,.... [2.21]
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But k& = 0 is no good [again, that would imply ¥ (x) = 0], and the negative solutions
give nothing new, since sin(—6) = — sin(#) and we can absorb the minus sign nto
A. So the distinct solutions are

k,="".  withn=1,2 3,.... 12.22]
a

Curiously, the boundary condition at x = a does not determine the constant 4,
but rather the constant &, and hence the possible values of E:

_ B nPmR

E, = = —. 2.23
2m 2ma? [2:23]

In sharp contrast to the classical case, a quantum particle in the infinite square well
cannot have just any old energy—only these special allowed values. Well, how do
we fix the constant 4? Answer: We normalize
a a 2
/ |4 sin2(kx) dx = |A]P= =1, so |4} =~
0 2 a
This only determines the magnitude of A, but it is simplest to pick the positive real
root: A = /2/a (the phase of 4 carries no physical significance anyway). Inside the
well, then, the solutions are

Yn(x) = \/§sin (Ex) [2.24]
a a

As promised, the time-independent Schrédinger equation has delivered an infi-
nite set of solutions, one for each integer n. The first few of these are plotted in Fig-
ure 2.2; they look just like the standing waves on a string of length a. ¥, which car-
ries the lowest energy, is called the ground state; the others, whose energies increase
in proportion to n?, are called excited states. As a group, the functions v, (x) have
some interesting and important properties:

1. They are alternately even and odd, with respect to the center of the well.
(¥ is even, V¥, is odd, ¥3 is even, and so on.®)

2. As you go up in energy, each successive state has one more node (zero
crossing). V1 has none (the end points don’t count), ¥ has one, 3 has two, and so
on.

6To make this symmetry more apparent, some authors center the well at the origin (so that it runs
from —a/2 to +a/2. The even functions are then cosines, and the odd ones are sines. See Problem 2.4.



Sec. 2.2: The Infinite Square Well ~ 27

e

v, (x) V() W3(x)

Figure 2.2: The first three stationary states of the infinite square well (Equation
2.24).

3. They are mutually orthogonal, in the sense that

/ Ym (X)) Yn(x)dx =0, [2.25]

whenever m # n. Proof
" 2 mm b4
/l/fm(x) Yr(x)dx = 2/(; sm( )sm(; )
=l/a|:cos<m_nnx)—cos< )] dx
a Jo a
_{ 1 . (m—n )_ 1 . <m+n )}
=\ —mm sin P X e sin

_ l {sin[(m —n)m] B sin[(m +n)7t} ~0

14 (m —n) (m+n)

Note that this argument does not work if m = n (can you spot the point at which
it fails?); in that case normalization tells us that the integral is 1. In fact, we can
combine orthogonality and normalization into a single statement’:

/ Ym (0)* Y (x) dX = 8, [2.26]

where 8,,, (the so-called Kronecker delta) is defined in the usual way,

_ 10, ifm #n;
Sun = { 1, ifm=n. [2.27]

We say that the y’s are orthonormal.
4. They are complete, in the sense that any orher function, f(x), can be ex-
pressed as a linear combination of them:

fe) =) e x) = \/g Y cusin (%x) [2.28]
n=1 n=1

"In this case the ¥’s are real, so the * on Y¥m is unnecessary, but for future purposes it’s a good
idea to get in the habit of putting it there.
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I’'m not about to prove the completeness of the functions +/2/a sin(nmx/a), but if
you've studied advanced calculus you will recognize that Equation 2.28 is nothing
but the Fourier series for f(x), and the fact that “any” function can be expanded
in this way is sometimes called Dirichlet’s theorem.® The expansion coefficients
(c,) can be evaluated—for a given f(x)—by a method I call Fourier’s trick, which
beautifully exploits the orthonormality of {1, }: Multiply both sides of Equation 2.28
by ¥, (x)*, and integrate.

/ Yn(x) fX)dx =) ¢, / Y () Yn(X) dx =) Cpbn = €. [229]
n=1 =

n=1

(Notice how the Kronecker delta kills every term in the sum except the one for which
n = m.) Thus the mth coefficient in the expansion of f(x) is given by

Cm = / Y (X)* f(x) dx. [2.30]

These four properties are extremely powerful, and they are not peculiar to the
infinite square well. The first is true whenever the potential itself is an even function;
the second is universal, regardless of the shape of the potential.’ Orthogonality is also
quite general—I'1l show you the proof in Chapter 3. Completeness holds for all the
potentials you are likely to encounter, but the proofs tend to be nasty and laborious;
I’'m afraid most physicists simply assume completeness and hope for the best.

The stationary states (Equation 2.6) for the infinite square well are evidently

2 i
W, (x, 1) = \/; sin (ﬂx) i TR/ ma)t [2.31]

a

I claimed (Equation 2.14) that the most general solution to the (time-dependent)
Schradinger equation is a linear combination of stationary states:

> 2 o2
U(x, 1) = ch\/;sin (%x) eini xR/ 2ma®)t [2.32]
n=1

If you doubt that this is a solution, by all means check it! It remains only for me to
demonstrate that I can fit any prescribed initial wave function, W (x, 0), by appropriate
choice of the coefficients ¢,. According to Equation 2.32,

W(x,0) =) cnulx).
n=1

8See, for example, Mary Boas, Mathematical Methods in the Physical Sciences, 2nd ed. (New
York: John Wiley & Sons, 1983), p. 313; f(x) can even have a finite number of finite discontinuities.

9See, for example, John L. Powell and Bernd Crasemann, Quantum Mechanics (Reading, MA:
Addison-Wesley, 1961), p. 126.
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The completeness of the ¥ ’s (confirmed in this case by Dirichlet’s theorem) guarantees
that I can always express W (x, 0) in this way, and their orthonormality licenses the
use of Fourier’s trick to determine the actual coefficients:

c,,:ﬁ/ sin(ﬂx)\p(x,O)dx. / (2.33]
a Jo a

That does it: Given the initial wave function, W(x, 0), we first compute the
expansion coefficients ¢,, using Equation 2.33, and then plug these into Equation 2.32
to obtain W (x, t). Armed with the wave function, we are in a position to compute any
dynamical quantities of interest, using the procedures in Chapter 1. And this same
ritual applies to any potential—the only things that change are the functional form of
the v’s and the equation for the allowed energies.

Problem 2.3 Show that there is no acceptable solution to the (time-independent)
Schrédinger equation (for the infinite square well) with £ = O or £ < 0. (This is a
special case of the general theorem in Problem 2.2, but this time do it by explicitly
solving the Schrédinger equation and showing that you cannot meet the boundary
conditions.)

Problem 2.4 Solve the time-independent Schrodinger equation with appropriate
boundary conditions for an infinite square well centered at the origin {V (x) = 0, for
—a/2 < x < +a/2; V(x) = oo otherwise]. Check that your allowed energies are
consistent with mine (Equation 2.23), and confirm that your 1 ’s can be obtained from
mine (Equation 2.24) by the substitution x — x — a/2.

xProblem 2.5 Calculate (x), (x2), (p), (p*), 0x, and o, for the nth stationary state
of the infinite square well. Check that the uncertainty principle is satisfied. Which
state comes closest to the uncertainty limit?

xxProblem 2.6 A particle in the infinite square well has as its initial wave function
an even mixture of the first two stationary states:

W(x,0) = A{Y1(x) + Y2 (x)].

(@) Normalize W(x,0). (That is, find 4. This is very easy if you exploit the
orthonormality of ¢; and . Recall that, having normalized W at ¢t = 0, you
can rest assured that it stzays normalized—if you doubt this, check it explicitly
after doing part b.)

(b) Find W(x,t) and |¥ (x, t)|?. (Express the latter in terms of sinusoidal functions
of time, eliminating the exponentials with the help of Euler’s formula: ¢¥ =
cosf +isinf.) Let w = n%h/2ma>.

(c) Compute (x). Notice that it oscillates in time. What is the frequency of the
oscillation? What is the amplitude of the oscillation? (If your amplitude is
greater than a/2, go directly to jail.)
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(d) Compute {p). (As Peter Lorre would say, “Do it ze kveek vay, Johnny!”)

(e) Find the expectation value of H. How does it compare with E; and E,?

(f) A classical particle in this well would bounce back and forth between the walls.
If its energy is equal to the expectation value you found in (e), what is the

frequency of the classical motion? How does it compare with the quantum
frequency you found in (c)?

Problem 2.7 Although the overall phase constant of the wave function is of no
physical significance (it cancels out whenever you calculate a measureable quantity),
the relative phase of the expansion coefficients in Equation 2.14 does matter. For
example, suppose we change the relative phase of ¢ and v, in Problem 2.6:

W(x,0) = Ay (x) + 9 (x)],

where ¢ is some constant. Find ¥ (x, 1), | W (x, ¢)|?, and (x), and compare your results
with what you got before. Study the special cases ¢ = w/2 and ¢ = 7.

xProblem 2.8 A particle in the infinite square well has the initial wave function

Y(x,0) = Ax(a — x).

(a) Normalize W(x,0). Graph it. Which stationary state does it most closely
resemble? On that basis, estimate the expectation value of the energy.

(b) Compute (x), (p), and (H), at t = 0. (Note: This time you cannot get {p) by
differentiating (x), because you only know (x) at one instant of time.) How
does (H) compare with your estimate in (a)?

xProblem 2.9 Find W (x, ¢) for the initial wave function in Problem 2.8. Evaluate

¢1, ¢2, and ¢3 numericaily, to five decimal places, and comment on these numbers.
(¢y tells you, roughly speaking, how much v, is “contained in” W.) Suppose you
measured the energy at time 7y > 0, and got the value £3. Knowing that immediate
repetition of the measurement must return the same value, what can you say about
the coefficients ¢, after the measurement? (This is an example of the “collapse of the
wave function”, which we discussed briefly in Chapter 1.)

xProblem 2.10 The wave function (Equation 2.14) has got to be normalized; given

that the ¥,’s are orthonormal, what does this tell you about the coefficients ¢,?
Answer:

el =1 [2.34]
n=1

(In particular, |c,|? is always < 1.) Show that

(H) =) Enlenl. (2.35]
n=1
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Incidentally, it follows that {H) is constant in time, which is one manifestation of
conservation of energy in quantum mechanics.

2.3 THE HARMONIC OSCILLATOR

The paradigm for a classical harmonic oscillator is a mass m attached to a spring of
force constant k. The motion is governed by Hooke’s law,
d*x
F=—fkx=m—

dr?

(as always, we ignore friction), and the solution is
x(t) = Asin(wt) + Bcos(wt),

where

k
w=,— [2.36]
m

is the (angular) frequency of oscillation. The potential energy is
1
V(x)= Ekxz; [2.37]

its graph is a parabola.

Of course, there’s no such thing as a perfect simple harmonic oscillator—if you
stretch it too far the spring is going to break, and typically Hooke’s law fails long
before that point is reached. But practically any potential is approximately parabolic,
in the neighborhood of a local minimum (Figure 2.3). Formally, if we expand V (x)
in a Taylor series about the minimum:

1
mw=V@@+Vumx<m+iwku—mf+~u

subtract J(xo) [you can add a constant to ¥ (x) with impunity, since that doesn’t
change the force], recognize that V' (xy) = 0 (since xo is a minimum), and drop the
higher-order terms [which are negligible as long as (x — x) stays small], the potential
becomes

1
V@)%EV%mxx—mf,

which describes simple harmonic oscillation (about the point x¢), with an effective
spring constant £ = V”(x)."° That’s why the simple harmonic oscillator is so
important: Virtually any oscillatory motion is approximately simple harmonic, as
long as the amplitude is small.

1Note that ¥”(xg) > 0, since by assumption x; is a minimum. Only in the rare case ¥” (xg) = 0
is the oscillation not even approximately simple harmonic.
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V(x)

Figure 2.3: Parabolic approximation (dashed curve) to an arbitrary potential, in
the neighborhood of a local minimum.

The quantum problem is to solve the Schrédinger equation for the potential
1
V(x)= Ema)zx2 [2.38]

(it is customary to eliminate the spring constant in favor of the classical frequency,
using Equation 2.36). As we have seen, it suffices to solve the time-independent
Schrodinger equation:

— — T 4 —maxy = Ey. [2.39]

In the literature you will find two entirely different approaches to this problem. The
first is a straighforward “brute force” solution to the differential equation, using the
method of power series expansion; it has the virtue that the same strategy can be
applied to many other potentials (in fact, we’ll use it in Chapter 4 to treat the Coulomb
potential). The second is a diabolically clever algebraic technique, using so-called
ladder operators. I’ll show you the algebraic method first, because it is quicker and
simpler (and more fun); if you want to skip the analytic method for now, that’s fine,
but you should certainly plan to study it at some stage.

2.3.1 Algebraic Method

To begin with, let’s rewrite Equation 2.39 in a more suggestive form:
1| /hd\
— (=) +mwx)* |y =Ey. [2.40)
2m i dx

The idea is to factor the term in square brackets. If these were numbers, it would be
easy:
W+ 2= (u—iv)u+iv).
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Here, however, it’s not quite so simple, because u and v are operators, and operators
do not, in general, commute (xv is not the same as vu). Still, this does invite us to
take a look at the expressions

a4 = — <—.— + ima)x) . [2.41]

What is their product, a_a? Warning: Operators can be slippery to work with
in the abstract, and you are bound to make mistakes unless you give them a “test
function”, f(x), to act on. At the end you can throw away the test function, and
you’ll be left with an equation involving the operators alone. In the present case, we
have

(a_ay) f(x) = % (7?—% - ima)x) (?;ix + ima)x) f(x)

1 (hd hdf .
™ (73; —lma)x) (721; +tma)xf)

2
L I:—hzd—f +hma)i(xf) - hma)xd—f + (ma)x)zfj|
dx dx

= om dx?
2
! [(ﬁi) +(ma)x)2+hma):| f).

ZE—WT idx

[Tused d(xf)/dx = x(df/dx) + f inthe last step.] Discarding the test function, we

conclude that
a_a, = ; + (mwx + ~hw. 2.42

Evidently Equation 2.40 does not factor perfectly—there’s an extra term (1/2)hw.
However, if we pull this over to the other side, the Schridinger equation'' becomes

(a_a, — %ha))l/f = Evy. {2.43]

Notice that the ordering of the factors a_ and a_ is important here; the same
argument, with a on the left, yields

1 [ (nd\ .| 1
= (2= - —ho. 44
a,a o |:<l dx) + (mwx) :| 2ha) [2.44]
Thus
a_a, —a,a_ =ho, [2.45]

UT'm getting tired of writing “time-independent Schrodinger equation,” so when it’s clear from the
context which one I mean, I’ll just call it the Schrodinger equation.
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and the Schrédinger equation can also be written
1
(aya_ + Eha))l/f = Er. [2.46]

Now, here comes the crucial step: I claim that if y satisfies the Schrodinger
equation, with energy E, then a . satisfies the Schrodinger equation with energy
(E + hw). Proof:

1 1
(ara- + Ehw)(aﬂ/f) = (a1a-a; + Ehwa+)‘/f

1 1
=a(a-a; + Eha))l/f =a;l(a-a, - Ehw)l/f + hay]
= 4, (EY +hoy) = (E +ho)(a, ¥). QED

[Notice that whereas the ordering of @, and a_ does matter, the ordering of a4 and
any constants (such as %, w, and E) does not.] By the same token, a_ is a solution
with energy (F — hw):

(0-a, ~ Sho)a-p) = a_(@a — Sho)y

1
=a-[(ara- + Ehw)llf —hoyl =a_(EYy —hoy)
= (£ —hw)(a-y).

Here, then, is a wonderful machine for grinding out new solutions, with higher and
lower energies—if we can just find one solution, to get started! We call a,. ladder
operators, because they allow us to climb up and down in energy; a. is called the
raising operator, and a_ the lowering operator. The “ladder” of states is illustrated
in Figure 2.4.

But wait! What if I apply the lowering operator repeatedly? Eventually I'm
going to reach a state with energy less than zero, which (according to the general
theorem in Problem 2.2) does not exist! At some point the machine must fail. How
can that happen? We know that a_1 is a new solution to the Schrédinger equation,
but there is no guarantee that it will be normalizable—it might be zero, or its square
integral might be infinite. Problem 2.11 rules out the latter possibility. Conclusion:
There must occur a “lowest rung” (let’s call it y) such that

a_yr = 0. [2.47]

That is to say,

1 (hdyo ; " ) 0
—— | ——— —imwx =
Tm | dx m 0 s
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« »a,
E+3ha L aly
E+2fio ay
E+ho a\y
E v
E-ho awy
E-2f0 — a’y
< ,‘7 a
E Yo Figure 2.4: The ladder of stationary states
for the simple harmonic oscillator.
or
dy mw
— = ——XxYp.
dx Rl
This differential equation for ¥y is easy to solve:
dyry mw mw
20 _T7 | xdx = Inyy=——x?+ constant,
Yo ) Vo 2
so ,
Yo(x) = Age” 2%, [2.48]

To determine the energy of this state, we plug it into the Schrédinger equation (in
the form of Equation 2.46), (aya_ + (1/2)hw)yn = Epyn, and exploit the fact that

a_yro = 0. Evidently
1
Ey = sho. [2.49]
With our foot now securely planted on the bottom rung'? (the ground state of
the quantum oscillator), we simply apply the raising operator to generate the excited

states'>:

Un(x) = Ap(as)"e" %, with E, = (n + %)ha). [2.50]

12Note that there can only be ore ladder, because the lowest state is uniquely determined by Equation
2.47. Thus we have in fact obtained «ll the (normalizable) solutions.

131n the case of the harmonic oscillator, it is convenient to depart from our usual custom and number
the states starting with n = 0 instead of n = 1. Obviously, the lower limit on the sum in equations such
as Equation 2.14 should be altered accordingly.
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(This method does not immediately determine the normalization factor A,; I'll let
you work that out for yourself in Problem 2.12.) For example,

mw 1 h d mw
L= Ay B = Aj—— [ = — + imwx | e FF
+ ~/2—
m
A1 h ma)x _ﬂzlh__wxz +i a)xe_';h'ﬂxz
=—|-|——5x]e im
V2m i h ’

which simplifies to
Y1 (x) = (i Aywv2m)xe™ 57 [2.51]

I wouldn’t want to calculate yrso in this way, but never mind: We have found all the
allowed energies, and in principle we have determined the stationary states—the rest
is just computation.

Problem 2.11 Show that the lowering operator cannot generate a state of infinite
norm (i.e., [ |[a_y|*dx < oo, if ¥ itself is a normalized solution to the Schrodinger
equation). What does this tell you in the case ¥ = ,? Hint: Use integration by
parts to show that

/ (V) (@_y) dx = / U*(@ra_y)dx.

Then invoke the Schrédinger equation (Equation 2.46) to obtain

o0 1
/ la_y)dx = E — Eha),

o0

where E is the energy of the state .

xxProblem 2.12

(a) The raising and lowering operators generate new solutions to the Schrodinger
equation, but these new solutions are not correctly normalized. Thus a, ),
is proportional to Y, 1, and a_v, is proportional to ,_;, but we’d like to
know the precise proportionality constants. Use integration by parts and the
Schrodinger equation (Equations 2.43 and 2.46) to show that

f las P dx = (1 + Dho, f la_y P dx = nho,

o0 o0

and hence (with i’s to keep the wavefunctions real)

a ¥, =iy (n+ Dho Yy, [2.52]
a_vyr, = —ivnhoy, ;. [2.53]
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(b) Use Equation 2.52 to determine the normalization constant A, in Equation 2.50.
(You’ll have to normalize o “‘by hand”.) Answer:

A, = (@)”“_(ﬂ_ [2.54]
"7\ nh N '

«Problem 2.13 Using the methods and results of this section,

(a) Normalize vy (Equation 2.51) by direct integration. Check your answer against
the general formula (Equation 2.54).

(b) Find v, but don’t bother to normalize it.

(C) Sketch Yo, ¥, and Y.

(d) Check the orthogonality of v, ¥r1, and . Note: If you exploit the evenness
and oddness of the functions, there is really only one integral left to evaluate
explicitly.

«Problem 2.14 Using the results of Problems 2.12 and 2.13,

(@) Compute (x), (p), (x?), and (p?), for the states Yo and ;. Note: In this and
most problems involving the harmonic oscillator, it simplifies the notation if
you introduce the variable & = +/m/f x and the constant & = (mw/7h)'/*.

(b) Check the uncertainty principle for these states.

(c) Compute (T) and (V) for these states (no new integration allowed!). Is their
sum what you would expect?

2.3.2 Analytic Method

We return now to the Schrodinger equation for the harmonic oscillator (Equa-
tion 2.39):
wdy 1,
——— 4+ —mw = Evy.
2m dx? + 2 ok v

Things look a little cleaner if we introduce the dimensionless variable

mao
£ = ‘/Tx’ [2.55]

in terms of &, the Schrédinger equation reads

2y

2z =€ K, [2.56]
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where K is the energy, in units of (1/2)hw:
_2E
=0
Our problem is to solve Equation 2.56, and in the process obtain the “allowed” values
of K (and hence of E).

To begin with, note that at very large & (which is to say, at very large x), £2
completely dominates over the constant K, so in this regime

[2.57]

d2
T e, 2.58]
which has the approximate solution (check it!)
Y (E) ~ de ¥ + et/ [2.59]

The B term is clearly not normalizable (it blows up as |x| — 00); the physically
acceptable solutions, then, have the asymptotic form

YE) > (e, atlarge €. [2.60]
This suggests that we “peel off” the exponential part,
Y€)= hEe 7, [2.61]

in hopes that what remains [A(£)] has a simpler functional form than v (§) itself.*
Differentiating Equation 2.61, we have

(D)o

dg dg
and d? d*h d
4 h 2 ey
ARG Y - -1 /
dE? <d§2 Edg +E —Dh)e™ 77,
so the Schrédinger equation (Equation 2.56) becomes
d*h dh
— — 25— K—-1)h=0. 2.62
Jgi ~ g HK-Dh=0 [2.62]

I propose to look for a solution to Equation 2.62 in the form of a power series
in £13:

hE) =ap+aiE + a2+ =) ;. [2.63]
j=0

14Note that although we invoked some approximations to motivate Equation 2.61, what follows is
exact. The device of stripping off the asymptotic behavior is the standard first step in the power series
methed for solving differential equations—see, for example, Boas (cited in footnote 8), Chapter 12.

15 According to Taylor’s theorem, any reasonably well-behaved function can be expressed as a power
series, so Equation 2.63 involves no real loss of generality. For conditions on the applicability of the series
method, see Boas (cited in footnote 8) or George Arfken, Mathematical Methods for Physicists, 3rd ed.
(Orlando, FL: Academic Press, 1985), Section 8.5.
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Differentiating the series term by term,

dh x* .
— =a; + 26 + 3a352 4= Zjajfj_l,
di -
and
d*h — P R : ;
g =t -3azg + 3 - dasE +_---_Xg(]+1)(]+2)aj+zg :
J=
Putting these into Equation 2.62, we find
S G+ DG +2a42 — 2ja; + (K = Da]§7 =0, [2.64]
=0

It follows (from the uniqueness of power series expansions'®) that the coefficient of
each power of & must vanish,

G+ DU +2aj0 —2ja; + (K — Da; =0,

and hence that )
T Y ol S O
MGG+

This recursion formula is entirely equivalent to the Schrodinger equation itself.

[2.65]

Given ag it enables us (in principle) to generate a,, a4, g, . - ., and givena, it generates
as,as,ai, .... Letus write

h(E) = heven(§) + hoda(£), [2.66]
where

heven(€) = ap +a2§2 +a4g4 +

is an even function of £ (since it involves only even powers), built on ag, and

hoaa(€) = @i + asE +ast’ + -

is an odd function, built on a;. Thus Equation 2.65 determines 4 (&) in terms of two
arbitrary constants (ay and a;)—which is just what we would expect, for a second-
order differential equation.

However, not all the solutions so obtained are normalizable. For at very large
j, the recursion formula becomes (approximately)

2

a; ~ —a;
J+2 il
J

16See, for example, Arfken (footnote 15), Section 5.7.
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with the (approximate) solution

C
a; N ————
TGy

for some constant C, and this yields (at large £, where the higher powers dominate)

1
/2!

Now, if 4 goes like exp(£?), then 1/ (remember yr 7—that’s what we’re trying to calcu-
late) goes like exp(2/2) (Equation 2.61), which is precisely the asymptotic behavior
we don’t want.!” There is only one way to wiggle out of this: For normalizable solu-
tions the power series must terminate. There must occur some “highest” ; (call it n)
such that the recursion formula spits out a,,, = 0 (this will truncate either the series
Aeven OF the series hoqq; the other one must be zero from the start). For physically
acceptable solutions, then, we must have

MO ~CY et~ C Y L%~ e

K=2n+1,

for some positive integer n, which is to say (referring to Equation 2.57) that the energy
must be of the form

1
E,=n+ E)ha), forn=0,1,2,.... [2.67]

Thus we recover, by a completely different method, the fundamental quantization
condition we found algebraically in Equation 2.50.
For the allowed values of K, the recursion formula reads
_ )
G+DG+2)
If n = 0, there is only one term in the series (we must pick a@; = 0 to kill A.qq, and
J = 0 in Equation 2.68 yields a; = 0):

ho(§) = ay,

a2 [268]

and hence
Yo(§) = age™* 7
(which reproduces Equation 2.48). Forn = 1 we pick ap = 0,'® and Equation 2.68
with j = 1 yields a3 = 0, so
h(§) = a§,

171t’s no surprise that the ill-behaved solutions are still contained in Equation 2.65; this recursion
relation is equivalent to the Schrodinger equation, so it’s got to include both the asymptotic forms we found
in Equation 2.59.

18Note that there is a completely different set of coefficients a ; for each value of n.
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and hence

Yi(€) = ajge 62

(confirming Equation 2.51). For n = 2, j = 0 yields a; = —2ao, and j = 2 gives
ay=0,s0

ho(§) = ao(1 — 2£%)

and

Ya(€) = ao(l — 261572,

and so on. (Compare Problem 2.13, where the same result was obtained by algebraic
means.)

In general, A, (£) will be a polynomial of degree » in &, involving even powers
only, if # is an even integer, and odd powers only, if # is an odd integer. Apart from
the overall factor (ag or a,) they are the so-called Hermite polynomials, H, (§)."”
The first few of them are listed in Table 2.1. By tradition, the arbitrary multiplicative
factor is chosen so that the coefficient of the highest power of £ is 2". With this
convention, the normalized? stationary states for the harmonic oscillator are

mo AR 2
_{ = ~£%/2
Yra(x) = (nh ) T H,(&)e . [2.69]

They are identical (of course) to the ones we obtained algebraically in Equation 2.50.
In Figure 2.5a I have plotted v, (x) for the first few n’s.

The quantum oscillator is strikingly different from its classical counterpart—
not only are the energies quantized, but the position distributions have some bizarre
features. For instance, the probability of finding the particle outside the classically
allowed range (that is, with x greater than the classical amplitude for the energy
in question) is not zero (see Problem 2.15), and in all odd states the probability of

Table 2.1: The first few Hermite polynomials, H,(x).

Hy=1,

Hy =2x,

Hy = 4x% -2,
H; = 8x3 — 12x,

Hy = 16x* —48x% + 12,
Hs = 32x% — 160x> + 120x.

19The Hermite polynomials have been studied extensively in the mathematical literature, and there
are many tools and tricks for working with them. A few of these are explored in Problem 2.18.

201 shall not work out the normalization constant here; if you are interested in knowing how it is
done, see, for example, Leonard Schiff, Quantum Mechanics, 3rd ed. (New York: McGraw-Hill, 1968),
Section 13.
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Wo(X) 4 w4(x)

Wo(X) A W3(x) }

(a)
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Figure 2.5: (a) The first four stationary states of the harmonic oscillator.
(b) Graph of |y100/%, with the classical distribution (dashed curve) superimposed.
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finding the particle at the center of the potential well is zero. Only at relatively large
n do we begin to see some resemblance to the classical case. In Figure 2.5b I have
superimposed the classical position distribution on the quantum one (for n = 100); if
you smoothed out the bumps in the latter, the two would fit pretty well (however, in
the classical case we are talking about the distribution of positions over time for one
oscillator, whereas in the quantum case we are talking about the distribution over an
ensemble of identically-prepared systems).”!

Problem 2.15 Inthe ground state of the harmonic oscillator, what is the probability
(cortect to three significant digits) of finding the particle outside the classically allowed
region? Hint: Look in a math table under “Normal Distribution” or “Error Function”.

Problem 2.16 Use the recursion formula (Equation 2.68) to work out Hs(§) and
He(§).

xProblem 2.17 A particle in the harmonic oscillator potential has the initial wave
function

W (x,0) = Algro(x) + ¥1(x)]

for some constant 4.

(a) Normalize ¥ (x, 0).

(b) Find W(x, ) and [V (x, DI

(c) Find the expectation value of x as a function of time. Notice that it oscillates
sinusoidally. What is the amplitude of the oscillation? What is its (angular)
frequency?

(d) Use your result in (c) to determine (p). Check that Ehrenfest’s theorem holds
for this wave function.

(e) Referring to Figure 2.5, sketch the graph of |¥| at ¢ = 0, 7/w, 27 /w, 37 /w,
and 47 /w. (Your graphs don’t have to be fancy—just a rough picture to show
the oscillation.)

xxProblem 2.18 In this problem we explore some of the more useful theorems (stated
without proof) involving Hermite polynomials.

(@) The Rodrigues formula states that
ng, 4 e
Hy(§) = (=1)"e (E) e [2.70]

Use it to derive H3 and Hj.

21The analogy is perhaps more telling if you interpret the classical distribution as an ensemble of
oscillators all with the same energy, but with random starting times.
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(b) The following recursion relation gives you H, . in terms of the two preceding
Hermite polynomials:

Hyi1(§) =26 Hy(§) — 2nH, 1 (8). [2.71]

Use it, together with your answer to (a), to obtain Hs and Hg.

(C) If you differentiate an nth-order polynomial, you get a polynomial of order
(n — 1). For the Hermite polynomials, in fact,

dH,
dg
Check this, by differentiating Hs and Hs.

(d) H,(£) is the nth z-derivative, at z = 0, of the generating function exp(—z> +
2z£); or, to put it another way, it is the coefficient of z"/n! in the Taylor series
expansion for this function:

= 2nH, (). [2.72]

oo

oEHE Z z_n' H, (). [2.73]
=0 """

Use this to rederive Hy, H;, and H,.

2.4 THE FREE PARTICLE

We turn next to what should have been the simplest case of all: the free particle
[V (x) = 0 everywhere]. As you’ll see in a moment, the free particle is in fact a
surprisingly subtle and tricky example. The time-independent Schrédinger equation
reads

n? d*y
_—— T =F .
2m dx? v 274
or s
d 2mE
d—xlz = —k*y, wherek = F:n [2.75]

So far, it’s the same as inside the infinite square well (Equation 2.17), where the
potential is also zero; this time, however, I prefer to write the general solution in
exponential form (instead of sines and cosines) for reasons that will appear in due
course:

Y(x) = A’ + Be™'*, [2.76]

Unlike the infinite square well, there are no boundary conditions to restrict the possible
values of & (and hence of E); the free particle can carry any (positive) energy. Tacking
on the standard time dependence, exp(—i £¢/h),

W(x,t) = AeFE=530 L BemikGtin, [2.77]
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Now, any function of x and ¢ that depends on these variables in the special
combination (x £ vt) (for some constant v) represents a wave of fixed profile, traveling
in the Fx-direction, at speed v. A fixed point on the waveform (for example, a
maximum or a minimum) corresponds to a fixed value of the argument, and hence to
x and ¢ such that

x vt = constant, or Xx = Fvf + constant,

which is the formula for motion in the Fx-direction with constant speed v. Since
every point on the waveform is moving along with the same velocity, its shape doesn’t
change as it propagates. Thus the first term in Equation 2.77 represents a wave
traveling to the right, and the second term represents a wave (of the same energy)
going to the left. By the way, since they only differ by the sign in front of k£, we might
as well write ,

W(x, 1) = del="5m0), [2.78]

and let & run negative to cover the case of waves traveling to the left:

V2mE
h

k > 0= traveling to the right,
k < 0= traveling to the left.

k=+ , with { [2.79]

The speed of these waves (the coefficient of ¢ over the coefficient of x) is

hk| E
uantum — ~ . — 4/ 5 - 2.80
Vquans 2m 2m [ ]
On the other hand, the classical speed of a free particle with energy E is given by

E= (1/2)mv2 (pure kinetic, since V' = 0), so

[2F
Uclassical = 7 = 27-)quantum- [2.81]

Evidently the quantum mechanical wave function travels at Aalf the speed of the
particle it is supposed to represent! We’ll return to this paradox in a moment—there
is an even more serious problem we need to confront first: This wave function is not
normalizable! For

400 400
f Ui dx = |A|2f 1dx = |4]*(c0). [2.82]
—o0 —o0
In the case of the free particle, then, the separable solutions do not represent physically
realizable states. A free particle cannot exist in a stationary state; or, to put it another
way, there is no such thing as a free particle with a definite energy.

But that doesn’t mean the separable solutions are of no use to us. For they
play a mathematical role that is entirely independent of their physical interpretation:
The general solution to the time-dependent Schrédinger equation is still a linear
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combination of separable solutions (only this time it’s an integral over the continuous
variable k, instead of a sum over the discrete index n):

+o0
W(x, 1) = \/% f ¢(k)e"<kx—%’> dk. [2.83]

[The quantity 1/+/27 is factored out for convenience; what plays the role of the
coefficient ¢, in Equation 2.14 is the combination (1/ V2m)¢ (k) dk.] Now this wave
function can be normalized [for appropriate ¢ (k)]. But it necessarily carries a range
of k’s, and hence a range of energies and speeds. We call it a wave packet.

In the generic quantum problem, we are given W(x, 0), and we are to find
W(x, ). For a free particle the solution has the form of Equation 2.83; the only
remaining question is how to determine ¢ (k) so as to fit the initial wave function:

+o0
W(x,0) = \/% ¢ (k)e™ dk. [2.84]

This is a classic problem in Fourier analysis; the answer is provided by Plancherel’s
theorem (see Problem 2.20):

+o0 +00
fx) = J_lz_; [ N F(k)e'™ dk <= F(k)=\/—1§—7? f_ N fx)e *®dx. | [2.85]

F (k) is called the Fourier transform of f(x); f(x) is the inverse Fourier transform
of F(k) (the only difference is in the sign of the exponent). There is, of course, some
restriction on the allowable functions: The integrals have to exist.”> For our purposes
this is guaranteed by the physical requirement that W (x, 0) itself be normalized. So
the solution to the generic quantum problem, for the free particle, is Equation 2.83,
with

+o0
¢ (k) = J_IE_E f W(x, 0)e " dx. [2.86]

I'd love to work out an example for you—starting with a specific function ¥(x, 0)
for which we could actually calculate ¢ (k), and then doing the integral in Equation
2.83 to obtain W(x, ¢) in closed form. Unfortunately, manageable cases are hard to

22The necessary and sufficient condition on f(x) is that f _OZO | f (x)2dx be finite. (In that case

f _O; |F(k)|2dk is also finite, and in fact the two integrals are equal.) See Arfken (footnote 15), Sec-
tion 15.5.
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come by, and I want to save the best example for you to work out yourself. Be sure,
therefore, to study Problem 2.22 with particular care.

I return now to the paradox noted earlie—the fact that the separable solution
W (x, £) travels at the “wrong” speed for the particle it ostensibly represents. Strictly
speaking, the problem evaporated when we discovered that Wy is not a physically
achievable state. Nevertheless, it is of interest to discover how information about
the particle velocity is carried by the wave function (Equation 2.83). The essential
idea is this: A wave packet is a sinusoidal function whose amplitude is modulated
by ¢ (Figure 2.6); it consists of “ripples” contained within an “envelope.”” What
corresponds to the particle velocity is not the speed of the individual ripples (the so-
called phase velocity), but rather the speed of the envelope (the group velocity)—
which, depending on the nature of the waves, can be greater than, less than, or equal
to the velocity of the ripples that go to make it up. For waves on a string, the group
velocity is the same as the phase velocity. For water waves it is one half the phase
velocity, as you may have noticed when you toss a rock into a pond: If you concentrate
on a particular ripple, you will see it build up from the rear, move forward through
the group, and fade away at the front, while the group as a whole propagates out at
half the speed. What I need to show is that for the wave function of a free particle
in quantum mechanics the group velocity is twice the phase velocity—just right to
represent the classical particle speed.

The problem, then, is to determine the group velocity of a wave packet with the
general form

I .
V) = = pk)e' = dk.

[In our case w = (7ik?/2m), but what I have to say now applies to any kind of wave
packet, regardless of its dispersion relation—the formula for w as a function of £.]
Let us assume that ¢ (k) is narrowly peaked about some particular value ky. [There
is nothing illegal about a broad spread in k, but such wave packets change shape
rapidly (since different components travel at different speeds), so the whole notion
of a “group,” with a well-defined velocity, loses its meaning.] Since the integrand

Figure 2.6: A wave packet. The
“envelope” travels at the group velocity;
the “ripples” travel at the phase velocity.
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is negligible except in the vicinity of ko, we may as well Taylor-expand the function
w(k) about that point and keep only the leading terms:

a)(k) = wo -+- a)f)(k et k()),

where a)(’) is the derivative of w with respect to k, at the point ko.
Changing variables from & to s = k — ko, to center the integral at ko, we have

1 +oo , )
Yix,H) = — b (ko + 5)e!lhot9r—(@otal gg

LY/ 2w J—oo

Att =0,
+00

1 .
Y(x,0) = = b (ko + s)e'borx g,

and at later times

1 , oo : ,
W(x, 1) = et host) / ¢ (ko + 5)e' Co+E=en) g,
A/ 2r —00

Except for the shift from x to (x — wjt), the integral is the same as the one in W(x, 0).
Thus '
W(x, 1) = e @ k) (x — ot, 0). [2.87]

Apart from the phase factor in front (which won’t affect |\¥ |2 in any event), the wave
packet evidently moves along at a speed

do
Vgroup = % [288]
(evaluated at k = k), which is to be contrasted with the ordinary phase velocity
w

Uphase = E [289]

In our case, w = (hk>/2m), so w/k = (hk/2m), whereas dw/dk = (hk/m), which
is twice as great. This confirms that it is the group velocity of the wave packet, not
the phase velocity of the stationary states, that matches the classical particle velocity:

Vclassical = Vgroup = 2Uphase~ [2.90]

Problem 2.19 Show that the expressions [Ae’® 4 Be='**], [C cos kx + D sin kx],
[F cos(kx +a)], and [G sin(kx + B)] are equivalent ways of writing the same function
of x, and determine the constants C, D, F, G, a, and $ in terms of 4 and B. (In
quantum mechanics, with ¥ = 0, the exponentials give rise to traveling waves,
and are most convenient in discussing the free particle, whereas sines and cosines
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correspond to standing waves, which arise naturally in the case of the infinite square
well.) Assume the function is real.

xxProblem 2.20 This problem is designed to guide you through a “proof” of Plan-
cherel’s theorem, by starting with the theory of ordinary Fourier series on a finite
interval, and allowing that interval to expand to infinity.

(a) Dirichlet’s theorem says that “any” function f(x) on the interval [—a, 4+a] can
be expanded as a Fourier series:

o0

fx) = Z[an sin(nmx/a) + b, cos(nmx/a)l.

n=0

Show that this can be written equivalently as

f(X) — i Cneinnx/a.

R=—00

What is ¢,, in terms of a,, and b, ?
(b) Show (by appropriate modification of Fourier’s trick) that

1 +a

Cp = — fx)e A gy
2a

—a
(¢) Eliminate n and ¢, in favor of the new variables k = (n7/a) and F(k) =
/2/m ac,. Show that (a) and (b) now become

1 +a

1 0 , ,
- Fkye™ Ak; F(k) = — R dx,
fx) m,,;,o (k)e ) =/, fxye ™ dx

where Ak is the increment in & from one # to the next.

(d) Take the limit @ — 00 to obtain Plancherel’s theorem. Note: In view of their
quite different origins, it is surprising (and delightful) that the two formulas
[one for F(k) in terms of f(x), the other for f(x) in terms of F(k)] have such
a similar structure in the limit a — o0.

Problem 2.21 Suppose a free particle, which is initially localized in the range
—a < X < a,is released at time ¢ = 0:

A, if—ga<x<a,

Yx, 0) = {0, otherwise,

where A and g are positive real constants.
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(a) Determine 4, by normalizing V.
(b) Determine ¢ (k) (Equation 2.86).

(c) Comment on the behavior of ¢ (k) for very small and very large values of a.
How does this relate to the uncertainty principle?

*Problem 2.22 A free particle has the initial wave function
Y(x,0) = Ae

where A and a are constants (a is real and positive).

(@) Normalize ¥(x, 0).
(b) Find W(x, ¢). Hint: Integrals of the form
+00 ,
/ e—(ax +bx) dx

o0

can be handled by “completing the square.” Let y = /a[x + (b/2a)], and note
that (ax? 4 bx) = y* — (b*/4a). Answer:

2a 1/4 e—axz/[1+(2ihat/m)]
Yx,t)y=[ — —_—_—
T

T+ Qihat[m)

(c) Find |W(x,?)|*>. Express your answer in terms of the quantity w =
\/a/[l + (2hat /m)?]. Sketch |¥|? (as a function of x) at ¢ = 0, and again
for some very large ¢. Qualitatively, what happens to |W | as time goes on?

(d) Find (x), (p), (x?), (p?), 0%, and o,,. Partial answer: (p?) = ah?, but it may
take some algebra to reduce it to this simple form.

(@) Does the uncertainty principle hold? At what time ¢ does the system come
closest to the uncertainty limit?

2.5 THE DELTA-FUNCTION POTENTIAL

We have encountered two very different kinds of solutions to the time-independent
Schrédinger equation: For the infinite square well and the harmonic oscillator they
are normalizable, and labeled by a discrete index n; for the free paticle they are
non-normalizable, and labeled by a continuous variable . The former represent
physically realizable states in their own right, the latter do not; but in both cases
the general solution to the time-dependent Schrédinger equation is a linear combina-
tion of stationary states—for the first type this combination takes the form of a sum
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(over n), whereas for the second it is an integral (over k). What is the physical
significance of this distinction?

In classical mechanics a one-dimensional time-independent potential can give
rise to two rather different kinds of motion. If ¥ (x) rises higher than the particle’s to-
tal energy (£) on either side (Figure 2.7a), then the particle is “stuck” in the potential
well—itrocks back and forth between the turning points, but it cannot escape (unless,

X
Classical turning points
(a)
V(x) Ar
TET T
—
X X
Classical turning point
(b)
Vi(x)
Classical turning points
x

(c)

Figure 2.7: (a) A bound state. (b) Scattering states. (c) A classical bound state,
but a quantum scattering state.
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of course, you provide it with a source of extra energy, such as a motor, but we’re
not talking about that). We call this a bound state. If, on the other hand, F exceeds
¥ (x) on one side (or both), then the particle comes in from “infinity”, slows down or
speeds up under the influence of the potential, and returns to infinity (Figure 2.7b).
(It can’t get trapped in the potential unless there is some mechanism, such as friction,
to dissipate energy, but again, we’re not talking about that.) We call this a scattering
state. Some potentials admit only bound states (for instance, the harmonic oscillator);
some allow only scattering states (a potential hill with no dips in it, for example);
some permit both kinds, depending on the energy of the particle.

As you have probably guessed, the two kinds of solutions to the Schrodinger
equation correspond precisely to bound and scattering states. The distinction is even
cleaner in the quantum domain, because the phenomenon of tunneling (which we’ll
come to shortly) allows the particle to “leak” through any finite potential barrier, so
the only thing that matters is the potential at infinity (Figure 2.7¢):

[2.91]

E < V(—00)and V' (+00) = bound state,
E > V(—o0)orV(+00) =  scattering state.

In “real life” most potentials go to zero at infinity, in which case the criterion simplifies
even further:
[ E <0 = bound state, [2.92]

E >0 = scattering state.

Because the infinite square well and harmonic oscillator potentials go to infinity as
x — =00, they admit bound states only; because the free particle potential is zero
everywhere, it only allows scattering states.”> In this section (and the following one)
we shall explore potentials that give rise to both kinds of states.

The Dirac delta function, 5(x), is defined informally as follows:

o ifx#0 U B _
6(x)_[ 0o, ifx =0 }, with /-oo §(x)dx = 1. [2.93]

It is an infinitely high, infinitesimally narrow spike at the origin, whose area is 1
(Figure 2.8). Technically, it’s not a function at all, since it is not finite at x = 0
(mathematicians call it a generalized fanction, or distribution).”* Nevertheless, it is
an extremely useful construct in theoretical physics. (For example, in electrodynam-
ics the charge density of a point charge is a delta function.) Notice that §(x —a) would

BIf you are very observant, and awfully fastidious, you may have noticed that the general theorem
requiring E > Viin (Problem 2.2) does not really apply to scattering states, since they are not normalizable
anyway. If this bothers you, try solving the Schrodinger equation with £ < 0, for the free particle, and
note that even linear combinations of these solutions cannot be normalized. The positive energy solutions
by themselves constitute a complete set.

24The delta function can be thought of as the Jimir of a sequence of functions, such as rectangles
(or triangles) of ever-increasing height and ever-decreasing width.
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8(x)

Figure 2.8: The Dirac delta function
(Equation 2.93).

xy

be a spike of area 1 at the point . If you multiply 8(x — a) by an ordinary function
f(x), it’s the same as multiplying by f(a):

fx)8(x —a)= f@)d(x —a), [2.94]

because the product is zero anyway except at the point a. In particular,

+o0 400

fX)d(x —a)dx = f(a)f S(x —a)dx = f(a). [2.95]
—0 -0
That’s the most important property of the delta function: Under the integral sign it
serves to “pick out” the value of f(x) at the point a. (Of course, the integral need
not go from —oo to 4+00; all that matters is that the domain of integration include the
point a, s0 a — € to a + € would do, for any € > 0.)

Let’s consider a potential of the form

Vix) =—adXx), [2.96]

where « is some constant. This is an artificial potential (so was the infinite square
well), but it’s beautifully simple and in some respects closer to reality than any of the
potentials we have considered so far. The Schrédinger equation reads

nt d*y
2m dx?
This potential yields both bound states (£ < () and scattering states (£ > 0); we’ll

look first at the bound states.
In the region x < 0, V' (x) =0, so

—ad(x)y = Ey. [2.97]

>y 2mE
FR i L d 298]
where
V=2mE
k= YE [2.99]

h
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(E is negative, by assumption, so x is real and positive.) The general solution to
Equation 2.98 is
Y(x) = Ade™™* + Be**, [2.100]

but the first term blows up as x — —00, so we must choose 4 = 0:
v(x) = B, (x <0). [2.101]

In the region x > 0, V' (x) is again zero, and the general solution is of the form
F exp(—kx)+ G exp(xx); this time it’s the second term that blows up (as x — +00),
S0

Y(x) = Fe™*, (x> 0). [2.102]

It remains only to stitch these two functions together, using the appropriate
boundary conditions at x = 0. I quoted earlier the standard boundary conditions
for .

2. dy/dx is continuous except at points [2.103]

I 1. ¥ is always continuous, and
where the potential is infinite.

In this case the first boundary condition tells us that F = B, so

B, (x <0),
v(x) = { Be*, (x> 0). [2.104]
[¥ (x) is plotted in Figure 2.9.] The second boundary condition tells us nothing; this
is (like the infinite square well) the exceptional case where V' is infinite at the join, and
it’s clear from the graph that this function has a kink at x = 0. Moreover, up to this
point the delta function has not come into the story at all. Evidently the delta function
must determine the discontinuity in the derivative of ¥, at x = 0. I’ll show you now
how this works, and as a byproduct we’ll see why d/dx is ordinarily continuous.
The idea is to integrate the Schrodinger equation, from —e to +¢, and then take
the limit as € — 0:

! X

Figure 2.9: Bound state wave function for the delta function potential (Equation
2.104).



Sec. 2.5: The Delta-Function Potential 55

hZ +e dzw +e +€
_ dx +/ Vixyw(x)dx =F w(x)dx. [2.105]
2m ). dx?

€ —€

The first integral is nothing but dv/dx, evaluated at the two end points; the last
integral is zero, in the limit € — 0, since it’s the area of a sliver with vanishing width
and finite height. Thus

dw _2 +e
A(E) = 27 lin lim /_6 Vi) x)dx. [2.106]

Ordinarily, the limit on the right is again zero, and hence d+/dx is continuous.
But when V (x) is infinite at the boundary, that argument fails. In particular, if
V(x) = —ad(x), Equation 2.95 yields

dyr _2ma
A (d_x> ——v(0). [2.107]

For the case at hand (Equation 2.104),

dyr/dx = —Bke ™", for (x > 0), so dW/dx|+ = —Bx,
dy/dx = +Bke™™*, for (x <0), sody/dx|_ = +Bk,

and hence A(d{/dx) = —2Bx. And ¢ (0) = B. So Equation 2.107 says

mo
and the allowed energy (Equation 2.99) is
Rk ma?
FE=———=——+. 2.109
2m 2n? [ ]
Finally, we normalize y:
+o0 —2;( |B|2
IW(X)I dx =2|BJ? Ydx =1,
_ K
so (choosing, for convenience, the positive real root):
B=ﬁ=V;’“, [2.110]

Evidently the delta-function well, regardless of its “strength” &, has exactly one bound
state:

2
Y = Y2 ;"“e""“‘*'/h‘; E=-"2 [2.111]
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What about scattering states, with E > 0? For x < 0 the Schrodinger equation
reads

2
where
k= «/Qrzn—E [2.112]
is real and positive. The general solution is
Y(x) = 4™ + Be™ [2.113]

and this time we cannot rule out either term, since neither of them blows up. Similarly,
forx > 0,

Y (x) = Fe'® 4 Ge™'*~, [2.114]
The continuity of y(x) at x = 0 requires that
F+G=A4+B. - [2.115]

The derivatives are

dy/dx = ik (Fe'*™ — Ge™™), for (x > 0), sody/dx| = ik(F-G),
dy/dx =ik (4™ — Be™™*), for (x < 0), sody/dx|_=ik(4— B),

and hence A(dy/dx) = ik(F — G — A+ B). Meanwhile, ¢/ (0) = (4 + B), so the
second boundary condition (Equation 2.107) says

. 2mao
or, more compactly,
F—G=A(1+2if) — B(1 —2ip), whereﬂ—:—%. [2.117]

Having imposed the boundary conditions, we are left with two equations (Equa-
tions 2.115 and 2.117) in four unknowns (A4, B, F, and G)—five, if you count k. Nor-
malization won’t help—this isn’t a normalizable state. Perhaps we’d better pause,
then, and examine the physical significance of these various constants. Recall that
exp(ikx) gives rise [when coupled with the time-dependent factor exp{(—i £t /%)] to
a wave function propagating to the right, and exp(—ikx) leads to a wave propagating
to the left. Tt follows that A (in Equation 2.113) is the amplitude of a wave coming in
from the left, B is the amplitude of a wave returning to the left, F (in Equation 2.114)
is the amplitude of a wave traveling off to the right, and G is the amplitude of a wave
coming in from the right (Figure 2.10). In a typical scattering experiment particles
are fired in from one direction—Ilet’s say, from the left. In that case the amplitude of
the wave coming in from the right will be zero:
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A
Aeikx Feikx
e e -
Be—ikx Ge—ikx
X
Figure 2.10: Scattering from a
delta-function well.
G =0 (for scattering from the left). [2.118]

A is then the amplitude of the incident wave, B is the amplitude of the reflected
wave, and F is the amplitude of the transmitted wave. Solving Equations 2.115 and
2.117 for B and F, we find
] 1
p=—P 4 Fp__L1 4
1-ip 1—-iB
(If you want to study scattering from the right, set A = 0; then G is the incident
amplitude, F is the reflected amplitude, and B is the transmitted amplitude.)
Now, the probability of finding the particle at a specified location is given by
|W|2, so the relative® probability that an incident particle will be reflected back is

_ B B?
AP T+ Y
R is called the reflection coefficient. (If you have a beam of particles, it tells you the

Sraction of the incoming number that will bounce back.) Meanwhile, the probability
of transmission is given by the transmission coefficient

[2.119]

[2.120]

= Lill - [2.121]
SR T L+ Y '
Of course, the sum of these probabilities should be 1—and it is:
R+T=1 [2.122]

Notice that R and T are functions of 8, and hence (Equations 2.112 and 2.117) of E:

1 1

_ N . — 2.123
1+ (W2 E/ma?) 1 + (ma?/2h%E) [ ]

Z5This is not a normalizable wave function, so the absolute probability of finding the particle at a
particular location is not well defined; nevertheless, the ratio of probabilities for two different locations is
meaningful. More on this in the next paragraph.
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The higher the energy, the greater the probability of transmission (which seems rea-
sonable).

This is all very tidy, but there is a sticky matter of principle that we cannot al-
together ignore: These scattering wave functions are not normalizable, so they don’t
actually represent possible particle states. But we know what the resolution to this
problem is: We must form normalizable linear combinations of the stationary states,
just as we did for the free particle—true physical particles are represented by the
resulting wave packets. Though straightforward in principle, this is a messy busi-
ness in practice, and at this point it is best to turn the problem over to a computer.”®
Meanwhile, since it is impossible to create a normalizable free particle wave function
without involving a range of energies, R and T should be interpreted as the approxi-
mate reflection and transmission probabilities for particles in a narrow energy range
about E. Incidentally, it might strike you as peculiar that we were able to analyse a
quintessentially time-dependent problem (particle comes in, scatters off a potential,
and flies off to infinity) using stationary states. After all, ¥ (in Equations 2.113 and
2.114) is simply a complex, time-independent, sinusoidal function, extending (with
constant amplitude) to infinity in both directions. And yet, by imposing appropriate
boundary conditions on this function, we were able to determine the probability thata
particle (represented by a localized wave packet) would bounce off, or pass through,
the potential. The mathematical miracle behind this is, I suppose, the fact that by
taking linear combinations of states spread over all space, and with essentially triv-
ial time dependence, we can construct wave functions that are concentrated about a
(moving) point, with quite elaborate behavior in time (see Problem 2.40).

As long as we’ve got the relevant equations on the table, let’s look briefly at
the case of a delta-function barrier (Figure 2.11). Formally, all we have to do is
change the sign of . This kills the bound state, of course (see Problem 2.2). On
the other hand, the reflection and transmission coefficients, which depend only on
o, are unchanged. Strange to say, the particle is just as likely to pass through the
barrier as to cross over the well! Classically, of course, the particle could not make
itover aninfinitely high barrier, regardless of its energy. In fact, the classical scattering

V(x) = ad(x)

X Figure 2.11: The delta-function barrier.

26There exist some powerful programs for analysing the scattering of a wave packet from a one-
dimensional potential; see, for instance, A. Goldberg, H. M. Schey, and J. L. Schwartz, Am. J. Phys. 35,
177 (1967).
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problem is pretty dull: If £ > ¥V, then 7 = 1 and R = 0—the particle certainly
makes it over; conversely, if £ < Vi, then T = 0 and R = 1—it rides “up the
hill” until it runs out of energy, and then returns the same way it came. The quantum
scattering problem is much richer; the particle has some nonzero probability of passing
through the potential even if £ < ¥, We call this phenomenon tunneling; it is
the mechanism that makes possible much of modern electronics—not to mention
spectacular recent advances in microscopy. Conversely, even if E > Vpay, there is a
possibility that the particle will bounce back—though I wouldn’t advise driving off a
cliff in the expectation that quantum mechanics will save you (see Problem 2.41).

Problem 2.23 Evaluate the following integrals:

@ [7 (=322 +2x — DS(x +2) dx
(b) [y7lcos(3x) +2]6(x — ) dx
(© [ exp(ix|+3)8(x —2)dx.

Problem 2.24 Two expressions [ D;(x) and D;(x)] involving delta functions are
said to be equal if

+0o0 +00

S Di(x)dx = f(x)Da(x) dx,

—o0 —o0

for any (ordinary) function f(x).

(@) Show that

8(cx) = %S(x), [2.124]

where ¢ is a real constant.
(b) Let 6(x) be the step function:

|1, ifx>0,
O(x) = {O, fx <0 [2.125]
{In the rare case where it actually matters, we define ¢ (0) to be 1/2.] Show that
do/dx = 8(x).
«Problem 2.25 What is the Fourier transform of § (x)? Using Plancherel’s theorem,
show that
1 [t .
s(x) = — f e dk. [2.126]
21 J_o

Comment. This formula gives any respectable mathematician apoplexy. Although
the integral is clearly infinite when x = 0, it doesn’t converge (to zero or anything
else) when x # 0, since the integrand oscillates forever. There are ways to patch it up
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(for instance, you can integrate from — L to + L, and interpret the integral in Equation
2.126 to mean the average value of the finite integral, as L — 00). The source of the
problem is that the delta function doesn’t meet the requirement (square integrability)
for Plancherel’s theorem (see footnote 22). In spite of this, Equation 2.126 can be
extremely useful, if handled with care.

«Problem 2.26 Consider the double delta-function potential
Vx)=—ald(x +a)+é(x —a)l,

where « and a are positive constants.

(a) Sketch this potential.

(b) How many bound states does it possess? Find the allowed energies, for o =
h%/ma and for o = h%/4ma, and sketch the wave functions.

*xProblem 2.27 Find the transmission coefficient for the potential in Problem 2.26.

2.6 THE FINITE SQUARE WELL

As a last example, consider the finite square well

_ ) =Vy, for—-a<x<a,
v = {O, for |x| > a, (2.127]

where 7 is a (positive) constant (Figure 2.12). Like the delta-function well, the finite
square well admits both bound states (with £ < 0) and scattering states (with £ > 0).

We’ll look first at the bound states.
In the region x < —a the potential is zero, so the Schrodinger equation reads

n d*y d*y
——— =k ’ 5, = 2 ’
2m dx? v, or dx2 " 4

AVX)

-a a

xy

Figure 2.12: The finite square well
(Equation 2.127).
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where
—=2mE
h

is real and positive. The general solution is ¥ (x) = A4 exp(—«x) + Bexp(xx), but
the first term blows up (as x — —o0), so the physically admissable solution (as
before—see Equation 2.101) is

K [2.128]

Y(x) = Be”*, for (x < —a). [2.129]
In the region —a < x < a, V (x) = —Vj, and the Schrodinger equation reads
n? d*y d*y
—_————— — V = E —_— = —12 s
2m dx? 0¥ v, or dx? 4
where
V2
= ’”—(;:’L~@ [2.130]

Although E is negative, for a bound state, it must be greater than —¥j, by the old
theorem E > Vyin (Problem 2.2); so [ is also real and positive. The general solution
is

¥(x) = Csin(lx) + Dcos(lx), for (—a < x < a), [2.131]

where C and D are arbitrary constants. Finally, in the region x > a the potential is
again zero; the general solution is ¥ (x) = F exp(—«x) + G exp(xx), but the second
term blows up (as x — 00), so we are left with

P(x) = Fe ™, for (x > a). [2.132]

The next step is to impose boundary conditions: ¥ and dy/dx continuous at
—a and +a. But we can save a little time by noting that this potential is an even
function, so we can assume with no loss of generality that the solutions are either
even or odd (Problem 2.1c). The advantage of this is that we need only impose the
boundary conditions on one side (say, at +a); the other side is then automatic, since
P (—x) = =¥ (x). T'll work out the even solutions; you get to do the odd ones in
Problem 2.28. The cosine is even (and the sine is odd), so I’'m looking for solutions

of the form
Fe™**, for (x > a),
Y (x) = 1 Dcos(lx), for (0 <x < a), [2.133]
Y(—x), for (x < 0).

The continuity of ¥ (x), at x = a, says
Fe ™% = Dcos(la), [2.134]
and the continuity of dyr/dx says

—kFe™% = —IDsin(la). [2.135]
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Dividing Equation 2.135 by Equation 2.134, we find that
k =l tan(la). [2.136]

Equation 2.136 is a formula for the allowed energies, since « and / are both
functions of E. To solve for E, it pays to adopt some nicer notation. Let

z=la, and z = ;Z—l\/ZmVO. (2.137]

According to Equations 2.128 and 2.130, (% + %) = 2mVy /A%, s0 ka = /22 — 22,

and Equation 2.136 reads
tanz = v/(z0/2)? — 1. [2.138]

This is a transcendental equation for z (and hence for E) as a function of zo (which is
a measure of the “size” of the well). It can be solved numerically, using a calculator
or a computer, or graphically, by plotting tan z and +/(zo/2)*> — 1 on the same grid,
and looking for points of intersection (see Figure 2.13). Two limiting cases are of
special interest:

1. Wide, deep well. If z, is very large, the intersections occur just slightly
below z, = nm /2, with n odd; it follows that

nmln?

Ent Vo= 2mQ2a)?’

[2.139]
Here (E + Vp) is the energy above the bottom of the well, and on the right we have
precisely the infinite square well energies, for a well of width 2a (see Equation 2.23)—
or rather, half of them, since n is odd. (The other ones, of course, come from the odd
wave functions, as you’ll find in Problem 2.28.) So the finite square well goes over to
the infinite square well, as Vo — oo; however, for any finite V; there are only finitely
many bound states.

2. Shallow, narrow well. As 7, decreases, there are fewer and fewer bound
states, until finally (for zg < 7/2, where the lowest odd state disappears) only one
remains. It is interesting to note, however, that there is always one bound state, no
matter how “weak” the well becomes.

You're welcome to normalize ¢ (Equation 2.133), if you’re interested (see
Problem 2.29), but I’m going to move on now to the scattering states (£ > 0). To the
left, where V (x) = 0, we have

Y(x) = Ae’™ + Be % for (x < —a), [2.140]

where (as usual)

)
3
ty

k [2.141]

Inside the well, where V (x) = —V,,

Y(x) = Csin(lx) + Dcos(/x), for (—a < x < a), [2.142]
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n/2 n 3n/2 2n 5n/2 z
Figure 2.13: Graphical solution to Equation 2.138, for z5 = 8 (even states).

where, as before,

V2m(E F Vo)
I = 2’"—(;”@ [2.143]
To the right, assuming there is no incoming wave in this region, we have
¥ (x) = Fe'™. [2.144]

A is the incident amplitude, B is the reflected amplitude, and F is the transmitted
amplitude.?”
There are four boundary conditions: Continuity of ¥ (x) at —a says

Ae 'k + Be'*® = _Csin(la) + D cos(la), [2.145]
continuity of dy//dx at —a gives
ik[Ae™*@ — Be™*] = [[C cos(la) + Dsin(la)], [2.146]
continuity of ¥ (x) at +a yields
Csin(la) + D cos(la) = Fe'*®, [2.147]
and continuity of dyr/dx at 4+a requires
I[C cos(la) — Dsin(la)] = ikFe'*. [2.148]

We can use two of these to eliminate C and D, and solve the remaining two for B
and F (see Problem 2.31):

sinQRla) , .,
=i———=("—k)F 2.149
e ( )F, [ ]

27We could use even and odd functions, as we did for bound states, but these would represent
standing waves, and the scattering problem is more naturally formulated in terms of traveling waves.



64

Chap. 2 The Time-Independent Schrédinger Equation

E

Figure 2.14: Transmission coefficient as a function of energy (Equation 2.151).

e—2ikaA
F= n02la) . [2.150]
cos(2la) — i 557 (k2 +12)
The transmission coefficient (I = |F|?/|A|%), expressed in terms of the original

variables, is given by
T =1+ A (2“,/2m(E ) [2.151]
T T 4E(E + V) h V) '

Notice that 7 = 1 (the well becomes “transparent”) whenever the argument of the
sine is zero, which is to say, for

2a
7\/2m(E,, + Vo) = nm, [2.152]

where » is any integer. The energies for perfect transmission, then, are given by

n2mh?

En + VO = 2m (2a)23

[2.153]

which happen to be precisely the allowed energies for the infinite square well. T is
plotted in Figure 2.14 as a function of energy.

xProblem 2.28 Analyze the odd bound-state wave functions for the finite square

well. Derive the transcendental equation for the allowed energies, and solve it graph-
ically. Examine the two limiting cases. Is there always at least one odd bound state?

Problem 2.29 Normalize ¥ (x) in Equation 2.133 to determine the constants D
and F.

Problem 2.30 The Dirac delta function can be thought of as the limiting case of
a rectangle of area 1, as the height goes to infinity and the width goes to zero. Show
that the delta-function well (Equation 2.96) is a “weak” potential (even though it is
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infinitely deep), in the sense that z, — (0. Determine the bound-state energy for
the delta-function potential, by treating it as the limit of a finite square well. Check
that your answer is consistent with Equation 2.111. Also show that Equation 2.151
reduces to Equation 2.123 in the appropriate limit.

xProblem 2.31 Derive Equations 2.149 and 2.150. Hint: Use Equations 2.147 and
2.148 to solve for C and D in terms of F:

. k ik k. ”
C = |sin(la) + i 7 cos(la) | € F; D = |cos(la) — 17 sin(la) | € F.
Plug these back into Equations 2.145 and 2.146. Obtain the transmission coeffi-

cient, and confirm Eqation 2.151. Work out the reflection coefficient, and check that
T+R=1

x+Problem 2.32 Determine the transmission coefficient for a rectangular barrier
(same as Equation 2.127, only with +¥ in the region —a < x < a). Treat separately
the three cases E < Vg, E = Vo, and E > V, (note that the wave function inside the
barrier is different in the three cases). Partial answer: For E < V(,”

143 2
T'=14 —2L sinh? (—",/2m(V0 — E)) )

4E(Vo — E) h

s« Problem 2.33 Consider the step function potential:

0, ifx<0,
V)= { Vo ifx > 0.

(a) Calculate the reflection coefficient, for the case E < V, and comment on the
answer.

(b) Calculate the reflection coefficient for the case £ > V.

(c) For a potential such as this that does not go back to zero to the right of the
barrier, the transmission coefficient is not simply | F|?/| 4|2, with 4 the incident
amplitude and F the transmitted amplitude, because the transmitted wave travels
at a different speed. Show that

_ J[E-Vo |F?

T = —, 2.154
E AP l ]

for E > V. Hint: Youcan figure it out using Equation 2.8 1, or—more elegantly,
but less informatively—from the probability current (Problem 1.9a). Whatis T
for £ < Vy?

28This is a good example of tunneling—classically the particle would bounce back.
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(d) For E > V¥, calculate the transmission coefficient for the step potential, and
checkthat T + R = 1.

2.7 THE SCATTERING MATRIX

The theory of scattering generalizes in a pretty obvious way to arbitrary localized
potentials (Figure 2.15). To the left (Region I), V' (x) = 0, so

. . 2mE
U(x) = Ade™ 4 Be | where k = Y2 [2.155]

To the right (Region III), ¥ (x) is again zero, so
Y(x) = Fe'™ + Ge . [2.156]

In between (Region II), of course, I can’t tell you what i is until you specify the
potential, but because the Schrédinger equation is a linear, second-order differential
equation, the general solution has got to be of the form

V(x) = Cf(x) + Dg(x), [2.157]

where f(x) and g(x) are any two linearly independent particular solutions.? There
will be four boundary conditions (two joining Regions I and II, and two joining
Regions II and III). Two of these can be used to eliminate C and D, and the other two
can be “solved” for B and F in terms of 4 and G:

B =814+ 8SG, F=584+ 8,G. [2.158]

The four coefficients 5;;, which depend on & (and hence on E), constitute a
2 x 2 matrix

V(x) J

Ae’ kx Fe ikx

—_ —_
- -
—ikx —ikx
Be Ge
P -
\V/4 x

Region 1 Region 11 Region 11T

Figure 2.15: Scattering from an arbitrary localized potential [V (x) = 0 except in
Region IT].

29See any book on differential equations—for example, J. L. Van Iwaarden, Ordinary Differential
Equations with Numerical Technigues (San Diego, CA: Harcourt Brace Jovanovich, 1985). Chapter 3.



Sec. 2.7: The Scattering Matrix 67

S11 Siz
S= , 2.159
( S S» ) [ ]

called the scattering matrix (or S-matrix, for short). The S-matrix tells you the
outgoing amplitudes (B and F) in terms of the incoming amplitudes (4 and G):

(2)-5(4)

In the typical case of scattering from the left, G = 0, so the reflection and transmission
coefficients are

|B 2 |FI? 2
Ri= ol =1sult =Tl =Isul 2.161
N TE] P S =147 om0 [S21 [ ]
For scattering from the right, 4 = 0, and
lFlzi 2 |BI> 2
B T,=—‘ = IS 2.162
GRRTCTEL P 15221 GPE |10 [S12l [ 1

The S-matrix tells you everything there is to know about scattering from a local-
ized potential. Surprisingly, it also contains (albeit in a concealed form) information
about the bound states (if there are any). For if E < 0, then ¥ (x) has the form

Be* (Region I),
Yx) = [ Cf(x)+ Dg(x) (RegionIl), [2.163]
Fe™* (Region I1II),
with
K= —_;m@ [2.164]

The boundary conditions are the same as before, so the S-matrix has the same
structure—only now E is negative, so k — ix. But this time 4 and G are nec-
essarily zero, whereas B and F are not, and hence (Equation 2.158) at least two
elements in the S-matrix must be infinite. To put it the other way around, if you’ve
got the S-matrix (for E > 0), and you want to locate the bound states, put ink — ix,
and look for energies at which the S-matrix blows up.

For example, in the case of the finite square well,

e-—2ika

S = -
?7 cos(2la) — i B (2 4 12)

(Equation 2.150). Substituting k — ix, we see that S; blows up whenever
2 _ 2

2kl

cot(2la) =
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Using the trigonometric identity
0
tan (5) =%V 1+ cot? 6 — cot#,

we obtain
tan(la) = L (plus sign), and cot(la) = —il(— (minus sign).
K

These are precisely the conditions for bound states of the finite square well (Equation
2.136 and Problem 2.28).

xProblem 2.34 Construct the S-matrix for scattering from a delta-function well
(Equation 2.96). Use it to obtain the bound state energy, and check your answer
against Equation 2.111.

Problem 2.35 Find the S-matrix for the finite square well (Equation 2.127). Hint:
This requires no new work if you carefully exploit the symmetry of the problem.

FURTHER PROBLEMS FOR CHAPTER 2

Problem 2.36 A particle in the infinite square well (Equation 2.15) has the initial
wave function

W(x,0) = Asin’(rx/a).

Find (x) as a function of time.

*Problem 2.37 Find (x), (p), (x%), (p%), (T), and (¥ (x)) for the nth stationary
state of the harmonic oscillator. Check that the uncertainty principle is satisfied.
Hint: Express x and (2/i)(d /dx) in terms of (a; £ a_), and use Equations 2.52 and
2.53; you may assume that the states are orthogonal.

Problem 2.38 Find the allowed energies of the half-harmonic oscillator

(1/2yma*x?, for (x > 0),

V&)= { 0, for (x < 0).

(This represents, for example, a spring that can be stretched, but not compressed.)
Hint: This requires some careful thought, but very little actual computation.

x+Problem 2.39 Solve the time-independent Schrodinger equation for an infinite
square well with a delta-function barrier at the center:

ad(x), for(—a < x < +a),
00, for (x| > a).

Vix)= {
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Treat the even and odd wave functions separately. Don’t bother to normalize them.
Find the allowed energies (graphically, if necessary). How do they compare with the
corresponding energies in the absence of the delta function? Comment on the limiting
cases @ — 0 and o — oco.

s+Problem 2.40 In Problem 2.22 you analyzed the stationary Gaussian free particle
wave packet. Now solve the same problem for the traveling Gaussian wave packet,
starting with the initial wave function

Y(x,0) = Ae“”zeﬂx,

where / is a real constant.

Problem 2.41 A particle of mass m and kinetic energy E > 0 approaches an
abrupt potential drop Vp (Figure 2.16).

(a) What is the probability that it will “reflect” back, if £ = V/3?

(b) I drew the figure so as to make you think of a car approaching a cliff, but
obviously the probability of “bouncing back” from the edge of a cliff is far
smaller than what you got in (a)—unless you’re Bugs Bunny. Explain why this
potential does not correctly represent a cliff.

Problem 2.42 If two (or more) distinct®® solutions to the (time-independent) Schrd-
dinger equation have the same energy E, these states are said to be degenerate. For
example, the free particle states are doubly degenerate—one solution representing
motion to the right, and the other motion to the left. But we have encountered no

AV(x)

=y

Figure 2.16: Scattering from a “cliff” (Problem 2.41).

301f the two solutions differ only by a multiplicative constant (so that, once normalized, they differ
only by a phase factor ¢'9), they represent the same physical state, and in this case they are not distinct
solutions. Technically, by “distinct” I mean “linearly independent.”
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normalizable degenerate solutions, and this is not an accident. Prove the following
theorem: In one dimension®' there are no degenerate bound states. Hinz: Suppose
there are two solutions, 1; and yr,, with the same energy E. Multiply the Schrodinger
equation for yr; by ¢, and the Schrodinger equation for v, by -, and subtract, to
show that (ydyr /dx — y1dip /dx) is a constant. Use the fact that for normalizable
solutions ¢ — 0 at 00 to demonstrate that this constant is in fact zero. Conclude
that v, is a multiple of v, and hence that the two solutions are not distinct.

Problem 2.43 Imagine abead of mass m that slides frictionlessly around a circular
wire ring of circumference a. [This is just like a free particle, except that ¢ (x) =
¥ (x + a).] Find the stationary states (with appropriate normalization) and the cor-
responding allowed energies. Note that there are /o independent solutions for each
energy E,—corresponding to clockwise and counterclockwise circulation; call them
¥, (x) and ¥, (x). How do you account for this degeneracy, in view of the theorem
in Problem 2.42—that is, why does the theorem fail in this case?

«xProblem 2.44 (Attention: This is a strictly qualitative problem—no calculations

allowed!) Consider the “double square well” potential (Figure 2.17). Suppose the
depth ¥, and the width a are fixed, and great enough so that several bound states
occur.

(@) Sketch the ground-state wave function Y1 and the first excited state 1>, (i) for
the case b = 0, (ii) for b ~ a, and (iii) for b > a.

(b) Qualitatively, how do the corresponding energies (E; and E,) vary, as b goes
from O to co? Sketch E,(b) and E;(b) on the same graph.

(€) The double well is a very primitive one-dimensional model for the potential
experienced by an electron in a diatomic molecule (the two wells represent the
attractive force of the nuclei). If the nuclei are free to move, they will adopt the
configuration of minimum energy. In view of your conclusions in (b), does the
electron tend to draw the nuclei together, or push them apart? (Of course, there
is also the internuclear repulsion to consider, but that’s a separate problem.)

x+xProblem 2.45

(a) Show that

1/4 2 ) iht )
W(x,t) = dad exp _TMe (2 + a—(l +eHey 4 P paxe i
nh 2h 2 m

3In higher dimensions such degeneracy is very common, as we shall see in Chapter 4. Assume that
the potential does not consist of isolated pieces separated by regions where ¥ = oco—two isolated infinite
square wells, for instance, would give rise to degenerate bound states, for which the particle is either in the
one or in the other.
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AV(X)

xY

___Vo

Figure 2.17: The double square well (Problem 2.44).

satisfies the time-dependent Schrodinger equation for the harmonic oscillator
potential (Equation 2.38). Here a is any real constant (with the dimensions of
length).*

(b) Find |W(x, )|?, and describe the motion of the wave packet.

(c) Compute (x) and {p), and check that Ehrenfest’s theorem (Equation 1.38) is
satisfied.

Problem 2.46 Consider the potential

0o, ifx <0,
ad(x —a), ifx >0,

Vix)= {

where a and « are positive real constants with the appropriate units (see Figure 2.18).
A particle starts out in the “well” (0 < x < a), but because of tunneling its wave
function gradually “leaks” out through the delta-function barrier.

(a) Solve the (time-independent) Schrodinger equation for this potential; impose
appropriate boundary conditions, and determine the “energy”, E. (An implicit
equation will do.)

(b) I put the word “energy” in quotes because you’ll notice that it is a complex
number! How do you account for this, in view of the theorem you proved in
Problem 2.1a?

(c) Writing E = Eg + i (with Eg and T real), calculate (in terms of T') the
characteristic time it takes the particle to leak out of the well (that is, the time it
takes before the probability is 1/e that it’s still in the region 0 < x < a).

32This rare example of an exact closed-form solution to the time-dependent Schrodinger equation
was discovered by Schrodinger himself, in 1926.
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V(x)

1
T

a X

Figure 2.18: The potential for Problem 2.46.

xxProblem 2.47 Consider the moving delta-function well:
Vix,t) = —ad(x — vt),

where v is the (constant) velocity of the well.
(a) Show that the time-dependent Schrodinger equation admits the exact solution
W(x,t) = N —malx—vtl /8 =il(E+(1/20mv?)1—mux]/h

where £ = —ma? /2 is the bound-state energy of the stationary delta function.
Hint: Plug it in and check it! Use Problem 2.24b.

(b) Findthe expectation value of the Hamiltonian in this state, and comment on the
result.

xxxProblem 2.48 Consider the potential

2.2
a 2
V(x) = ———sech”(ax),
m

where a is a positive constant and “sech” stands for the hyperbolic secant.

(&) Show that this potential has the bound state
Yo(x) = A sech(ax),

and find its energy. Normalize ¥, and sketch its graph.
(b) Show that the function
ik — atanh(ax)\ ;,
— A KX
Vilx) ( ik+a ) ¢
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(where k = +/2mE /A, as usual) solves the Schrodinger equation for any (posi-
tive) energy E. Since tanhz — —1asz — —oo,

Vi (x) ~ Ae'™,  for large negative x.

This represents, then, a wave coming in from the left with no accompanying
reflected wave [i.e., no term exp(—ikx)]. What is the asymptotic form of ¥ (x)
at large positive x? What are R and T for this potential? Note: sech? is afamous
example of a “reflectionless” potential—every incident particle, regardless of
its energy, passes right through. See R. E. Crandall and B. R. Litt, Annals of
Physics 146, 458 (1983).

(c) Construct the S-matrix for this potential, and use it to locate the bound states.
How many of them are there? What are their energies? Check that your answer
is consistent with part (a).

sx+x*Problem 2.49 The S-matrix tells you the outgoing amplitudes (B and F) in terms
of the incoming amplitudes (4 and G):

BY (S So A

F)] \Sa S» G/’
For some purposes it is more convenient to work with the transfer matrix, M, which
gives you the amplitudes to the right of the potential (¥ and G) in terms of those to

the left (A and B):
FN _(Mn Mp A
G) \ My Mp)\B)

(a) Find the four elements of the M-matrix in terms of the elements of the S-matrix,
and vice versa. Express Ry, T;, R,, and T, (Equations 2.161 and 2.162) in terms
of elements of the M-matrix.

(b) Suppose you have a potential consisting of two isolated pieces (Figure 2.19).
Show that the M-matrix for the combination is the product of the two M-matrices
for each section separately:

M = M;M,.

(This obviously generalizes to any number of pieces, and accounts for the use-
fulness of the M-matrix.)

- o ~7 o> a8
M1 M2 X
[ — . — S —

V=0 V=0 V=0

Figure 2.19: A potential consisting of two isolated pieces (Problem 2.49).
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(¢) Construct the M-matrix for scattering from a single delta-function potential at
point a:
Vix) =—abd(x —a).

(d) By the method of part (b), find the AM-matrix for scattering from the double delta
function
V(x) =—ald(x +a)+d(x —a)l.

What is the transmission coefficient for this potential?




CHAPTER 3

FORMALISM

3.1 LINEAR ALGEBRA

The purpose of this chapter is to develop the formalism of quantum mechanics—
terminology, notation, and mathematical background that illuminate the structure of
the theory, facilitate practical calculations, and motivate a fundamental extension of
the statistical interpretation. I begin with a brief survey of linear algebra.! Linear
algebra abstracts and generalizes the arithmetic of ordinary vectors, as we encounter
them in first-year physics. The generalization is in two directions: (1) We allow
the scalars to be complex, and (2) we do not restrict ourselves to three dimensions
(indeed, in Section 3.2 we shall be working with vectors that live in spaces of infinite
dimension).

3.1.1 Vectors
A vector space consists of a set of vectors (la), |8), |v), ...), together with a set

of scalars (a, b, ¢, ...),*> which are subject to two operations—vector addition and
scalar multiplication:

'If you have already studied linear algebra, you should be able to skim this section quickly, but
1 wouldn’t skip it altogether, because some of the notation may be unfamiliar. If, on the other hand, this
material is new to you, be warned that I am only summarizing (often without proof) those aspects of the
theory we will be needing later. For details, you should refer to a text on linear algebra, such as the classic
by P. R. Halmos: Finite Dimensional Vector Spaces, 2nd ed. (Princeton, NJ: van Nostrand, 1958).

2For our purposes, the scalars will be ordinary complex numbers. Mathematicians can tell you
about vector spaces over more exotic fields, but such objects play no role in quantum mechanics.

v
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Vector addition. The “sum” of any two vectors is another vector:

ey +1B) = ly). [3.1]
Vector addition is commutative
la) + [8) = |8) + |a), [3.2]
and associative
ley + (UBY +1v) = (o) +[B)) + |y). [3.3]

There exists a zero (or null) vector,® |0, with the property that
la) +10) = |a), [3.4]

for every vector |a). And for every vector |a) there is an associated inverse vector
(] — a)), such that
loy + | — ) = |0). [3.5]

Scalar multiplication. The “product” of any scalar with any vector is another

vector:
ala) = |y). [3.6]

Scalar multiplication is distributive with respect to vector addition
a(la) +1B)) = ala) + alp) (3.7]
and with respect to scalar addition
(@ + b)la) = ala) + bla). [3.8]
It is also associative with respect to the ordinary multiplication of scalars:
a(bla)) = (ab)lar). (3.9]
Multiplication by the scalars 0 and 1 has the effect you would expect:
Ola) = [0):  1]ar) = o). [3.10]

Evidently | — «) = (—1)|a).

There’s a lot less here than meets the eye—all I have done is to write down
in abstract language the familiar rules for manipulating vectors. The virtue of such
abstraction is that we will be able to apply our knowledge and intuition about the
behavior of ordinary vectors to other systems that happen to share the same formal
properties.

31t is customary, where no confusion can arise, to write the null vector without the adorning bracket:
10y — 0.
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A linear combination of the vectors |a), |8), |y), ... is an expression of the
form
ala) +b|B) +cly) +---. [3.11]

A vector |1) is said to be linearly independent of the set |}, |8), |y), . .. if it cannot
be written as a linear combination of them. (For example, in three dimensions the unit
vector £ is linearly independent of 7 and j, but any vector in the x y-plane is linearly
dependent on T and j.) By extension, a set of vectors is linearly independent if each
one is linearly independent of all the rest. A collection of vectors is said to span the
space if every vector can be written as a linear combination of the members of this
set.* A set of linearly independent vectors that spans the space is called a basis. The
number of vectors in any basis is called the dimension of the space. For the moment
we shall assume that the dimension (r) is finite.
With respect to a prescribed basis

Iel)v IEZ)’ tees Ien), [312]

any given vector
l) = aile)) + arle2) + -+ - +ayle,) (3.13]

is uniquely represented by the (ordered) n-tuple of its components:
lay < (ay, a,...,a,). [3.14]

It is often easier to work with the components than with the abstract vectors them-
selves. To add vectors, you add their corresponding components:

lo) +1B) « (a1 + b1, a2+ by, ..., a, + by); [3.15]
to multiply by a scalar you multiply each component:
cla) < (cay, cay, ..., ca): [3.16]
the null vector is represented by a string of zeroes:
[0) < (0,0,...,0) [3.17]
and the components of the inverse vector have their signs reversed:
| —a) © (—ay, —az, ..., —a,). [3.18]

The only disadvantage of working with components is that you have to commit your-
self to a particular basis, and the same manipulations will look very different to
someone working in a different basis.

Problem 3.1 Consider the ordinary vectors in three dimensions (a,7 +a,} + ak)
with complex components.

4 A set of vectors that spans the space is also called complete, though I personally reserve that word
for the infinite-dimensional case, where subtle questions of convergence arise.
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(a) Does the subset of all vectors with a, = 0 constitute a vector space? If so, what
is its dimension; if not, why not?

(b) What about the subset of all vectors whose z component is 1?

(c) How about the subset of vectors whose components are all equal?

«Problem 3.2 Consider the collection of all polynomials (with complex coefficients)

of degree < N in x.

(a) Does this set constitute a vector space (with the polynomials as “vectors”)? If
so, suggest a convenient basis, and give the dimension of the space. If not,
which of the defining properties does it lack?

(b) What if we require that the polynomials be even functions?

(c) What if we require that the leading coefficient (i.e., the number multiplying
¥ 1be 1?7

(d) What if we require that the polynomials have the value 0 at x = 17
(e) What if we require that the polynomials have the value 1 at x = 0?7

Problem 3.3 Prove that the components of a vector with respect to a given basis
are unique.

3.1.2 Inner Products

In three dimensions we encounter two kinds of vector products: the dot product and
the cross product. The latter does not generalize in any natural way to n-dimensional
vector spaces, but the former does—in this context it is usually called the inner
product. The inner product of two vectors (|a) and |8)) is a complex number (which
we write as {a|B)), with the following properties:

(Bla) = (a|B)", [3.19]
(@la) >0, and (xja) =0« |a)=|0), [3.20]
(@] (b1B) +cly)) = b(@|B) + claly). [3.21]

Apart from the generalization to complex numbers, these axioms simply codify the
familiar behavior of dot products. A vector space with an inner product is called an
inner product space.

Because the inner product of any vector with itself is a nonnegative number
(Equation 3.20), its square root is real—we call this the norm of the vector:

leell = v/ {a|a); (3.22]
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it generalizes the notion of “length”. A “unit” vector, whose norm is 1, is said to
be normalized (the word should really be “normal”, but I guess that sounds too
anthropomorphic). Two vectors whose inner product is zero are called orthogonal
(generalizing the notion of “perpendicular”). A collection of mutually orthogonal
normalized vectors,

(a]a;) = 8y, [3.23]
is called an orthonormal set. It is always possible (see Problem 3.4), and almost
always convenient, to choose an orthonormal basis; in that case the inner product of
two vectors can be written very neatly in terms of their components:

(@|B) =aiby +asby +---+a’b,, [3.24]
the norm (squared) becomes
(@la) = la1|* + a2 + - + lan P, [3.25]
and the components themselves are
a; = {e;|a). [3.26]

(These results generalize the familiar formulas a - b = a,b, + ayb, + a.b., a - a
=a}+a+al,anda, =i-a,a,=j a,a, = k - a, for the three-dimensional
orthonormal basis 7, j, k.) From now on we shall always work in orthonormal bases
unless it is explicitly indicated otherwise.

Another geometrical quantity one might wish to generalize is the angle between
two vectors. In ordinary vector analysis cos@ = (a-b)/|a||b|. But because the inner
product is in general a complex number, the analogous formula (in an arbitrary inner
product space) does not define a (real) angle §. Nevertheless, it is still true that the
absolute value of this quantity is a number no greater than 1,

{alB) > < (ela)(BIB). [3.27]

(This important result is known as the Schwarz inequality; the proof is given in
Problem 3.5.) So you can, if you like, define the angle between |a) and |8) by the
formula

cos = [ {211 Bla). [3.28)
(ala)(BIB)
xProblem 3.4 Suppose you start out with a basis (Je;), |e2), ..., |e,)) that is not
orthonormal. The Gram-Schmidt procedure is a systematic ritual for generating
from it an orthonormal basis (|e}), |€}), . .., |e,)). It goes like this:

(i) Normalize the first basis vector (divide by its norm):

_ le1)
el

le})
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(i) Find the projection of the second vector along the first, and subtract it off:
lez) — (€}]e)le)).
This vector is orthogonal to |e); normalize it to get |e;).
(iii) Subtract from |e3) its projections along |e}) and |e5):
les) — (e]les)le]) — (elesdler).

This is orthogonal to |€}) and |¢5); normalize it to get |e). And so on.
Use the Gram-Schmidt procedure to orthonormalize the three-space basis
ler) = (14D + ()] + Ok, le2) = O+ 3]+ (D, les) = 0)i +(28)] + (O)k.

Problem 3.5 Prove the Schwarz inequality (Equation 3.27). Hint: Let ly) =
1B) — ((@|B)/(ala))|e), and use (y|y) = 0.

Problem 3.6 Find the angle (in the sense of Equation 3.28) between the vectors
la) = (1 + )i + (1)] + (D and [B) = (4 — )i + (0)f + 2 — 2D)k.

Problem 3.7 Prove the triangle inequality: ||(|a) + 8D < lleeli + 18Il

3.1.3 Linear Transformations

Suppose you take every vector (in three-space) and multiply it by 17, or you rotate
every vector by 39° about the z-axis, or you reflect every vector in the x y-plane—these
are all examples of linear transformations. A linear transformation® (T') takes each
vector in a vector space and “transforms” it into some other vector (ja) = |&) =
T |a)), with the proviso that the operation is linear:

T (ale) + b1B)) = a(T|@)) + b(T1B)), [3.29]

for any vectors |a), |B) and any scalars a, b.
If you know what a particular linear transformation does to a set of basis vectors,
you can easily figure out what it does to any vector. For suppose that

Tler) = Tiler) + Tatles) + -+ Tuilen),
Tles) = Tuler) + Tolez) + -+ + Talen),
Tle)) = Tinler) + Tanlea) + -+ + Tunlen),

or, more compactly,

Tle)y =Y Tyler), (G=12,....n). (3.30)
i=1

51n this chapter I'll use a hat (") to denote linear transformations; this is not inconsistent with my
earlier convention (putting hats on operators), for (as we shall see) our operators are linear transformations.
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If |&) is an arbitrary vector:

@) = ailer) + azles) + -+ + anlen) = Y _ ayley), [3.31]
then
n n n n
Tley =Y a;(Tle)) =YY aTijle) = Y ( Z Tiap)ler).  [3.32]
j=1 j=1 i=1 i=1 j=1
Evidently T takes a vector with components a;, ay, . . ., a, into a vector with compo-
nents®

a =) Ta. [3.33]
Jj=1

Thus the n? elements T;; uniquely characterize the linear transformation T (with
respect to a given basis), ]ust as the n components a; uniquely characterize the vector
|a) (with respect to the same basis):

T < (Tu, Tz, -, Ton). [3.34]
If the basis is orthonormal, it follows from Equation 3.30 that
T,y = (el Tle;). (3.35]

It is convenient to display these complex numbers in the form of a matrix’:

T]l T12 “ e Tlﬂ
T= . . . ] [3.36]
T T ... T,

The study of linear transformations, then, reduces to the theory of matrices. The sum
of two linear transformations (S + T ) is defined in the natural way:

S+ Tyla) = Sla) + Ta); [3.37]
this matches the usual rule for adding matrices (you add their corresponding elements):

Notice the reversal of indices between Equations 3.30 and 3.33. This is not a typographical error.
Another way of putting it (switching i <> j in Equation 3.30) is that if the components transform with T;;,
the basis vectors transform with T;.

I'll use boldface to denote matrices.
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The product of two linear transformations (S T ) is the net effect of performing them
in succession—first T, then S:

) — |@) = Tla) — |a) = Sla) = S(T|)) = ST ). [3.39]

What matrix U represents the combined transformation U = ST? 1t’s not hard to
work it out:

n

S5 3os (S ) £ (£ - Evee
= = k=1

j=1 k=1 \J=I1
Evidently
U=ST & Uy =y S;Tw [3.40]
j=1

this is the standard rule for matrix multiplication—to find the ik"™ element of the
product, you look at the i row of § and the k™ column of T, multiply corresponding
entries, and add. The same procedure allows you to multiply rectangular matrices, as
long as the number of columns in the first matches the number of rows in the second.
In particular, if we write the n-tuple of components of |a) as an n x 1 column matrix

ai

a
a=1| 1. [3.41]

ap
the transformation rule (Equation 3.33) can be written
a' = Ta. [3.42]

And now, some useful matrix terminology: The transpose of a matrix (which
we shall write with a tilde: T) is the same set of elements, but with rows and columns
interchanged:

Ty T ... Ta
~ T]z T22 P Tnz
T= . . ) [3.43]
Tln T2n v Tnn
Notice that the transpose of a column matrix is a row matrix:
a=(a a ... a). [3.44]

A square matrix is symmetric if it is equal to its transpose (reflection in the main
diagonal—upper left to lower right—leaves it unchanged); it is antisymmetric if
this operation reverses the sign:

SYMMETRIC: T = T: ANTISYMMETRIC: T = —T. [3.45]
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To construct the (complex) conjugate of a matrix (which we denote, as usual, with
an asterisk: T*), you take the complex conjugate of every element:

*

oIy ... T, 4
Ty T ... Tt @

=] 7 7 i S [3.46]
rhn T, ... T ay

A matrix is real if all its elements are real and imaginary if they are all imaginary:
REAL: T* =T; IMAGINARY:T*= —T. [3.47]

The Hermitian conjugate (or adjoint) of a matrix (indicated by a dagger: T') is the
transposed conjugate:

TI:I TZII U
3 Ty Ty ... T3
Th=T=| | : N F al=a"=(a} a ... a). [3.48]
Tl)‘;l TZ); Tn*n

A square matrix is Hermitian (or self-adjoint) if it is equal to its Hermitian conjugate;
if Hermitian conjugation introduces a minus sign, the matrix is skew Hermitian (or
anti-Hermitian):

HERMITIAN: Tf = T; SKEW HERMITIAN: T! = —T. (3.49]

With this notation the inner product of two vectors (with respect to an orthonormal
basis—Equation 3.24), can be written very neatly in matrix form:

(a|B) = a'b. [3.50]

(Notice that each of the three operations discussed in this paragraph, if applied twice,
returns you to the original matrix.)

Matrix multiplication is not, in general, commutative (ST 5 TS); the difference
between the two orderings is called the commutator:

[S, T} =ST - TS. [3.51]
The transpose of a product is the product of the transposes in reverse order:
(ST) = T§ 3.52]
(see Problem 3.12), and the same goes for Hermitian conjugates:

ST = TtSt, [3.53]
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The unit matrix (representing a linear transformation that carries every vector
into itself) consists of ones on the main diagonal and zeroes everywhere else:

10 ... 0
o1 ... 0
1= . e [3.54]
00 ... 1
In other words,
1, = &;. [3.55]

The inverse of a matrix (written T™") is defined in the obvious way:
T T=TT'=1 [3.56]

A matrix has an inverse if and only if its determinant?® is nonzero; in fact,
-1 1 bod
T'!'=—-C, [3.57]

where C is the matrix of cofactors [the cofactor of element Tj; 1s (=1t tlmes
the determinant of the submatrix obtained from T by erasing the i™ row and the j®
column]. A matrix without an inverse is said to be singular. The inverse of a product
(assuming it exists) is the product of the inverses in reverse order:

ST) ' =T7'87", [3.58]
A matrix is unitary if its inverse is equal to its Hermitian conjugate:
UNITARY : Ut = U™\ [3.59]

Assuming the basis is orthonormal, the columns of a unitary matrix constitute an
orthonormal set, and so too do its rows (see Problem 3.16).

The components of a given vector depend on your (arbitrary) choice of basis,
as do the elements in the matrix representing a given linear transformation. We might
inquire how these numbers change when we switch to a different basis. The old basis
vectors |e;) are—like all vectors—linear combinations of the new ones:

le) = Sulfi)+ Saulfo) +---+ Sulfn),
lea) = Sulfi)+ Snlf) + -+ Se2lfi),
len) = Sulfi) + Samlfa) + -+ Sunl fa)

81 assume you know how to evaluate determinants. If not, see M. Boas, Mathematical Methods in
the Physical Sciences, 2nd ed. (New York: John Wiley, 1983), Section 3.3.
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(for some set of complex numbers S§;;), or, more compactly,
lej) = Z i, G=1,2....n). [3.60]

This is itself a linear transformation (compare Equation 3.30),° and we know imme-
diately how the components transform:

Z a [3.61]

(where the superscript indicates the basis). In matrix form
a/ =8Sa°. [3.62]

What about the matrix representing a given linear transformation T—how is it
modified by a change of basis? In the old basis we had (Equation 3.42)

el — Teae
and Equation 3.62—multiplying both sides by S~'—entails'® a° = §'a/, so
a/ = Sa® = §(T¢a%) = ST*S~'a’.

Evidentl
vidently f —sTes—1 [3.63]

In general, two matrices (T, and T5) are said to be similar if T, = ST S~! for some
(nonsingular) matrix S. What we have just found is that similar matrices represent
the same linear transformation with respect to two different bases. Incidentally, if
the first basis is orthonormal, the second will also be orthonormal if and only if the
matrix S is unitary (see Problem 3.14). Since we always work in orthonormal bases,
we are interested mainly in unitary similarity transformations.

While the elements of the matrix representing a given linear transformation
may look very different in the new basis, two numbers associated with the matrix are
unchanged: the determinant and the trace. For the determinant of a product is the
product of the determinants, and hence

det(T/) = det(S T°S™1) = det(S) det(T¢) det(S™') = det T°.  [3.64]

9Notice, however, the radically different perspective: In this case we're talking about one and the
same vector, referred to two different bases, whereas before we were thinking of a completely different
vector, referred to the same basis.

ONote that S~! certainly exists—if S were singular, the | f;)’s would not span the space, so they
wouldn’t constitute a basis.
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And the trace, which is the sum of the diagonal elements,
m
Te(T) = Y T, [3.65]
i=1

has the property (see Problem 3.15) that
Tr(T; T,) = Tr(T,T)), [3.66]
(for any two matrices T and T), so that

Tr(T/) = Tr(STeS™!) = Tr(T*S~!S) = Tr(T*). [3.67]

Problem 3.8 Using the standard basis (7, J, k) for vectors in three dimensions:

(a) Construct the matrix representing a rotation through angle 6 (counterclockwise,
looking down the axis toward the origin) about the z-axis.

(b) Construct the matrix representing arotation by 120° (counterclockwise, looking
down the axis) about an axis through the point (1,1,1).

(C) Construct the matrix representing reflection in the x y-plane.

(d) Are translations (x — x + x9, ¥y —> y+ W, z = z + 2o, for some constants
X0, Yo, Zo) linear transformations? If so, find the matrix which represents them;
if not, explain why not.

xProblem 3.9 Given the following two matrices:

-1 1 i 2 0 —i
A=<2 0 3), B=<O 1 0),
2 =2 2 i3 2
compute (a) A + B, (b) AB, (c) [A, B], (d) A, (e) A%, (f) A', () Tr(B), (h) det(B),
and (i) B~!. Check that BB™! = 1. Does A have an inverse?

+Problem 3.10 Using the square matrices in Problem 3.9 and the column matrices

i 2
a=(2i>, b:((l—i)),
2 0

find (a) Aa, (b) a'b, (c) aBb, (d) ab'.

Problem 3.11 By explicit construction of the matrices in question, show that any
matrix T can be written

(a) as the sum of a symmetric matrix S and an antisymmetric matrix A;



