
















































38 CHAPTER 1. ORIGINS OF QUANTUM PHYSICS

orbital angular momentum L and its conjugate variable , the polar angle, where is periodic

in time. That is, J p dq is given in polar coordinates by 2
0 L d . In this case (1.86)

becomes
2

0

L d nh (1.92)

For spherically symmetric potentials—as it is the case here where the electron experiences the

proton’s Coulomb potential—the angular momentum L is a constant of the motion. Hence
(1.92) shows that angular momentum can change only in integral units of h:

L
2

0

d nh L n
h

2
nh (1.93)

which is identical with the Bohr quantization condition (1.63). This calculation also shows

that the Bohr quantization is equivalent to the quantization of action. As stated above (1.78),
the Bohr quantization condition (1.63) has the following physical meaning: while orbiting the

nucleus, the electron moves only in well specified orbits, orbits with circumferences equal to

integral multiples of the de Broglie wavelength.

Note that the Wilson–Sommerfeld quantization rule (1.86) does not tell us how to calculate

the energy levels of non-periodic systems; it applies only to systems which are periodic. On a

historical note, the quantization rules of Planck and Bohr have dominated quantum physics from

1900 to 1925; the quantum physics of this period is known as the “old quantum theory.” The

success of these quantization rules, as measured by the striking agreement of their results with

experiment, gave irrefutable evidence for the quantization hypothesis of all material systems

and constituted a triumph of the “old quantum theory.” In spite of their quantitative success,

these quantization conditions suffer from a serious inconsistency: they do not originate from a

theory, they were postulated rather arbitrarily.

1.8 Wave Packets

At issue here is how to describe a particle within the context of quantum mechanics. As quan-

tum particles jointly display particle and wave features, we need to look for a mathematical

scheme that can embody them simultaneously.

In classical physics, a particle is well localized in space, for its position and velocity can
be calculated simultaneously to arbitrary precision. As for quantum mechanics, it describes

a material particle by a wave function corresponding to the matter wave associated with the
particle (de Broglie’s conjecture). Wave functions, however, depend on the whole space; hence
they cannot be localized. If the wave function is made to vanish everywhere except in the
neighborhood of the particle or the neighborhood of the “classical trajectory,” it can then be

used to describe the dynamics of the particle. That is, a particle which is localized within a

certain region of space can be described by a matter wave whose amplitude is large in that

region and zero outside it. This matter wave must then be localized around the region of space
within which the particle is confined.

A localized wave function is called a wave packet. A wave packet therefore consists of a
group of waves of slightly different wavelengths, with phases and amplitudes so chosen that

they interfere constructively over a small region of space and destructively elsewhere. Not only

are wave packets useful in the description of “isolated” particles that are confined to a certain

spatial region, they also play a key role in understanding the connection between quantum
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mechanics and classical mechanics. The wave packet concept therefore represents a unifying

mathematical tool that can cope with and embody nature’s particle-like behavior and also its

wave-like behavior.

1.8.1 Localized Wave Packets

Localized wave packets can be constructed by superposing, in the same region of space, waves

of slightly different wavelengths, but with phases and amplitudes chosen to make the super-

position constructive in the desired region and destructive outside it. Mathematically, we can

carry out this superposition by means of Fourier transforms. For simplicity, we are going to
consider a one-dimensional wave packet; this packet is intended to describe a “classical” parti-

cle confined to a one-dimensional region, for instance, a particle moving along the x-axis. We
can construct the packet x t by superposing plane waves (propagating along the x-axis) of
different frequencies (or wavelengths):

x t
1

2
k ei kx t dk (1.94)

k is the amplitude of the wave packet.
In what follows we want to look at the form of the packet at a given time; we will deal

with the time evolution of wave packets later. Choosing this time to be t 0 and abbreviating

x 0 by 0 x , we can reduce (1.94) to

0 x
1

2
k eikxdk (1.95)

where k is the Fourier transform of 0 x ,

k
1

2
0 x e

ikxdx (1.96)

The relations (1.95) and (1.96) show that k determines 0 x and vice versa. The packet

(1.95), whose form is determined by the x-dependence of 0 x , does indeed have the required
property of localization: 0 x peaks at x 0 and vanishes far away from x 0. On the

one hand, as x 0 we have eikx 1; hence the waves of different frequencies interfere

constructively (i.e., the various k-integrations in (1.95) add constructively). On the other hand,
far away from x 0 (i.e., x 0) the phase eikx goes through many periods leading to violent
oscillations, thereby yielding destructive interference (i.e., the various k-integrations in (1.95)
add up to zero). This implies, in the language of Born’s probabilistic interpretation, that the

particle has a greater probability of being found near x 0 and a scant chance of being found

far away from x 0. The same comments apply to the amplitude k as well: k peaks at
k 0 and vanishes far away. Figure 1.13 displays a typical wave packet that has the required

localization properties we have just discussed.

In summary, the particle is represented not by a single de Broglie wave of well-defined

frequency and wavelength, but by a wave packet that is obtained by adding a large number of

waves of different frequencies.

The physical interpretation of the wave packet is obvious: 0 x is the wave function or

probability amplitude for finding the particle at position x ; hence 0 x
2 gives the probability

density for finding the particle at x , and P x dx 0 x
2dx gives the probability of finding
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Figure 1.13 Two localized wave packets: 0 x 2 a2 1 4e x2 a2eik0x and k

a2 2 1 4e a2 k k0
2 4; they peak at x 0 and k k0, respectively, and vanish far away.

the particle between x and x dx . What about the physical interpretation of k ? From (1.95)
and (1.96) it follows that

0 x
2dx k 2dk (1.97)

then if x is normalized so is k , and vice versa. Thus, the function k can be interpreted
most naturally, like 0 x , as a probability amplitude for measuring a wave vector k for a parti-
cle in the state k . Moreover, while k 2 represents the probability density for measuring k
as the particle’s wave vector, the quantity P k dk k 2dk gives the probability of finding
the particle’s wave vector between k and k dk.
We can extract information about the particle’s motion by simply expressing its correspond-

ing matter wave in terms of the particle’s energy, E , and momentum, p. Using k p h,
dk dp h, E h and redefining p k h, we can rewrite (1.94) to (1.96) as
follows:

x t
1

2 h
p ei px Et hdp (1.98)

0 x
1

2 h
p eipx hdp (1.99)

p
1

2 h
0 x e

ipx hdx (1.100)

where E p is the total energy of the particle described by the wave packet x t and p is
the momentum amplitude of the packet.

In what follows we are going to illustrate the basic ideas of wave packets on a simple,

instructive example: the Gaussian and square wave packets.

Example 1.8 (Gaussian and square wave packets)

(a) Find x 0 for a Gaussian wave packet k A exp a2 k k0 2 4 , where A is
a normalization factor to be found. Calculate the probability of finding the particle in the region

a 2 x a 2.
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(b) Find k for a square wave packet 0 x
Aeik0x x a
0 x a

Find the factor A so that x is normalized.

Solution

(a) The normalization factor A is easy to obtain:

1 k 2dk A 2 exp
a2

2
k k0

2 dk (1.101)

which, by using a change of variable z k k0 and using the integral e a2z2 2dz

2 a, leads at once to A a 2 [a2 2 ]1 4. Now, the wave packet corresponding

to

k
a2

2

1 4

exp
a2

4
k k0

2 (1.102)

is

0 x
1

2
k eikxdk

1

2

a2

2

1 4

e a2 k k0
2 4 ikxdk (1.103)

To carry out the integration, we need simply to rearrange the exponent’s argument as follows:

a2

4
k k0

2 ikx
a

2
k k0

i x

a

2 x2

a2
ik0x (1.104)

The introduction of a new variable y a k k0 2 i x a yields dk 2dy a, and when
combined with (1.103) and (1.104), this leads to

0 x
1

2

a2

2

1 4

e x2 a2eik0xe y2 2

a
dy

1 2

a2

1 4

e x2 a2eik0x e y2dy (1.105)

Since e y2dy , this expression becomes

0 x
2

a2

1 4

e x2 a2eik0x (1.106)

where eik0x is the phase of 0 x ; 0 x is an oscillating wave with wave number k0 modulated
by a Gaussian envelope centered at the origin. We will see later that the phase factor eik0x has
real physical significance. The wave function 0 x is complex, as necessitated by quantum

mechanics. Note that 0 x , like k , is normalized. Moreover, equations (1.102) and (1.106)
show that the Fourier transform of a Gaussian wave packet is also a Gaussian wave packet.

The probability of finding the particle in the region a 2 x a 2 can be obtained at
once from (1.106):

P
a 2

a 2
0 x

2dx
2

a2

a 2

a 2
e 2x2 a2dx

1

2

1

1

e z2 2dz
2

3
(1.107)
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where we have used the change of variable z 2x a.
(b) The normalization of 0 x is straightforward:

1 0 x
2dx A 2

a

a
e ik0xeik0xdx A 2

a

a
dx 2a A 2 (1.108)

hence A 1 2a. The Fourier transform of 0 x is

k
1

2
0 x e

ikxdx
1

2 a

a

a
eik0xe ikxdx

1

a

sin [ k k0 a]

k k0
(1.109)

1.8.2 Wave Packets and the Uncertainty Relations

We want to show here that the width of a wave packet 0 x and the width of its amplitude

k are not independent; they are correlated by a reciprocal relationship. As it turns out, the
reciprocal relationship between the widths in the x and k spaces has a direct connection to
Heisenberg’s uncertainty relation.

For simplicity, let us illustrate the main ideas on the Gaussian wave packet treated in the

previous example (see (1.102) and (1.106)):

0 x
2

a2

1 4

e x2 a2eik0x k
a2

2

1 4

e a2 k k0 2 4 (1.110)

As displayed in Figure 1.13, 0 x
2 and k 2 are centered at x 0 and k k0, respec-

tively. It is convenient to define the half-widths x and k as corresponding to the half-maxima
of 0 x

2 and k 2. In this way, when x varies from 0 to x and k from k0 to k0 k,
the functions 0 x

2 and k 2 drop to e 1 2:

x 0 2

0 0 2
e 1 2 k0 k 2

k0
2

e 1 2 (1.111)

These equations, combined with (1.110), lead to e 2 x2 a2 e 1 2 and e a2 k2 2 e 1 2,

respectively, or to

x
a

2
k

1

a
(1.112)

hence

x k
1

2
(1.113)

Since k p h we have

x p
h

2
(1.114)

This relation shows that if the packet’s width is narrow in x-space, its width in momentum
space must be very broad, and vice versa.

A comparison of (1.114) with Heisenberg’s uncertainty relations (1.57) reveals that the

Gaussian wave packet yields an equality, not an inequality relation. In fact, equation (1.114) is
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the lowest limit of Heisenberg’s inequality. As a result, the Gaussian wave packet is called the
minimum uncertainty wave packet. All other wave packets yield higher values for the product
of the x and p uncertainties: x p h 2; for an illustration see Problem 1.11. In conclusion,
the value of the uncertainties product x p varies with the choice of , but the lowest bound,

h 2, is provided by a Gaussian wave function. We have now seen how the wave packet concept
offers a heuristic way of deriving Heisenberg’s uncertainty relations; a more rigorous derivation

is given in Chapter 2.

1.8.3 Motion of Wave Packets

How do wave packets evolve in time? The answer is important, for it gives an idea not only

about the motion of a quantum particle in space but also about the connection between classical

and quantum mechanics. Besides studying how wave packets propagate in space, we will also

examine the conditions under which packets may or may not spread.

At issue here is, knowing the initial wave packet 0 x or the amplitude k , how do we
find x t at any later time t? This issue reduces to calculating the integral k ei kx t dk
in (1.94). To calculate this integral, we need to specify the angular frequency and the ampli-

tude k . We will see that the spreading or nonspreading of the packet is dictated by the form
of the function k .

1.8.3.1 Propagation of a Wave Packet without Distortion

The simplest form of the angular frequency is when it is proportional to the wave number k;
this case corresponds to a nondispersive propagation. Since the constant of proportionality has
the dimension of a velocity14, which we denote by 0 (i.e., 0k), the wave packet (1.94)
becomes

x t
1

2
k eik x 0t dk (1.115)

This relation has the same structure as (1.95), which suggests that x t is identical with

0 x 0t :
x t 0 x 0t (1.116)

the form of the wave packet at time t is identical with the initial form. Therefore, when is

proportional to k, so that 0k, the wave packet travels to the right with constant velocity

0 without distortion.
However, since we are interested in wave packets that describe particles, we need to con-

sider the more general case of dispersive media which transmit harmonic waves of different
frequencies at different velocities. This means that is a function of k: k . The form
of k is determined by the requirement that the wave packet x t describes the particle.
Assuming that the amplitude k peaks at k k0, then k g k k0 is appreciably

different from zero only in a narrow range k k k0, and we can Taylor expand k about
k0:

k k0 k k0
d k

dk k k0

1

2
k k0

2 d
2 k

dk2 k k0

k0 k k0 g k k0
2 (1.117)

14For propagation of light in a vacuum this constant is equal to c, the speed of light.
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- x
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Re x t

- g

- ph

Figure 1.14 The function Re x t of the wave packet (1.118), represented here by the solid
curve contained in the dashed-curve envelope, propagates with the group velocity g along the

x axis; the individual waves (not drawn here), which add up to make the solid curve, move with
different phase velocities ph .

where g
d k
dk k k0

and 1
2
d2 k
dk2 k k0

.

Now, to determine x t we need simply to substitute (1.117) into (1.94) with k
g k k0 . This leads to

x t
1

2
eik0 x ph t g k k0 e

i k k0 x g t e i k k0
2 t dk (1.118)

where15

g
d k

dk
ph

k

k
(1.119)

ph and g are respectively the phase velocity and the group velocity. The phase velocity
denotes the velocity of propagation for the phase of a single harmonic wave, eik0 x ph t , and

the group velocity represents the velocity of motion for the group of waves that make up the

packet. One should not confuse the phase velocity and the group velocity; in general they are

different. Only when is proportional to k will they be equal, as can be inferred from (1.119).

Group and phase velocities

Let us take a short detour to explain the meanings of ph and g. As mentioned above, when

we superimpose many waves of different amplitudes and frequencies, we can obtain a wave

packet or pulse which travels at the group velocity g; the individual waves that constitute the
packet, however, move with different speeds; each wave moves with its own phase velocity

ph . Figure 1.14 gives a qualitative illustration: the group velocity represents the velocity with

which the wave packet propagates as a whole, where the individual waves (located inside the
packet’s envelope) that add up to make the packet move with different phase velocities. As

shown in Figure 1.14, the wave packet has an appreciable magnitude only over a small region

and falls rapidly outside this region.

The difference between the group velocity and the phase velocity can be understood quan-

titatively by deriving a relationship between them. A differentiation of k ph (see (1.119))

with respect to k yields d dk ph k d ph dk , and since k 2 , we have d ph dk

15In these equations we have omitted k0 since they are valid for any choice of k0.
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d ph d d dk 2 k2 d ph d or k d ph dk d ph d ; combining these

relations, we obtain

g
d

dk
ph k

d ph

dk
ph

d ph

d
(1.120)

which we can also write as

g ph p
d ph

dp
(1.121)

since k d ph dk p h d ph dp dp dk p d ph dp because k p h. Equations
(1.120) and (1.121) show that the group velocity may be larger or smaller than the phase veloc-

ity; it may also be equal to the phase velocity depending on the medium. If the phase velocity

does not depend on the wavelength—this occurs in nondispersive media—the group and phase

velocities are equal, since d ph d 0. But if ph depends on the wavelength—this occurs in

dispersive media—then d ph d 0; hence the group velocity may be smaller or larger than

the phase velocity. An example of a nondispersive medium is an inextensible string; we would

expect g ph . Water waves offer a typical dispersive medium; in Problem 1.13 we show

that for deepwater waves we have g
1
2 ph and for surface waves we have g

3
2 ph ; see

(1.212) and (1.214).

Consider the case of a particle traveling in a constant potential V ; its total energy is
E p p2 2m V . Since the corpuscular features (energy and momentum) of a particle are
connected to its wave characteristics (wave frequency and number) by the relations E h
and p hk, we can rewrite (1.119) as follows:

g
dE p

dp
ph

E p

p
(1.122)

which, when combined with E p p2

2m V , yield

g
d

dp

p2

2m
V

p

m
particle ph

1

p

p2

2m
V

p

2m

V

p
(1.123)

The group velocity of the wave packet is thus equal to the classical velocity of the particle,

g particle. This suggests we should view the “center” of the wave packet as traveling like

a classical particle that obeys the laws of classical mechanics: the center would then follow

the “classical trajectory” of the particle. We now see how the wave packet concept offers a

clear connection between the classical description of a particle and its quantum mechanical

description. In the case of a free particle, an insertion of V 0 into (1.123) yields

g
p

m
ph

p

2m

1

2
g (1.124)

This shows that, while the group velocity of the wave packet corresponding to a free particle

is equal to the particle’s velocity, p m, the phase velocity is half the group velocity. The
expression ph

1
2 g is meaningless, for it states that the wave function travels at half the

speed of the particle it is intended to represent. This is unphysical indeed. The phase velocity

has in general no meaningful physical significance.
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Time-evolution of the packet

Having taken a short detour to discuss the phase and group velocities, let us now return to our

main task of calculating the packet x t as listed in (1.118). For this, we need to decide on
where to terminate the expansion (1.117) or the exponent in the integrand of (1.118). We are

going to consider two separate cases corresponding to whether we terminate the exponent in

(1.118) at the linear term, k k0 gt , or at the quadratic term, k k0 2 t . These two cases
are respectively known as the linear approximation and the quadratic approximation.
In the linear approximation, which is justified when g k k0 is narrow enough to neglect

the quadratic k2 term, k k0 2 t 1, the wave packet (1.118) becomes

x t
1

2
eik0 x ph t g k k0 e

i k k0 x g t dk (1.125)

This relation can be rewritten as

x t eik0 x ph t
0 x gt e

ik0 x g t (1.126)

where 0 is the initial wave packet (see (1.95))

0 x gt
1

2
g q ei x g t q ik0 x g t dq (1.127)

the new variable q stands for q k k0. Equation (1.126) leads to

x t 2
0 x gt

2
(1.128)

Equation (1.126) represents a wave packet whose amplitude is modulated. As depicted in Fig-

ure 1.14, the modulating wave, 0 x gt , propagates to the right with the group velocity g;

the modulated wave, eik0 x ph t , represents a pure harmonic wave of constant wave number k0
that also travels to the right with the phase velocity ph . That is, (1.126) and (1.128) represent

a wave packet whose peak travels as a whole with the velocity g, while the individual wave

propagates inside the envelope with the velocity ph . The group velocity, which gives the ve-

locity of the packet’s peak, clearly represents the velocity of the particle, since the chance of

finding the particle around the packet’s peak is much higher than finding it in any other region

of space; the wave packet is highly localized in the neighborhood of the particle’s position and

vanishes elsewhere. It is therefore the group velocity, not the phase velocity, that is equal to the

velocity of the particle represented by the packet. This suggests that the motion of a material

particle can be described well by wave packets. By establishing a correspondence between

the particle’s velocity and the velocity of the wave packet’s peak, we see that the wave packet

concept jointly embodies the particle aspect and the wave aspect of material particles.

Now, what about the size of the wave packet in the linear approximation? Is it affected

by the particle’s propagation? Clearly not. This can be inferred immediately from (1.126):

0 x gt represents, mathematically speaking, a curve that travels to the right with a velocity

g without deformation. This means that if the packet is initially Gaussian, it will remain

Gaussian as it propagates in space without any change in its size.

To summarize, we have shown that, in the linear approximation, the wave packet propagates

undistorted and undergoes a uniform translational motion. Next we are going to study the

conditions under which the packet experiences deformation.
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1.8.3.2 Propagation of a Wave Packet with Distortion

Let us now include the quadratic k2 term, k k0 2 t , in the integrand’s exponent of (1.118)
and drop the higher terms. This leads to

x t eik0 x ph t f x t (1.129)

where f x t , which represents the envelope of the packet, is given by

f x t
1

2
g q eiq x g t e iq2 tdq (1.130)

with q k k0. Were it not for the quadratic q2 correction, iq2 t , the wave packet would
move uniformly without any change of shape, since similarly to (1.116), f x t would be given
by f x t 0 x gt .
To show how affects the width of the packet, let us consider the Gaussian packet (1.102)

whose amplitude is given by k a2 2 1 4 exp a2 k k0 2 4 and whose initial width
is x0 a 2 and k h a. Substituting k into (1.129), we obtain

x t
1

2

a2

2

1 4

eik0 x ph t exp iq x gt
a2

4
i t q2 dq

(1.131)

Evaluating the integral (the calculations are detailed in the following example, see Eq. (1.145)),

we can show that the packet’s density distribution is given by

x t 2 1

2 x t
exp

x gt
2

2 [ x t ]2
(1.132)

where x t is the width of the packet at time t :

x t
a

2
1

16 2

a4
t2 x0 1

2t2

x0 4
(1.133)

We see that the packet’s width, which was initially given by x0 a 2, has grown by a factor
of 1 2t2 x0 4 after time t . Hence the wave packet is spreading; the spreading is due
to the inclusion of the quadratic q2 term, iq2 t . Should we drop this term, the packet’s width
x t would then remain constant, equal to x0.
The density distribution (1.132) displays two results: (1) the center of the packet moves

with the group velocity; (2) the packet’s width increases linearly with time. From (1.133) we

see that the packet begins to spread appreciably only when 2t2 x0 4 1 or t x0 2 .

In fact, if t x0 2 the packet’s spread will be negligible, whereas if t x0
2

the

packet’s spread will be significant.

To be able to make concrete statements about the growth of the packet, as displayed in

(1.133), we need to specify ; this reduces to determining the function k , since
1
2
d2

dk2 k k0
. For this, let us invoke an example that yields itself to explicit calculation. In

fact, the example we are going to consider—a free particle with a Gaussian amplitude—allows
the calculations to be performed exactly; hence there is no need to expand k .
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Example 1.9 (Free particle with a Gaussian wave packet)

Determine how the wave packet corresponding to a free particle, with an initial Gaussian packet,

spreads in time.

Solution

The issue here is to find out how the wave packet corresponding to a free particle with k

a2 2 1 4e a2 k k0
2 4 (see (1.110)) spreads in time.

First, we need to find the form of the wave packet, x t . Substituting the amplitude

k a2 2 1 4e a2 k k0
2 4 into the Fourier integral (1.94), we obtain

x t
1

2

a2

2

1 4

exp
a2

4
k k0

2 i kx t dk (1.134)

Since k hk2 2m (the dispersion relation for a free particle), and using a change of

variables q k k0, we can write the exponent in the integrand of (1.134) as a perfect square
for q:

a2

4
k k0

2 i kx
hk2

2m
t

a2

4
i
ht

2m
q2 i x

hk0t

m
q

ik0 x
hk0t

2m

q2 i x
hk0t

m
q ik0 x

hk0t

2m

q
i

2
x

hk0t

m

2
1

4
x

hk0t

m

2

ik0 x
hk0t

2m
(1.135)

where we have used the relation q2 iyq q iy 2
2

y2 4 , with y
x hk0t m and

a2

4
i
ht

2m
(1.136)

Substituting (1.135) into (1.134) we obtain

x t
1

2

a2

2

1 4

exp ik0 x
hk0t

2m
exp

1

4
x

hk0t

m

2

exp q
i

2
x

hk0t

m

2

dq (1.137)

Combined with the integral16 exp q iy 2 2 dq , (1.137) leads to

x t
1 a2

8

1 4

exp ik0 x
hk0t

2m
exp

1

4
x

hk0t

m

2

(1.138)

16If and are two complex numbers and if Re 0, we have e q 2
dq .
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Since is a complex number (see (1.136)), we can write it in terms of its modulus and phase

a2

4
1 i

2ht

ma2
a2

4
1

4h2t2

m2a4

1 2

ei (1.139)

where tan 1 2ht ma2 ; hence

1 2

a
1

4h2t2

m2a4

1 4

e i 2 (1.140)

Substituting (1.136) and (1.140) into (1.138), we have

x t
2

a2

1 4

1
4h2t2

m2a4

1 4

e i 2eik0 x hk0t 2m exp
x hk0t m

2

a2 2iht m
(1.141)

Since e y2 a2 2iht m
2

e y2 a2 2iht m e y2 a2 2iht m , where y x hk0t m, and

since y2 a2 2iht m y2 a2 2iht m 2a2y2 a4 4h2t2 m2 , we have

exp
y2

a2 2iht m

2

exp
2a2y2

a4 4h2t2 m2
(1.142)

hence

x t 2 2

a2
1

4h2t2

m2a4

1 2

exp
x hk0t m

2

a2 2iht m

2

2

a2
1

t
exp

2

a t
2
x

hk0t

m

2

(1.143)

where t 1 4h2t2 m2a4 .
We see that both the wave packet (1.141) and the probability density (1.143) remain Gaussian

as time evolves. This can be traced to the fact that the x-dependence of the phase, eik0x , of 0 x
as displayed in (1.110) is linear. If the x-dependence of the phase were other than linear, say
quadratic, the form of the wave packet would not remain Gaussian. So the phase factor eik0x ,
which was present in 0 x , allows us to account for the motion of the particle.

Since the group velocity of a free particle is g d dk d
dk

hk2

2m k0
hk0 m, we can

rewrite (1.141) as follows17:

x t
1

2 x t
e i 2eik0 x g t 2 exp

x gt
2

a2 2iht m
(1.144)

x t
2 1

2 x t
exp

x gt
2

2 [ x t ]2
(1.145)

17It is interesting to note that the harmonic wave eik0 x g t 2 propagates with a phase velocity which is half the
group velocity; as shown in (1.124), this is a property of free particles.
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Figure 1.15 Time evolution of x t 2: the peak of the packet, which is centered at x

gt , moves with the speed g from left to right. The height of the packet, represented here

by the dotted envelope, is modulated by the function 1 2 x t , which goes to zero at
t and is equal to 2 a2 at t 0. The width of the packet x t x0 1 t 2

increases linearly with time.

where18

x t
a

2
t

a

2
1

4h2t2

m2a4
(1.146)

represents the width of the wave packet at time t . Equations (1.144) and (1.145) describe a
Gaussian wave packet that is centered at x gt whose peak travels with the group speed g

hk0 m and whose width x t increases linearly with time. So, during time t , the packet’s
center has moved from x 0 to x gt and its width has expanded from x0 a 2 to

x t x0 1 4h2t2 m2a4 . The wave packet therefore undergoes a distortion; although

it remains Gaussian, its width broadens linearly with time whereas its height, 1 2 x t ,
decreases with time. As depicted in Figure 1.15, the wave packet, which had a very broad width

and a very small amplitude at t , becomes narrower and narrower and its amplitude

larger and larger as time increases towards t 0; at t 0 the packet is very localized, its width

and amplitude being given by x0 a 2 and 2 a2, respectively. Then, as time increases
(t 0), the width of the packet becomes broader and broader, and its amplitude becomes

smaller and smaller.

In the rest of this section we are going to comment on several features that are relevant not

only to the Gaussian packet considered above but also to more general wave packets. First, let

us begin by estimating the time at which the wave packet starts to spread out appreciably. The

packet, which is initially narrow, begins to grow out noticeably only when the second term,

2ht ma2 , under the square root sign of (1.146) is of order unity. For convenience, let us write

18We can derive (1.146) also from (1.111): a combination of the half-width x t 2 0 0 2 e 1 2

with (1.143) yields e 2[ x a t ]2 e 1 2, which in turn leads to (1.146).



1.8. WAVE PACKETS 51

(1.146) in the form

x t x0 1
t 2

(1.147)

where
2m x0 2

h
(1.148)

represents a time constant that characterizes the rate of the packet’s spreading. Now we can

estimate the order of magnitude of ; it is instructive to evaluate it for microscopic particles
as well as for macroscopic particles. For instance, for an electron whose position is defined

to within 10 10 m is given by19 1 7 10 16 s; on the other hand, the time constant

for a macroscopic particle of mass say 1 g whose position is defined to within 1 mm is of the

order20 of 2 1025 s (for an illustration see Problems 1.15 and 1.16). This crude calculation

suggests that the wave packets of microscopic systems very quickly undergo significant growth;

as for the packets of macroscopic systems, they begin to grow out noticeably only after the

system has been in motion for an absurdly long time, a time of the order of, if not much higher

than, the age of the Universe itself, which is about 4 7 1017 s. Having estimated the times

at which the packet’s spread becomes appreciable, let us now shed some light on the size of

the spread. From (1.147) we see that when t the packet’s spreading is significant and,

conversely, when t the spread is negligible. As the cases t and t correspond

to microscopic and macroscopic systems, respectively, we infer that the packet’s dispersion is

significant for microphysical systems and negligible for macroscopic systems. In the case of

macroscopic systems, the spread is there but it is too small to detect. For an illustration see

Problem 1.15 where we show that the width of a 100 g object increases by an absurdly small

factor of about 10 29 after traveling a distance of 100 m, but the width of a 25 eV electron

increases by a factor of 109 after traveling the same distance (in a time of 3 3 10 5 s). Such

an immense dispersion in such a short time is indeed hard to visualize classically; this motion

cannot be explained by classical physics.

So the wave packets of propagating, microscopic particles are prone to spreading out very

significantly in a short time. This spatial spreading seems to generate a conceptual problem:

the spreading is incompatible with our expectation that the packet should remain highly local-

ized at all times. After all, the wave packet is supposed to represent the particle and, as such,

it is expected to travel without dispersion. For instance, the charge of an electron does not

spread out while moving in space; the charge should remain localized inside the corresponding

wave packet. In fact, whenever microscopic particles (electrons, neutrons, protons, etc.) are

observed, they are always confined to small, finite regions of space; they never spread out as

suggested by equation (1.146). How do we explain this apparent contradiction? The problem

here has to do with the proper interpretation of the situation: we must modify the classical

concepts pertaining to the meaning of the position of a particle. The wave function (1.141)

cannot be identified with a material particle. The quantity x t 2dx represents the proba-
bility (Born’s interpretation) of finding the particle described by the packet x t at time t in
the spatial region located between x and x dx . The material particle does not disperse (or
fuzz out); yet its position cannot be known exactly. The spreading of the matter wave, which is
accompanied by a shrinkage of its height, as indicated in Figure 1.15, corresponds to a decrease

19If x0 10 10 m and since the rest mass energy of an electron is mc2 0 5 MeV and using hc 197

10 15 MeV m, we have 2mc2 x0
2 hc c 1 7 10 16 s.

20Since h 1 05 10 34 J s we have 2 0 001 kg 0 001 m 2 1 05 10 34 J s 2 1025 s.



52 CHAPTER 1. ORIGINS OF QUANTUM PHYSICS

of the probability density x t 2 and implies in no way a growth in the size of the particle.

So the wave packet gives only the probability that the particle it represents will be found at a

given position. No matter how broad the packet becomes, we can show that its norm is always

conserved, for it does not depend on time. In fact, as can be inferred from (1.143), the norm of

the packet is equal to one:

x t 2 dx
2

a2
1

exp
2 x hk0t m

2

a 2
dx

2

a2
1 a2 2

2
1

(1.149)

since e x2dx . This is expected, since the probability of finding the particle

somewhere along the x-axis must be equal to one. The important issue here is that the norm
of the packet is time independent and that its spread does not imply that the material particle

becomes bloated during its motion, but simply implies a redistribution of the probability density.

So, in spite of the significant spread of the packets of microscopic particles, the norms of these

packets are always conserved—normalized to unity.

Besides, we should note that the example considered here is an idealized case, for we are
dealing with a free particle. If the particle is subject to a potential, as in the general case, its
wave packet will not spread as dramatically as that of a free particle. In fact, a varying potential

can cause the wave packet to become narrow. This is indeed what happens when a measurement

is performed on a microscopic system; the interaction of the system with the measuring device

makes the packet very narrow, as will be seen in Chapter 3.

Let us now study how the spreading of the wave packet affects the uncertainties product

x t p t . First, we should point out that the average momentum of the packet hk0 and its
uncertainty h k do not change in time. This can be easily inferred as follows. Rewriting (1.94)
in the form

x t
1

2
k 0 ei kx t dk

1

2
k t eikxdk (1.150)

we have

k t e i k t k 0 (1.151)

where k 0 a2 2 1 4e a2 k k0
2 4; hence

k t 2 k 0 2 (1.152)

This suggests that the widths of k t and k 0 are equal; hence k remains constant and
so must the momentum dispersion p (this is expected because the momentum of a free particle
is a constant of the motion). Since the width of k 0 is given by k 1 a (see (1.112)), we
have

p h k
h

a
(1.153)

Multiplying this relation by (1.146), we have

x t p
h

2
1

4h2

m2a4
t2 (1.154)

which shows that x t p h 2 is satisfied at all times. Notably, when t 0 we obtain

the lower bound limit x0 p h 2; this is the uncertainty relation for a stationary Gaussian
packet (see (1.114)). As t increases, however, we obtain an inequality, x t p h 2.
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Figure 1.16 Time evolutions of the packet’s width x t x0 1 xcl t x0
2 (dotted

curve) and of the classical dispersion xcl t ht ma (solid lines). For large values of t ,
x t approaches xcl t and at t 0, x 0 x0 a 2.

Having shown that the width of the packet does not disperse in momentum space, let us now

study the dispersion of the packet’s width in x-space. Since x0 a 2 we can write (1.146)
as

x t
a

2
1

4h2t2

m2a4
x0 1

xcl t

x0

2

(1.155)

where the dispersion factor xcl t x0 is given by

xcl t

x0

2h

ma2
t

h

2m x20
t (1.156)

As shown in Figure 1.16, when t is large (i.e., t ), we have x t xcl t with

xcl t
ht

ma

p

m
t t (1.157)

where h ma represents the dispersion in velocity. This means that if a particle starts

initially (t 0) at x 0 with a velocity dispersion equal to , then will remain constant

but the dispersion of the particle’s position will increase linearly with time: xcl t h t ma
(Figure 1.16). We see from (1.155) that if xcl t x0 1, the spreading of the wave packet

is negligible, but if xcl t x0 1, the wave packet will spread out without bound.

We should highlight at this level the importance of the classical limit of (1.154): in the limit

h 0, the product x t p goes to zero. This means that the x and p uncertainties become
negligible; that is, in the classical limit, the wave packet will propagate without spreading. In

this case the center of the wave packet moves like a free particle that obeys the laws of classical

mechanics. The spread of wave packets is thus a purely quantum effect. So when h 0 all

quantum effects, the spread of the packet, disappear.

We may conclude this study of wave packets by highlighting their importance:

They provide a linkage with the Heisenberg uncertainty principle.

They embody and unify the particle and wave features of matter waves.

They provide a linkage between wave intensities and probabilities.

They provide a connection between classical and quantum mechanics.
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1.9 Concluding Remarks

Despite its striking success in predicting the hydrogen’s energy levels and transition rates, the

Bohr model suffers from a number of limitations:

It works only for hydrogen and hydrogen-like ions such as He and Li2 .

It provides no explanation for the origin of its various assumptions. For instance, it gives

no theoretical justification for the quantization condition (1.63) nor does it explain why

stationary states radiate no energy.

It fails to explain why, instead of moving continuously from one energy level to another,
the electrons jump from one level to the other.

The model therefore requires considerable extension to account for the electronic properties

and spectra of a wide range of atoms. Even in its present limited form, Bohr’s model represents

a bold and major departure from classical physics: classical physics offers no justification for

the existence of discrete energy states in a system such as a hydrogen atom and no justification

for the quantization of the angular momentum.

In its present form, the model not only suffers from incompleteness but also lacks the ingre-

dients of a consistent theory. It was built upon a series of ad hoc, piecemeal assumptions. These

assumptions were not derived from the first principles of a more general theory, but postulated

rather arbitrarily.

The formulation of the theory of quantum mechanics was largely precipitated by the need

to find a theoretical foundation for Bohr’s ideas as well as to explain, from first principles, a

wide variety of other microphysical phenomena such as the puzzling processes discussed in

this chapter. It is indeed surprising that a single theory, quantum mechanics, is powerful and

rich enough to explain accurately a wide variety of phenomena taking place at the molecular,

atomic, and subatomic levels.

In this chapter we have dealt with the most important experimental facts which confirmed

the failure of classical physics and subsequently led to the birth of quantum mechanics. In the

rest of this text we will focus on the formalism of quantum mechanics and on its application to

various microphysical processes. To prepare for this task, we need first to study the mathemat-

ical tools necessary for understanding the formalism of quantum mechanics; this is taken up in

Chapter 2.

1.10 Solved Problems

Numerical calculations in quantum physics can be made simpler by using the following units.

First, it is convenient to express energies in units of electronvolt ( eV): one eV is defined as

the energy acquired by an electron passing through a potential difference of one Volt. The

electronvolt unit can be expressed in terms of joules and vice versa: 1 eV 1 6 10 19 C

1 V 1 6 10 19 J and 1 J 0 625 1019 eV.

It is also convenient to express the masses of subatomic particles, such as the electron,

proton, and neutron, in terms of their rest mass energies: mec2 0 511 MeV, m pc2

938 27 MeV, and mnc2 939 56 MeV.

In addition, the quantities hc 197 33 MeV fm 197 33 10 15 MeV m or hc
1242 37 10 10 eV m are sometimes more convenient to use than h 1 05 10 34 J s.
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Additionally, instead of 1 4 0 8 9 109 N m2 C 2, one should sometimes use the fine

structure constant e2 [ 4 0 hc] 1 137.

Problem 1.1

A 45 kW broadcasting antenna emits radio waves at a frequency of 4 MHz.

(a) How many photons are emitted per second?

(b) Is the quantum nature of the electromagnetic radiation important in analyzing the radia-

tion emitted from this antenna?

Solution

(a) The electromagnetic energy emitted by the antenna in one second is E 45 000 J.

Thus, the number of photons emitted in one second is

n
E

h

45 000 J

6 63 10 34 J s 4 106 Hz
1 7 1031 (1.158)

(b) Since the antenna emits a huge number of photons every second, 1 7 1031, the quantum

nature of this radiation is unimportant. As a result, this radiation can be treated fairly accurately

by the classical theory of electromagnetism.

Problem 1.2

Consider a mass–spring system where a 4 kg mass is attached to a massless spring of constant

k 196 Nm 1; the system is set to oscillate on a frictionless, horizontal table. The mass is

pulled 25 cm away from the equilibrium position and then released.

(a) Use classical mechanics to find the total energy and frequency of oscillations of the

system.

(b) Treating the oscillator with quantum theory, find the energy spacing between two con-

secutive energy levels and the total number of quanta involved. Are the quantum effects impor-

tant in this system?

Solution

(a) According to classical mechanics, the frequency and the total energy of oscillations are

given by

1

2

k

m

1

2

196

4
1 11 Hz E

1

2
kA2

196

2
0 25 2 6 125 J (1.159)

(b) The energy spacing between two consecutive energy levels is given by

E h 6 63 10 34 J s 1 11 Hz 7 4 10 34 J (1.160)

and the total number of quanta is given by

n
E

E

6 125 J

7 4 10 34 J
8 3 1033 (1.161)

We see that the energy of one quantum, 7 4 10 34 J, is completely negligible compared to

the total energy 6 125 J, and that the number of quanta is very large. As a result, the energy

levels of the oscillator can be viewed as continuous, for it is not feasible classically to measure

the spacings between them. Although the quantum effects are present in the system, they are

beyond human detection. So quantum effects are negligible for macroscopic systems.
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Problem 1.3

When light of a given wavelength is incident on a metallic surface, the stopping potential for

the photoelectrons is 3 2 V. If a second light source whose wavelength is double that of the first

is used, the stopping potential drops to 0 8 V. From these data, calculate

(a) the wavelength of the first radiation and

(b) the work function and the cutoff frequency of the metal.

Solution

(a) Using (1.23) and since the wavelength of the second radiation is double that of the first

one, 2 2 1, we can write

Vs1
hc

e 1

W

e
(1.162)

Vs2
hc

e 2

W

e

hc

2e 1

W

e
(1.163)

To obtain 1 we have only to subtract (1.163) from (1.162):

Vs1 Vs2
hc

e 1
1

1

2

hc

2e 1
(1.164)

The wavelength is thus given by

1
hc

2e Vs1 Vs2

6 6 10 34 J s 3 108ms 1

2 1 6 10 19 C 3 2 V 0 8 V
2 6 10 7 m (1.165)

(b) To obtain the work function, we simply need to multiply (1.163) by 2 and subtract the

result from (1.162), Vs1 2Vs2 W e, which leads to

W e Vs1 2Vs2 1 6 eV 1 6 1 6 10 19 2 56 10 19 J (1.166)

The cutoff frequency is

W

h

2 56 10 19 J

6 6 10 34 J s
3 9 1014 Hz (1.167)

Problem 1.4

(a) Estimate the energy of the electrons that we need to use in an electron microscope to

resolve a separation of 0 27 nm.

(b) In a scattering of 2 eV protons from a crystal, the fifth maximum of the intensity is

observed at an angle of 30 . Estimate the crystal’s planar separation.

Solution

(a) Since the electron’s momentum is p 2 h , its kinetic energy is given by

E
p2

2me

2 2h2

me 2
(1.168)

Since mec2 0 511 MeV, hc 197 33 10 15 MeV m, and 0 27 10 9 m, we have

E
2 2 hc 2

mec2 2

2 2 197 33 10 15 MeV m 2

0 511 MeV 0 27 10 9 m 2
20 6 eV (1.169)
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(b) Using Bragg’s relation (1.46), 2d n sin , where d is the crystal’s planar separa-
tion, we can infer the proton’s kinetic energy from (1.168):

E
p2

2m p

2 2h2

m p 2

n2 2h2

2m pd2 sin 2
(1.170)

which leads to

d
n h

sin 2m pE

n hc

sin 2m pc2E
(1.171)

Since n 5 (the fifth maximum), 30 , E 2 eV, and m pc2 938 27 MeV, we have

d
5 197 33 10 15 MeV m

sin 30 2 938 27 MeV 2 10 6 MeV
0 101 nm (1.172)

Problem 1.5

A photon of energy 3 keV collides elastically with an electron initially at rest. If the photon

emerges at an angle of 60 , calculate

(a) the kinetic energy of the recoiling electron and

(b) the angle at which the electron recoils.

Solution

(a) From energy conservation, we have

h mec
2 h Ke mec

2 (1.173)

where h and h are the energies of the initial and scattered photons, respectively, mec2 is the
rest mass energy of the initial electron, Ke mec2 is the total energy of the recoiling electron,
and Ke is its recoil kinetic energy. The expression for Ke can immediately be inferred from
(1.173):

Ke h hc
1 1 hc

h (1.174)

where the wave shift is given by (1.36):

h

mec
1 cos

2 hc

mec2
1 cos

2 197 33 10 15 MeV m

0 511 MeV
1 cos 60

0 0012 nm (1.175)

Since the wavelength of the incident photon is 2 hc h , we have 2 197 33

10 15 MeV m 0 003 MeV 0 414 nm; the wavelength of the scattered photon is given by

0 4152 nm (1.176)

Now, substituting the numerical values of and into (1.174), we obtain the kinetic energy

of the recoiling electron

Ke h 3 keV
0 0012 nm

0 4152 nm
8 671 eV (1.177)
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(b) To obtain the angle at which the electron recoils, we need simply to use the conservation

of the total momentum along the x and y axes:

p pe cos p cos 0 pe sin p sin (1.178)

These can be rewritten as

pe cos p p cos pe sin p sin (1.179)

where p and p are the momenta of the initial and final photons, pe is the momentum of the
recoiling electron, and and are the angles at which the photon and electron scatter, respec-

tively (Figure 1.4). Taking (1.179) and dividing the second equation by the first, we obtain

tan
sin

p p cos

sin

cos
(1.180)

where we have used the momentum expressions of the incident photon p h and of the

scattered photon p h . Since 0 414 nm and 0 4152 nm, the angle at which the

electron recoils is given by

tan 1 sin

cos
tan 1 sin 60

0 4152 0 414 cos 60
59 86 (1.181)

Problem 1.6

Show that the maximum kinetic energy transferred to a proton when hit by a photon of energy

h is K p h [1 m pc2 2h ], where m p is the mass of the proton.

Solution

Using (1.35), we have
1 1 h

m pc2
1 cos (1.182)

which leads to

h
h

1 h m pc2 1 cos
(1.183)

Since the kinetic energy transferred to the proton is given by K p h h , we obtain

K p h
h

1 h m pc2 1 cos

h

1 m pc2 [h 1 cos ]
(1.184)

Clearly, the maximum kinetic energy of the proton corresponds to the case where the photon

scatters backwards ( ),

K p
h

1 m pc2 2h
(1.185)

Problem 1.7

Consider a photon that scatters from an electron at rest. If the Compton wavelength shift is

observed to be triple the wavelength of the incident photon and if the photon scatters at 60 ,

calculate

(a) the wavelength of the incident photon,

(b) the energy of the recoiling electron, and

(c) the angle at which the electron scatters.
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Solution

(a) In the case where the photons scatter at 60 and since 3 , the wave shift

relation (1.36) yields

3
h

mec
1 cos 60 (1.186)

which in turn leads to

h

6mec

hc

3mec2
3 14 197 33 10 15 MeV m

3 0 511 MeV
4 04 10 13 m (1.187)

(b) The energy of the recoiling electron can be obtained from the conservation of energy:

Ke hc
1 1 3hc

4

3 hc

2

3 3 14 197 33 10 15 MeV m

2 4 04 10 13 m
2 3 MeV

(1.188)

In deriving this relation, we have used the fact that 4 .

(c) Since 4 the angle at which the electron recoils can be inferred from (1.181)

tan 1 sin

cos
tan 1 sin 60

4 cos 60
13 9 (1.189)

Problem 1.8

In a double-slit experiment with a source of monoenergetic electrons, detectors are placed along

a vertical screen parallel to the y-axis to monitor the diffraction pattern of the electrons emitted
from the two slits. When only one slit is open, the amplitude of the electrons detected on the

screen is 1 y t A1e i ky t 1 y2, and when only the other is open the amplitude is

2 y t A2e i ky y t 1 y2, where A1 and A2 are normalization constants that need
to be found. Calculate the intensity detected on the screen when

(a) both slits are open and a light source is used to determine which of the slits the electron

went through and

(b) both slits are open and no light source is used.

Plot the intensity registered on the screen as a function of y for cases (a) and (b).

Solution

Using the integral dy 1 y2 , we can obtain the normalization constants at once:

A1 A2 1 ; hence 1 and 2 become 1 y t e i ky t 1 y2 , 2 y t

e i ky y t 1 y2 .
(a) When we use a light source to observe the electrons as they exit from the two slits on

their way to the vertical screen, the total intensity recorded on the screen will be determined by

a simple addition of the probability densities (or of the separate intensities):

I y 1 y t
2

2 y t
2 2

1 y2
(1.190)

As depicted in Figure 1.17a, the shape of the total intensity displays no interference pattern.

Intruding on the electrons with the light source, we distort their motion.
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Figure 1.17 Shape of the total intensity generated in a double slit experiment when both slits

are open and (a) a light source is used to observe the electrons’ motion, I y 2 1 y2 ,
and no interference is registered; (b) no light source is used, I y 4 [ 1 y2 ] cos2 y 2 ,
and an interference pattern occurs.

(b) When no light source is used to observe the electrons, the motion will not be distorted

and the total intensity will be determined by an addition of the amplitudes, not the intensities:

I y 1 y t 2 y t
2 1

1 y2
e i ky t e i ky y t

2

1

1 y2
1 ei y 1 e i y

4

1 y2
cos 2

2
y (1.191)

The shape of this intensity does display an interference pattern which, as shown in Figure 1.17b,

results from an oscillating function, cos2 y 2 , modulated by 4 [ 1 y2 ].

Problem 1.9

Consider a head-on collision between an -particle and a lead nucleus. Neglecting the recoil

of the lead nucleus, calculate the distance of closest approach of a 9 0 MeV -particle to the

nucleus.

Solution

In this head-on collision the distance of closest approach r0 can be obtained from the conserva-
tion of energy Ei E f , where Ei is the initial energy of the system, -particle plus the lead
nucleus, when the particle and the nucleus are far from each other and thus feel no electrostatic

potential between them. Assuming the lead nucleus to be at rest, Ei is simply the energy of the
-particle: Ei 9 0 MeV 9 106 1 6 10 19 J.

As for E f , it represents the energy of the system when the -particle is at its closest distance

from the nucleus. At this position, the -particle is at rest and hence has no kinetic energy.

The only energy the system has is the electrostatic potential energy between the -particle

and the lead nucleus, which has a positive charge of 82e. Neglecting the recoil of the lead
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nucleus and since the charge of the -particle is positive and equal to 2e, we have E f
2e 82e 4 0r0 . The energy conservation Ei E f or 2e 82e 4 0r0 Ei leads at
once to

r0
2e 82e

4 0Ei
2 62 10 14 m (1.192)

where we used the values e 1 6 10 19 C and 1 4 0 8 9 109 N m2 C 2.

Problem 1.10

Considering that a quintuply ionized carbon ion, C5 , behaves like a hydrogen atom, calculate

(a) the radius rn and energy En for a given state n and compare them with the corresponding
expressions for hydrogen,

(b) the ionization energy of C5 when it is in its first excited state and compare it with the

corresponding value for hydrogen, and

(c) the wavelength corresponding to the transition from state n 3 to state n 1; compare

it with the corresponding value for hydrogen.

Solution

(a) The C5 ion is generated by removing five electrons from the carbon atom. To find the

expressions for rnC and EnC for the C
5 ion (which has 6 protons), we need simply to insert

Z 6 into (1.76):

rnC
a0
6
n2 EnC

36R

n2
(1.193)

where we have dropped the term me M , since it is too small compared to one. Clearly, these
expressions are related to their hydrogen counterparts by

rnC
a0
6
n2

rnH
6

EnC
36R

n2
36EnH (1.194)

(b) The ionization energy is the one needed to remove the only remaining electron of the

C5 ion. When the C5 ion is in its first excited state, the ionization energy is

E2C
36R

4
9 13 6 eV 122 4 eV (1.195)

which is equal to 36 times the energy needed to ionize the hydrogen atom in its first excited

state: E2H 3 4 eV (note that we have taken n 2 to correspond to the first excited state;

as a result, the cases n 1 and n 3 will correspond to the ground and second excited states,

respectively).

(c) The wavelength corresponding to the transition from state n 3 to state n 1 can be

inferred from the relation hc E3C E1C which, when combined with E1C 489 6 eV

and E3C 54 4 eV, leads to

hc

E3C E1C

2 hc

E3C E1C

2 197 33 10 9 eV m

54 4 eV 489 6 eV
2 85 nm (1.196)

Problem 1.11

(a) Find the Fourier transform for k
A a k k a
0 k a

where a is a positive parameter and A is a normalization factor to be found.
(b) Calculate the uncertainties x and p and check whether they satisfy the uncertainty

principle.
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Figure 1.18 The shape of the function k and its Fourier transform 0 x .

Solution

(a) The normalization factor A can be found at once:

1 k 2dk A 2
0

a
a k 2dk A 2

a

0

a k 2dk

2 A 2
a

0

a k 2dk 2 A 2
a

0

a2 2ak k2 dk

2a3

3
A 2 (1.197)

which yields A 3 2a3 . The shape of k 3 2a3 a k is displayed in Fig-

ure 1.18.

Now, the Fourier transform of k is

0 x
1

2
k eikxdk

1

2

3

2a3

0

a
a k eikxdk

a

0

a k eikxdk

1

2

3

2a3

0

a
keikxdk

a

0

keikxdk a
a

a
eikxdk

(1.198)

Using the integrations

0

a
keikxdk

a

ix
e iax 1

x2
1 e iax (1.199)

a

0

keikxdk
a

ix
eiax

1

x2
eiax 1 (1.200)

a

a
eikxdk

1

i x
eiax e iax 2 sin ax

x
(1.201)
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and after some straightforward calculations, we end up with

0 x
4

x2
sin 2

ax

2
(1.202)

As shown in Figure 1.18, this wave packet is localized: it peaks at x 0 and decreases gradu-

ally as x increases. We can verify that the maximum of 0 x occurs at x 0; writing 0 x
as a2 ax 2 2 sin2 ax 2 and since limx 0 sin bx bx 1, we obtain 0 0 a2.
(b) Figure 1.18a is quite suggestive in defining the half-width of k : k a (hence

the momentum uncertainty is p ha). By defining the width as k a, we know with
full certainty that the particle is located between a k a; according to Figure 1.18a, the
probability of finding the particle outside this interval is zero, for k vanishes when k a.
Now, let us find the width x of 0 x . Since sin a 2a 1, 0 a 4a2 2, and

that 0 0 a2, we can obtain from (1.202) that 0 a 4a2 2 4 2
0 0 , or

0 a

0 0

4
2

(1.203)

This suggests that x a: when x x a the wave packet 0 x drops to 4 2

from its maximum value 0 0 a2. In sum, we have x a and k a; hence

x k (1.204)

or

x p h (1.205)

since k p h. In addition to satisfying Heisenberg’s uncertainty principle (1.57), this
relation shows that the product x p is higher than h 2: x p h 2. The wave packet
(1.202) therefore offers a clear illustration of the general statement outlined above; namely, only

Gaussian wave packets yield the lowest limit to Heisenberg’s uncertainty principle x p
h 2 (see (1.114)). All other wave packets, such as (1.202), yield higher values for the product
x p.

Problem 1.12

Calculate the group and phase velocities for the wave packet corresponding to a relativistic

particle.

Solution

Recall that the energy and momentum of a relativistic particle are given by

E mc2
m0c2

1 2 c2
p m

m0

1 2 c2
(1.206)

where m0 is the rest mass of the particle and c is the speed of light in a vacuum. Squaring and
adding the expressions of E and p, we obtain E2 p2c2 m20c

4; hence

E c p2 m20c
2 (1.207)
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Using this relation along with p2 m20c
2 m20c

2 1 2 c2 and (1.122), we can show that
the group velocity is given as follows:

g
dE

dp

d

dp
c p2 m20c

2
pc

p2 m20c
2

(1.208)

The group velocity is thus equal to the speed of the particle, g .

The phase velocity can be found from (1.122) and (1.207): ph E p c 1 m20c
2 p2

which, when combined with p m0 1 2 c2, leads to 1 m20c
2 p2 c ; hence

ph
E

p
c 1

m20c
2

p2
c2

(1.209)

This shows that the phase velocity of the wave corresponding to a relativistic particle with

m0 0 is larger than the speed of light, ph c2 c. This is indeed unphysical. The
result ph c seems to violate the special theory of relativity, which states that the speed
of material particles cannot exceed c. In fact, this principle is not violated because ph does

not represent the velocity of the particle; the velocity of the particle is represented by the group

velocity (1.208). As a result, the phase speed of a relativistic particle has nomeaningful physical

significance.

Finally, the product of the group and phase velocities is equal to c2, i.e., g ph c2.

Problem 1.13

The angular frequency of the surface waves in a liquid is given in terms of the wave number k
by gk T k3 , where g is the acceleration due to gravity, is the density of the liquid,

and T is the surface tension (which gives an upward force on an element of the surface liquid).
Find the phase and group velocities for the limiting cases when the surface waves have: (a) very

large wavelengths and (b) very small wavelengths.

Solution

The phase velocity can be found at once from (1.119):

ph
k

g

k

T
k

g

2

2 T
(1.210)

where we have used the fact that k 2 , being the wavelength of the surface waves.

(a) If is very large, we can neglect the second term in (1.210); hence

ph
g

2

g

k
(1.211)

In this approximation the phase velocity does not depend on the nature of the liquid, since it

depends on no parameter pertaining to the liquid such as its density or surface tension. This

case corresponds, for instance, to deepwater waves, called gravity waves.
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To obtain the group velocity, let us differentiate (1.211) with respect to k: d ph dk
1 2k g k ph 2k. A substitution of this relation into (1.120) shows that the group

velocity is half the phase velocity:

g
d

dk
ph k

d ph

dk
ph

1

2
ph

1

2
ph

1

2

g

2
(1.212)

The longer the wavelength, the faster the group velocity. This explains why a strong, steady

wind will produce waves of longer wavelength than those produced by a swift wind.

(b) If is very small, the second term in (1.210) becomes the dominant one. So, retaining

only the second term, we have

ph
2 T T

k (1.213)

which leads to d ph dk T k 2k ph 2k. Inserting this expression into (1.120), we
obtain the group velocity

g ph k
d ph

dk
ph

1

2
ph

3

2
ph (1.214)

hence the smaller the wavelength, the faster the group velocity. These are called ripple waves;

they occur, for instance, when a container is subject to vibrations of high frequency and small

amplitude or when a gentle wind blows on the surface of a fluid.

Problem 1.14

This problem is designed to illustrate the superposition principle and the concepts of modulated

and modulating functions in a wave packet. Consider two wave functions 1 y t 5y cos 7t
and 2 y t 5y cos 9t , where y and t are in meters and seconds, respectively. Show that
their superposition generates a wave packet. Plot it and identify the modulated and modulating

functions.

Solution

Using the relation cos cos cos sin sin , we can write the superposition of

1 y t and 2 y t as follows:

y t 1 y t 2 y t 5y cos 7t 5y cos 9t

5y cos 8t cos t sin 8t sin t 5y cos 8t cos t sin 8t sin t

10y sin t sin 8t (1.215)

The periods of 10y sin t and sin 8t are given by 2 and 2 8, respectively. Since the period of

10y sin t is larger than that of sin 8t , 10y sin t must be the modulating function and sin 8t the
modulated function. As depicted in Figure 1.19, we see that sin 8t is modulated by 10y sin t .

Problem 1.15

(a) Calculate the final size of the wave packet representing a free particle after traveling a

distance of 100 m for the following four cases where the particle is

(i) a 25 eV electron whose wave packet has an initial width of 10 6 m,
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-

6 ¾ 10y sin t

¾ sin 8t

t

Figure 1.19 Shape of the wave packet y t 10y sin t sin 8t . The function sin 8t , the
solid curve, is modulated by 10y sin t , the dashed curve.

(ii) a 25 eV electron whose wave packet has an initial width of 10 8 m,

(iii) a 100 MeV electron whose wave packet has an initial width of 1 mm, and

(iv) a 100 g object of size 1 cm moving at a speed of 50 m s 1.

(b) Estimate the times required for the wave packets of the electron in (i) and the object in

(iv) to spread to 10 mm and 10 cm, respectively. Discuss the results obtained.

Solution

(a) If the initial width of the wave packet of the particle is x0, the width at time t is given
by

x t x0 1
x

x0

2

(1.216)

where the dispersion factor is given by

x

x0

2ht

ma2
ht

2m a 2 2
ht

2m x0
2

(1.217)

(i) For the 25 eV electron, which is clearly not relativistic, the time to travel the L 100 m

distance is given by t L L mc2 2E c, since E 1
2
m 2 1

2
mc2 2 c2 or

c 2E mc2 . We can therefore write the dispersion factor as

x

x0

h

2m x20
t

h

2m x20

L

c

mc2

2E

hcL

2mc2 x20

mc2

2E
(1.218)

The numerics of this expression can be made easy by using the following quantities: hc
197 10 15 MeV m, the rest mass energy of an electron is mc2 0 5 MeV, x0 10 6 m,

E 25 eV 25 10 6 MeV, and L 100 m. Inserting these quantities into (1.218), we

obtain

x

x0

197 10 15 MeV m 100 m

2 0 5 MeV 10 12 m2
0 5 MeV

2 25 10 6 MeV
2 103 (1.219)

the time it takes the electron to travel the 100 m distance is given, as shown above, by

t
L

c

mc2

2E

100 m

3 108 ms 1

0 5 MeV

2 25 10 6 MeV
3 3 10 5 s (1.220)
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Using t 3 3 10 5 s and substituting (1.219) into (1.216), we obtain

x t 3 3 10 5 s 10 6 m 1 4 106 2 10 3 m 2 mm (1.221)

The width of the wave packet representing the electron has increased from an initial value of

10 6 m to 2 10 3 m, i.e., by a factor of about 103. The spread of the electron’s wave packet

is thus quite large.

(ii) The calculation needed here is identical to that of part (i), except the value of x0 is
now 10 8 m instead of 10 6 m. This leads to x x0 2 107 and hence the width is

x t 20 cm; the width has therefore increased by a factor of about 107. This calculation is

intended to show that the narrower the initial wave packet, the larger the final spread. In fact,
starting in part (i) with an initial width of 10 6 m, the final width has increased to 2 10 3 m

by a factor of about 103; but in part (ii) we started with an initial width of 10 8 m, and the final

width has increased to 20 cm by a factor of about 107.

(iii) The motion of a 100 MeV electron is relativistic; hence to good approximation, its

speed is equal to the speed of light, c. Therefore the time it takes the electron to travel a
distance of L 100 m is t L c 3 3 10 7 s. The dispersion factor for this electron can

be obtained from (1.217) where x0 10 3 m:

x

x0

hL

2mc x20

hcL

2mc2 x20

197 10 15 MeV m 100 m

2 0 5 MeV 10 6 m2
2 10 5 (1.222)

The increase in the width of the wave packet is relatively small:

x t 3 3 10 7 s 10 3 m 1 4 10 10 10 3 m x0 (1.223)

So the width did not increase appreciably. We can conclude from this calculation that, when

the motion of a microscopic particle is relativistic, the width of the corresponding wave packet

increases by a relatively small amount.

(iv) In the case of a macroscopic object of mass m 0 1 kg, the time to travel the distance

L 100 m is t L 100 m 50 ms 1 2 s. Since the size of the system is about

x0 1 cm 0 01 m and h 1 05 10 34 J s, the dispersion factor for the object can be

obtained from (1.217):

x

x0

ht

2m x20

1 05 10 34 J s 2 s

2 0 1 kg 10 4 m2
10 29 (1.224)

Since x x0 10 29 1, the increase in the width of the wave packet is utterly unde-

tectable:

x 2s 10 2 m 1 10 58 10 2 m x0 (1.225)

(b) Using (1.216) and (1.217) we obtain the expression for the time t in which the wave
packet spreads to x t :

t
x t

x0

2

1 (1.226)

where represents a time constant 2m x0 2 h (see (1.148)). The time constant for the
electron of part (i) is given by

2mc2 x0 2

hc2
2 0 5 MeV 10 12 m2

197 10 15 MeV m 3 108ms 1
1 7 10 8 s (1.227)
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and the time constant for the object of part (iv) is given by

2m x0 2

h

2 0 1 kg 10 4 m2

1 05 10 34 J s
1 9 1029 s (1.228)

Note that the time constant, while very small for a microscopic particle, is exceedingly large

for macroscopic objects.

On the one hand, a substitution of the time constant (1.227) into (1.226) yields the time

required for the electron’s packet to spread to 10 mm:

t 1 7 10 8 s
10 2

10 6

2

1 1 7 10 4 s (1.229)

On the other hand, a substitution of (1.228) into (1.226) gives the time required for the object

to spread to 10 cm:

t 1 9 1029 s
10 1

10 2

2

1 1 9 1030 s (1.230)

The result (1.229) shows that the size of the electron’s wave packet grows in a matter of 1 7

10 4 s from 10 6 m to 10 2 m, a very large spread in a very short time. As for (1.230), it

shows that the object has to be constantly in motion for about 1 9 1030 s for its wave packet

to grow from 1 cm to 10 cm, a small spread for such an absurdly large time; this time is absurd

because it is much larger than the age of the Universe, which is about 4 7 1017 s. We see that

the spread of macroscopic objects becomes appreciable only if the motion lasts for a long, long

time. However, the spread of microscopic objects is fast and large.

We can summarize these ideas in three points:

The width of the wave packet of a nonrelativistic, microscopic particle increases substan-

tially and quickly. The narrower the wave packet at the start, the further and the quicker

it will spread.

When the particle is microscopic and relativistic, the width corresponding to its wave

packet does not increase appreciably.

For a nonrelativistic, macroscopic particle, the width of its corresponding wave packet

remains practically constant. The spread becomes appreciable only after absurdly long

times, times that are larger than the lifetime of the Universe itself!

Problem 1.16

A neutron is confined in space to 10 14 m. Calculate the time its packet will take to spread to

(a) four times its original size,

(b) a size equal to the Earth’s diameter, and

(c) a size equal to the distance between the Earth and the Moon.

Solution

Since the rest mass energy of a neutron is equal to mnc2 939 6 MeV, we can infer the time

constant for the neutron from (1.227):

2mnc2 x0 2

hc2
2 939 6 MeV 10 14 m 2

197 10 15 MeV m 3 108 ms 1
3 2 10 21 s (1.231)
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Inserting this value in (1.226) we obtain the time it takes for the neutron’s packet to grow from

an initial width x0 to a final size x t :

t
x t

x0

2

1 3 2 10 21 s
x t

x0

2

1 (1.232)

The calculation of t reduces to simple substitutions.
(a) Substituting x t 4 x0 into (1.232), we obtain the time needed for the neutron’s

packet to expand to four times its original size:

t 3 2 10 21 s 16 1 1 2 10 20 s (1.233)

(b) The neutron’s packet will expand from an initial size of 10 14 m to 12 7 106 m (the

diameter of the Earth) in a time of

t 3 2 10 21 s
12 7 106 m

10 14 m

2

1 4 1 s (1.234)

(c) The time needed for the neutron’s packet to spread from 10 14 m to 3 84 108 m (the

distance between the Earth and the Moon) is

t 3 2 10 21 s
3 84 108 m

10 14 m

2

1 12 3 s (1.235)

The calculations carried out in this problem show that the spread of the packets of micro-

scopic particles is significant and occurs very fast: the size of the packet for an earthly neutron

can expand to reach the Moon in a mere 12 3 s! Such an immense expansion in such a short

time is indeed hard to visualize classically. One should not confuse the packet’s expansion with

a growth in the size of the system. As mentioned above, the spread of the wave packet does

not mean that the material particle becomes bloated. It simply implies a redistribution of the

probability density. In spite of the significant spread of the wave packet, the packet’s norm is

always conserved; as shown in (1.149) it is equal to 1.

Problem 1.17

Use the uncertainty principle to estimate: (a) the ground state radius of the hydrogen atom and

(b) the ground state energy of the hydrogen atom.

Solution

(a) According to the uncertainty principle, the electron’s momentum and the radius of its

orbit are related by rp h; hence p h r . To find the ground state radius, we simply need to
minimize the electron–proton energy

E r
p2

2me

e2

4 0r

h2

2mer2
e2

4 0r
(1.236)

with respect to r :

0
dE

dr

h2

mer30

e2

4 0r20
(1.237)
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This leads to the Bohr radius

r0
4 0h

2

mee2
0 053 nm (1.238)

(b) Inserting (1.238) into (1.236), we obtain the Bohr energy:

E r0
h2

2mr20

e2

4 0r0

me

2h2
e2

4 0

2

13 6 eV (1.239)

The results obtained for r0 and E r0 , as shown in (1.238) and (1.239), are indeed impressively
accurate given the crudeness of the approximation.

Problem 1.18

Consider the bound state of two quarks having the same mass m and interacting via a potential
energy V r kr where k is a constant.
(a) Using the Bohr model, find the speed, the radius, and the energy of the system in the

case of circular orbits. Determine also the angular frequency of the radiation generated by a

transition of the system from energy state n to energy state m.
(b) Obtain numerical values for the speed, the radius, and the energy for the case of the

ground state, n 1, by taking a quark mass of mc2 2 GeV and k 0 5 GeV fm 1.

Solution

(a) Consider the two quarks to move circularly, much like the electron and proton in a

hydrogen atom; then we can write the force between them as

2

r

dV r

dr
k (1.240)

where m 2 is the reduced mass and V r is the potential. From the Bohr quantization

condition of the orbital angular momentum, we have

L r nh (1.241)

Multiplying (1.240) by (1.241), we end up with 2 3 nhk, which yields the (quantized)
speed of the relative motion for the two-quark system:

n
hk
2

1 3

n1 3 (1.242)

The radius can be obtained from (1.241), rn nh n ; using (1.242), this leads to

rn
h2

k

1 3

n2 3 (1.243)

We can obtain the total energy of the relative motion by adding the kinetic and potential

energies:

En
1

2
2
n krn

3

2

h2k2
1 3

n2 3 (1.244)
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In deriving this relation, we have used the relations for n and rn as given by (1.242) by (1.243),
respectively.

The angular frequency of the radiation generated by a transition from n to m is given by

nm
En Em
h

3

2

k2

h

1 3

n2 3 m2 3 (1.245)

(b) Inserting n 1, hc 0 197 GeV fm, c2 mc2 2 1 GeV, and k 0 5 GeV fm 1

into (1.242) to (1.244), we have

1
hck

c2 2

1 3

c
0 197 GeV fm 0 5 GeV fm 1

1 GeV 2

1 3

c 0 46c (1.246)

where c is the speed of light and

r1
hc 2

c2k

1 3
0 197 GeV fm 2

1 GeV 0 5 GeV fm 1

1 3

0 427 fm (1.247)

E1
3

2

hc 2k2

c2

1 3
3

2

0 197 GeV fm 2 0 5 GeV fm 1 2

1 GeV

1 3

0 32 GeV (1.248)

1.11 Exercises

Exercise 1.1

Consider a metal that is being welded.

(a) How hot is the metal when it radiates most strongly at 490 nm?

(b) Assuming that it radiates like a blackbody, calculate the intensity of its radiation.

Exercise 1.2

Consider a star, a light bulb, and a slab of ice; their respective temperatures are 8500K, 850K,

and 273 15K.

(a) Estimate the wavelength at which their radiated energies peak.

(b) Estimate the intensities of their radiation.

Exercise 1.3

Consider a 75W light bulb and an 850W microwave oven. If the wavelengths of the radiation

they emit are 500 nm and 150mm, respectively, estimate the number of photons they emit per

second. Are the quantum effects important in them?

Exercise 1.4

Assuming that a given star radiates like a blackbody, estimate

(a) the temperature at its surface and

(b) the wavelength of its strongest radiation,

when it emits a total intensity of 575MWm 2.



Chapter 2

Mathematical Tools of Quantum

Mechanics

2.1 Introduction

We deal here with the mathematical machinery needed to study quantum mechanics. Although

this chapter is mathematical in scope, no attempt is made to be mathematically complete or

rigorous. We limit ourselves to those practical issues that are relevant to the formalism of

quantum mechanics.

The Schrödinger equation is one of the cornerstones of the theory of quantum mechan-

ics; it has the structure of a linear equation. The formalism of quantum mechanics deals with
operators that are linear and wave functions that belong to an abstract Hilbert space. The math-

ematical properties and structure of Hilbert spaces are essential for a proper understanding of

the formalism of quantum mechanics. For this, we are going to review briefly the properties of

Hilbert spaces and those of linear operators. We will then consider Dirac’s bra-ket notation.
Quantum mechanics was formulated in two different ways by Schrödinger and Heisenberg.

Schrödinger’s wave mechanics and Heisenberg’s matrix mechanics are the representations of

the general formalism of quantum mechanics in continuous and discrete basis systems, respec-
tively. For this, we will also examine the mathematics involved in representing kets, bras,

bra-kets, and operators in discrete and continuous bases.

2.2 The Hilbert Space and Wave Functions

2.2.1 The Linear Vector Space

A linear vector space consists of two sets of elements and two algebraic rules:

a set of vectors and a set of scalars a, b, c, ;

a rule for vector addition and a rule for scalar multiplication.

(a) Addition rule

The addition rule has the properties and structure of an abelian group:

79
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If and are vectors (elements) of a space, their sum, , is also a vector of the

same space.

Commutativity: .

Associativity: .

Existence of a zero or neutral vector: for each vector , there must exist a zero vector

O such that: O O .

Existence of a symmetric or inverse vector: each vector must have a symmetric vector

such that O.

(b) Multiplication rule

The multiplication of vectors by scalars (scalars can be real or complex numbers) has these

properties:

The product of a scalar with a vector gives another vector. In general, if and are two

vectors of the space, any linear combination a b is also a vector of the space, a and
b being scalars.

Distributivity with respect to addition:

a a a a b a b (2.1)

Associativity with respect to multiplication of scalars:

a b ab (2.2)

For each element there must exist a unitary scalar I and a zero scalar "o" such that

I I and o o o (2.3)

2.2.2 The Hilbert Space

A Hilbert spaceH consists of a set of vectors , , , and a set of scalars a, b, c, which

satisfy the following four properties:

(a) H is a linear space

The properties of a linear space were considered in the previous section.

(b) H has a defined scalar product that is strictly positive

The scalar product of an element with another element is in general a complex

number, denoted by , where complex number. Note: Watch out for the

order! Since the scalar product is a complex number, the quantity is generally not

equal to : while . The scalar product satisfies the

following properties:

The scalar product of with is equal to the complex conjugate of the scalar

product of with :

(2.4)



2.2. THE HILBERT SPACE AND WAVE FUNCTIONS 81

The scalar product of with is linear with respect to the second factor if

a 1 b 2:

a 1 b 2 a 1 b 2 (2.5)

and antilinear with respect to the first factor if a 1 b 2:

a 1 b 2 a 1 b 2 (2.6)

The scalar product of a vector with itself is a positive real number:

2 0 (2.7)

where the equality holds only for O.

(c) H is separable

There exists a Cauchy sequence n H n 1 2 such that for every of H and

0, there exists at least one n of the sequence for which

n (2.8)

(d) H is complete

Every Cauchy sequence n H converges to an element of H . That is, for any n , the

relation

lim
n m

n m 0 (2.9)

defines a unique limit ofH such that

lim
n

n 0 (2.10)

Remark

We should note that in a scalar product , the second factor, , belongs to the Hilbert

spaceH, while the first factor, , belongs to its dual Hilbert spaceHd . The distinction between

H and Hd is due to the fact that, as mentioned above, the scalar product is not commutative:

; the order matters! From linear algebra, we know that every vector space can

be associated with a dual vector space.

2.2.3 Dimension and Basis of a Vector Space

A set of N nonzero vectors 1, 2, , N is said to be linearly independent if and only if the
solution of the equation

N

i 1

ai i 0 (2.11)

is a1 a2 aN 0. But if there exists a set of scalars, which are not all zero, so that

one of the vectors (say n) can be expressed as a linear combination of the others,

n

n 1

i 1

ai i

N

i n 1

ai i (2.12)
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the set i is said to be linearly dependent.
Dimension: The dimension of a vector space is given by the maximum number of linearly
independent vectors the space can have. For instance, if the maximum number of linearly inde-

pendent vectors a space has is N (i.e., 1, 2, , N ), this space is said to be N -dimensional.
In this N -dimensional vector space, any vector can be expanded as a linear combination:

N

i 1

ai i (2.13)

Basis: The basis of a vector space consists of a set of the maximum possible number of linearly
independent vectors belonging to that space. This set of vectors, 1, 2, , N , to be denoted

in short by i , is called the basis of the vector space, while the vectors 1, 2, , N are

called the base vectors. Although the set of these linearly independent vectors is arbitrary,

it is convenient to choose them orthonormal; that is, their scalar products satisfy the relation

i j i j (we may recall that i j 1 whenever i j and zero otherwise). The basis is
said to be orthonormal if it consists of a set of orthonormal vectors. Moreover, the basis is said
to be complete if it spans the entire space; that is, there is no need to introduce any additional
base vector. The expansion coefficients ai in (2.13) are called the components of the vector
in the basis. Each component is given by the scalar product of with the corresponding base

vector, a j j .

Examples of linear vector spaces

Let us give two examples of linear spaces that are Hilbert spaces: one having a finite (discrete)
set of base vectors, the other an infinite (continuous) basis.

The first one is the three-dimensional Euclidean vector space; the basis of this space

consists of three linearly independent vectors, usually denoted by i , j , k. Any vector of
the Euclidean space can be written in terms of the base vectors as A a1i a2 j a3k,
where a1, a2, and a3 are the components of A in the basis; each component can be
determined by taking the scalar product of A with the corresponding base vector: a1
i A, a2 j A, and a3 k A. Note that the scalar product in the Euclidean space is real
and hence symmetric. The norm in this space is the usual length of vectors A A.
Note also that whenever a1i a2 j a3k 0 we have a1 a2 a3 0 and that none

of the unit vectors i , j , k can be expressed as a linear combination of the other two.

The second example is the space of the entire complex functions x ; the dimension of
this space is infinite for it has an infinite number of linearly independent basis vectors.

Example 2.1

Check whether the following sets of functions are linearly independent or dependent on the real

x-axis.
(a) f x 4, g x x2, h x e2x

(b) f x x , g x x2, h x x3

(c) f x x , g x 5x , h x x2

(d) f x 2 x2, g x 3 x 4x3, h x 2x 3x2 8x3

Solution
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(a) The first set is clearly linearly independent since a1 f x a2g x a3h x 4a1
a2x2 a3e2x 0 implies that a1 a2 a3 0 for any value of x .
(b) The functions f x x , g x x2, h x x3 are also linearly independent since

a1x a2x2 a3x3 0 implies that a1 a2 a3 0 no matter what the value of x . For
instance, taking x 1 1 3, the following system of three equations

a1 a2 a3 0 a1 a2 a3 0 3a1 9a2 27a3 0 (2.14)

yields a1 a2 a3 0.

(c) The functions f x x , g x 5x , h x x2 are not linearly independent, since
g x 5 f x 0 h x .
(d) The functions f x 2 x2, g x 3 x 4x3, h x 2x 3x2 8x3 are not

linearly independent since h x 3 f x 2g x .

Example 2.2

Are the following sets of vectors (in the three-dimensional Euclidean space) linearly indepen-

dent or dependent?

(a) A 3 0 0 , B 0 2 0 , C 0 0 1

(b) A 6 9 0 , B 2 3 0

(c) A 2 3 1 , B 0 1 2 , C 0 0 5

(d) A 1 2 3 , B 4 1 7 , C 0 10 11 , and D 14 3 4

Solution

(a) The three vectors A 3 0 0 , B 0 2 0 , C 0 0 1 are linearly indepen-

dent, since

a1A a2B a3C 0 3a1i 2a2 j a3k 0 (2.15)

leads to

3a1 0 2a2 0 a3 0 (2.16)

which yields a1 a2 a3 0.

(b) The vectors A 6 9 0 , B 2 3 0 are linearly dependent, since the solution

to

a1A a2B 0 6a1 2a2 i 9a1 3a2 j 0 (2.17)

is a1 a2 3. The first vector is equal to 3 times the second one: A 3B.
(c) The vectors A 2 3 1 , B 0 1 2 , C 0 0 5 are linearly independent,

since

a1A a2B a3C 0 2a1i 3a1 a2 j a1 2a2 5a3 k 0 (2.18)

leads to

2a1 0 3a1 a2 0 a1 2a2 5a3 0 (2.19)

The only solution of this system is a1 a2 a3 0.

(d) The vectors A 1 2 3 , B 4 1 7 , C 0 10 11 , and D 14 3 4 are

not linearly independent, because D can be expressed in terms of the other vectors:

D 2A 3B C (2.20)
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2.2.4 Square-Integrable Functions: Wave Functions

In the case of function spaces, a “vector” element is given by a complex function and the scalar
product by integrals. That is, the scalar product of two functions x and x is given by

x x dx (2.21)

If this integral diverges, the scalar product does not exist. As a result, if we want the function
space to possess a scalar product, we must select only those functions for which is finite.
In particular, a function x is said to be square integrable if the scalar product of with

itself,

x 2 dx (2.22)

is finite.
It is easy to verify that the space of square-integrable functions possesses the properties of

a Hilbert space. For instance, any linear combination of square-integrable functions is also a

square-integrable function and (2.21) satisfies all the properties of the scalar product of a Hilbert

space.

Note that the dimension of the Hilbert space of square-integrable functions is infinite, since

each wave function can be expanded in terms of an infinite number of linearly independent

functions. The dimension of a space is given by the maximum number of linearly independent

basis vectors required to span that space.

A good example of square-integrable functions is the wave function of quantum mechanics,
r t . We have seen in Chapter 1 that, according to Born’s probabilistic interpretation of
r t , the quantity r t 2 d3r represents the probability of finding, at time t , the particle

in a volume d3r , centered around the point r . The probability of finding the particle somewhere
in space must then be equal to 1:

r t 2 d3r dx dy r t 2 dz 1 (2.23)

hence the wave functions of quantum mechanics are square-integrable. Wave functions sat-

isfying (2.23) are said to be normalized or square-integrable. As wave mechanics deals with

square-integrable functions, any wave function which is not square-integrable has no physical

meaning in quantum mechanics.

2.3 Dirac Notation

The physical state of a system is represented in quantum mechanics by elements of a Hilbert

space; these elements are called state vectors. We can represent the state vectors in different

bases by means of function expansions. This is analogous to specifying an ordinary (Euclid-

ean) vector by its components in various coordinate systems. For instance, we can represent

equivalently a vector by its components in a Cartesian coordinate system, in a spherical coor-

dinate system, or in a cylindrical coordinate system. The meaning of a vector is, of course,
independent of the coordinate system chosen to represent its components. Similarly, the state
of a microscopic system has a meaning independent of the basis in which it is expanded.

To free state vectors from coordinate meaning, Dirac introduced what was to become an in-

valuable notation in quantum mechanics; it allows one to manipulate the formalism of quantum
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mechanics with ease and clarity. He introduced the concepts of kets, bras, and bra-kets, which

will be explained below.

Kets: elements of a vector space

Dirac denoted the state vector by the symbol , which he called a ket vector, or simply a
ket. Kets belong to the Hilbert (vector) spaceH, or, in short, to the ket-space.

Bras: elements of a dual space

As mentioned above, we know from linear algebra that a dual space can be associated with

every vector space. Dirac denoted the elements of a dual space by the symbol , which he

called a bra vector, or simply a bra; for instance, the element represents a bra. Note: For
every ket there exists a unique bra and vice versa. Again, while kets belong to the
Hilbert spaceH, the corresponding bras belong to its dual (Hilbert) spaceHd .

Bra-ket: Dirac notation for the scalar product

Dirac denoted the scalar (inner) product by the symbol , which he called a a bra-ket. For
instance, the scalar product ( ) is denoted by the bra-ket :

(2.24)

Note: When a ket (or bra) is multiplied by a complex number, we also get a ket (or bra).

Remark: In wave mechanics we deal with wave functions r t , but in the more general
formalism of quantum mechanics we deal with abstract kets . Wave functions, like kets,

are elements of a Hilbert space. We should note that, like a wave function, a ket represents the

system completely, and hence knowing means knowing all its amplitudes in all possible

representations. As mentioned above, kets are independent of any particular representation.

There is no reason to single out a particular representation basis such as the representation in

the position space. Of course, if we want to know the probability of finding the particle at some

position in space, we need to work out the formalism within the coordinate representation. The

state vector of this particle at time t will be given by the spatial wave function r t
r t . In the coordinate representation, the scalar product is given by

r t r t d3r (2.25)

Similarly, if we are considering the three-dimensional momentum of a particle, the ket will

have to be expressed in momentum space. In this case the state of the particle will be described

by a wave function p t , where p is the momentum of the particle.

Properties of kets, bras, and bra-kets

Every ket has a corresponding bra

To every ket , there corresponds a unique bra and vice versa:

(2.26)

There is a one-to-one correspondence between bras and kets:

a b a b (2.27)

where a and b are complex numbers. The following is a common notation:

a a a a (2.28)
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Properties of the scalar product

In quantummechanics, since the scalar product is a complex number, the ordering matters

a lot. We must be careful to distinguish a scalar product from its complex conjugate;

is not the same thing as :

(2.29)

This property becomes clearer if we apply it to (2.21):

r t r t d3r r t r t d3r (2.30)

When and are real, we would have . Let us list some

additional properties of the scalar product:

a1 1 a2 2 a1 1 a2 2 (2.31)

a1 1 a2 2 a1 1 a2 2 (2.32)

a1 1 a2 2 b1 1 b2 2 a1b1 1 1 a1b2 1 2

a2b1 2 1 a2b2 2 2

(2.33)

The norm is real and positive

For any state vector of the Hilbert space H, the norm is real and positive;

is equal to zero only for the case where O, where O is the zero vector.
If the state is normalized then 1.

Schwarz inequality

For any two states and of the Hilbert space, we can show that

2 (2.34)

If and are linearly dependent (i.e., proportional: , where is a

scalar), this relation becomes an equality. The Schwarz inequality (2.34) is analogous to

the following relation of the real Euclidean space

A B 2 A 2 B 2 (2.35)

Triangle inequality

(2.36)

If and are linearly dependent, , and if the proportionality scalar

is real and positive, the triangle inequality becomes an equality. The counterpart of this

inequality in Euclidean space is given by A B A B .

Orthogonal states

Two kets, and , are said to be orthogonal if they have a vanishing scalar product:

0 (2.37)
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Orthonormal states

Two kets, and , are said to be orthonormal if they are orthogonal and if each one

of them has a unit norm:

0 1 1 (2.38)

Forbidden quantities

If and belong to the same vector (Hilbert) space, products of the type

and are forbidden. They are nonsensical, since and are

neither kets nor bras (an explicit illustration of this will be carried out in the example

below and later on when we discuss the representation in a discrete basis). If and

belong, however, to different vector spaces (e.g., belongs to a spin space and

to an orbital angular momentum space), then the product , written as

, represents a tensor product of and . Only in these typical cases are

such products meaningful.

Example 2.3

(Note: We will see later in this chapter that kets are represented by column matrices and bras

by row matrices; this example is offered earlier than it should because we need to show some

concrete illustrations of the formalism.) Consider the following two kets:

3i
2 i
4

2

i
2 3i

(a) Find the bra .

(b) Evaluate the scalar product .

(c) Examine why the products and do not make sense.

Solution

(a) As will be explained later when we introduce the Hermitian adjoint of kets and bras, we

want to mention that the bra can be obtained by simply taking the complex conjugate of

the transpose of the ket :

2 i 2 3i (2.39)

(b) The scalar product can be calculated as follows:

2 i 2 3i
3i

2 i
4

2 3i i 2 i 4 2 3i

7 8i (2.40)

(c) First, the product cannot be performed because, from linear algebra, the

product of two column matrices cannot be performed. Similarly, since two row matrices cannot

be multiplied, the product is meaningless.
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Physical meaning of the scalar product

The scalar product can be interpreted in two ways. First, by analogy with the scalar product

of ordinary vectors in the Euclidean space, where A B represents the projection of B on A,
the product also represents the projection of onto . Second, in the case of

normalized states and according to Born’s probabilistic interpretation, the quantity

represents the probability amplitude that the system’s state will, after a measurement is

performed on the system, be found to be in another state .

Example 2.4 (Bra-ket algebra)

Consider the states 3i 1 7i 2 and 1 2i 2 , where 1 and

2 are orthonormal.

(a) Calculate and .

(b) Calculate the scalar products and . Are they equal?

(c) Show that the states and satisfy the Schwarz inequality.

(d) Show that the states and satisfy the triangle inequality.

Solution

(a) The calculation of is straightforward:

3i 1 7i 2 1 2i 2

1 3i 1 5i 2 (2.41)

This leads at once to the expression of :

1 3i 1 5i 2 1 3i 1 5i 2 (2.42)

(b) Since 1 1 2 2 1, 1 2 2 1 0, and since the bras

corresponding to the kets 3i 1 7i 2 and 1 2i 2 are given by

3i 1 7i 2 and 1 2i 2 , the scalar products are

3i 1 7i 2 1 2i 2

3i 1 1 1 7i 2i 2 2

14 3i (2.43)

1 2i 2 3i 1 7i 2

1 3i 1 1 2i 7i 2 2

14 3i (2.44)

We see that is equal to the complex conjugate of .

(c) Let us first calculate and :

3i 1 7i 2 3i 1 7i 2 3i 3i 7i 7i 58 (2.45)

1 2i 2 1 2i 2 1 1 2i 2i 5 (2.46)

Since 14 3i we have 2 142 32 205. Combining the values of
2, , and , we see that the Schwarz inequality (2.34) is satisfied:

205 58 5 2 (2.47)
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(d) First, let us use (2.41) and (2.42) to calculate :

[ 1 3i 1 5i 2 ] [ 1 3i 1 5i 2 ]

1 3i 1 3i 5i 5i

35 (2.48)

Since 58 and 5, we infer that the triangle inequality (2.36) is satisfied:

35 58 5 (2.49)

Example 2.5

Consider two states 1 2i 1 2 a 3 4 4 and 2 3 1 i 2 5 3 4 ,

where 1 , 2 , 3 , and 4 are orthonormal kets, and where a is a constant. Find the value
of a so that 1 and 2 are orthogonal.

Solution

For the states 1 and 2 to be orthogonal, the scalar product 2 1 must be zero. Using

the relation 2 3 1 i 2 5 3 4 , we can easily find the scalar product

2 1 3 1 i 2 5 3 4 2i 1 2 a 3 4 4

7i 5a 4 (2.50)

Since 2 1 7i 5a 4 0, the value of a is a 7i 4 5.

2.4 Operators

2.4.1 General Definitions

Definition of an operator: An operator1 A is a mathematical rule that when applied to a ket
transforms it into another ket of the same space and when it acts on a bra

transforms it into another bra :

A A (2.51)

A similar definition applies to wave functions:

A r r r A r (2.52)

Examples of operators

Here are some of the operators that we will use in this text:

Unity operator: it leaves any ket unchanged, I .

The gradient operator: r r x i r y j r z k.

1The hat on A will be used throughout this text to distinguish an operator A from a complex number or a matrix A.
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The linear momentum operator: P r ih r .

The Laplacian operator: 2 r 2 r x2 2 r y2 2 r z2.

The parity operator: P r r .

Products of operators

The product of two operators is generally not commutative:

AB BA (2.53)

The product of operators is, however, associative:

ABC A BC AB C (2.54)

We may also write A
n
A
m

A
n m

. When the product AB operates on a ket (the order

of application is important), the operator B acts first on and then A acts on the new ket
B :

AB A B (2.55)

Similarly, when ABCD operates on a ket , D acts first, then C , then B, and then A.
When an operator A is sandwiched between a bra and a ket , it yields in general

a complex number: A complex number. The quantity A can also be a

purely real or a purely imaginary number. Note: In evaluating A it does not matter if

one first applies A to the ket and then takes the bra-ket or one first applies A to the bra and then
takes the bra-ket; that is A A .

Linear operators

An operator A is said to be linear if it obeys the distributive law and, like all operators, it
commutes with constants. That is, an operator A is linear if, for any vectors 1 and 2 and

any complex numbers a1 and a2, we have

A a1 1 a2 2 a1A 1 a2A 2 (2.56)

and

1 a1 2 a2 A a1 1 A a2 2 A (2.57)

Remarks

The expectation or mean value A of an operator A with respect to a state is defined

by

A
A

(2.58)

The quantity (i.e., the product of a ket with a bra) is a linear operator in Dirac’s

notation. To see this, when is applied to a ket , we obtain another ket:

(2.59)

since is a complex number.

Products of the type A and A (i.e., when an operator stands on the right of a ket

or on the left of a bra) are forbidden. They are not operators, or kets, or bras; they have

no mathematical or physical meanings (see equation (2.219) for an illustration).
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2.4.2 Hermitian Adjoint

The Hermitian adjoint or conjugate2, †, of a complex number is the complex conjugate of

this number: † . The Hermitian adjoint, or simply the adjoint, A
†
, of an operator A is

defined by this relation:

A
†

A (2.60)

Properties of the Hermitian conjugate rule

To obtain the Hermitian adjoint of any expression, we must cyclically reverse the order of the

factors and make three replacements:

Replace constants by their complex conjugates: † .

Replace kets (bras) by the corresponding bras (kets): † and † .

Replace operators by their adjoints.

Following these rules, we can write

A
† † A (2.61)

aA † a A
†

(2.62)

A
n † A

† n (2.63)

A B C D † A
†

B† C† D† (2.64)

ABCD † D†C†B†A
†

(2.65)

ABCD † D†C†B†A† (2.66)

The Hermitian adjoint of the operator is given by

† (2.67)

Operators act inside kets and bras, respectively, as follows:

A A A A
†

(2.68)

Note also that A
†

A
† † A. Hence, we can also write:

A A
†

A (2.69)

Hermitian and skew-Hermitian operators

An operator A is said to be Hermitian if it is equal to its adjoint A
†
:

A A
†

or A A (2.70)

2The terms “adjoint” and “conjugate” are used indiscriminately.
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On the other hand, an operator B is said to be skew-Hermitian or anti-Hermitian if

B† B or B B (2.71)

Remark

The Hermitian adjoint of an operator is not, in general, equal to its complex conjugate: A
†

A .

Example 2.6

(a) Discuss the hermiticity of the operators A A
†
, i A A

†
, and i A A

†
.

(b) Find the Hermitian adjoint of f A 1 i A 3A
2
1 2i A 9A

2
5 7A .

(c) Show that the expectation value of a Hermitian operator is real and that of an anti-

Hermitian operator is imaginary.

Solution

(a) The operator B A A
†
is Hermitian regardless of whether or not A is Hermitian,

since

B† A A
† † A

†
A B (2.72)

Similarly, the operator i A A
†
is also Hermitian; but i A A

†
is anti-Hermitian, since

[i A A
†
]† i A A

†
.

(b) Since the Hermitian adjoint of an operator function f A is given by f † A f A
†
,

we can write

1 i A 3A
2
1 2i A 9A

2

5 7A

†
1 2i A

†
9A†

2

1 i A
†

3A†
2

5 7A
†

(2.73)

(c) From (2.70) we immediately infer that the expectation value of a Hermitian operator is

real, for it satisfies the following property:

A A (2.74)

that is, if A
†

A then A is real. Similarly, for an anti-Hermitian operator, B† B,
we have

B B (2.75)

which means that B is a purely imaginary number.

2.4.3 Projection Operators

An operator P is said to be a projection operator if it is Hermitian and equal to its own square:

P† P P2 P (2.76)

The unit operator I is a simple example of a projection operator, since I† I I 2 I .
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Properties of projection operators

The product of two commuting projection operators, P1 and P2, is also a projection
operator, since

P1P2
† P

†
2 P
†
1 P2P1 P1P2 and P1P2

2 P1P2P1P2 P21 P
2
2 P1P2

(2.77)

The sum of two projection operators is generally not a projection operator.

Two projection operators are said to be orthogonal if their product is zero.

For a sum of projection operators P1 P2 P3 to be a projection operator, it is

necessary and sufficient that these projection operators be mutually orthogonal (i.e., the

cross-product terms must vanish).

Example 2.7

Show that the operator is a projection operator only when is normalized.

Solution

It is easy to ascertain that the operator is Hermitian, since † . As

for the square of this operator, it is given by

2 (2.78)

Thus, if is normalized, we have 2 . In sum, if the state is

normalized, the product of the ket with the bra is a projection operator.

2.4.4 Commutator Algebra

The commutator of two operators A and B, denoted by [A B], is defined by

[A B] AB BA (2.79)

and the anticommutator A B is defined by

A B AB BA (2.80)

Two operators are said to commute if their commutator is equal to zero and hence AB BA.
Any operator commutes with itself:

[A A] 0 (2.81)

Note that if two operators are Hermitian and their product is also Hermitian, these operators

commute:

AB † B†A
†

BA (2.82)

and since AB † AB we have AB BA.
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As an example, we may mention the commutators involving the x-position operator, X ,
and the x-component of the momentum operator, Px ih x , as well as the y and the z
components

[X Px ] ih I [Y Py] ih I [Z Pz] ih I (2.83)

where I is the unit operator.

Properties of commutators

Using the commutator relation (2.79), we can establish the following properties:

Antisymmetry:

[A B] [B A] (2.84)

Linearity:

[A B C D ] [A B] [A C] [A D] (2.85)

Hermitian conjugate of a commutator:

[A B]† [B† A
†
] (2.86)

Distributivity:

[A BC] [A B]C B[A C] (2.87)

[AB C] A[B C] [A C]B (2.88)

Jacobi identity:

[A [B C]] [B [C A]] [C [A B]] 0 (2.89)

By repeated applications of (2.87), we can show that

[A Bn]
n 1

j 0

B j [A B]Bn j 1 (2.90)

[A
n
B]

n 1

j 0

A
n j 1

[A B]A
j

(2.91)

Operators commute with scalars: an operator A commutes with any scalar b:

[A b] 0 (2.92)

Example 2.8

(a) Show that the commutator of two Hermitian operators is anti-Hermitian.

(b) Evaluate the commutator [A [B C]D].



2.4. OPERATORS 95

Solution

(a) If A and B are Hermitian, we can write

[A B]† AB BA † B†A
†

A
†
B† BA AB [A B] (2.93)

that is, the commutator of A and B is anti-Hermitian: [A B]† [A B].
(b) Using the distributivity relation (2.87), we have

[A [B C]D] [B C][A D] [A [B C]]D

BC CB AD DA A BC CB D BC CB AD

CBDA BCDA ABCD ACBD (2.94)

2.4.5 Uncertainty Relation between Two Operators

An interesting application of the commutator algebra is to derive a general relation giving the

uncertainties product of two operators, A and B. In particular, we want to give a formal deriva-
tion of Heisenberg’s uncertainty relations.

Let A and B denote the expectation values of two Hermitian operators A and B with
respect to a normalized state vector : A A and B B .

Introducing the operators A and B,

A A A B B B (2.95)

we have A 2 A
2

2A A A 2 and B 2 B2 2B B B 2, and hence

A 2 A 2 A
2

A 2 B 2 B2 B 2 (2.96)

where A
2

A
2

and B2 B2 . The uncertainties A and B are
defined by

A A 2 A
2

A 2 B B 2 B2 B 2 (2.97)

Let us write the action of the operators (2.95) on any state as follows:

A A A B B B (2.98)

The Schwarz inequality for the states and is given by

2 (2.99)

Since A and B are Hermitian, A and B must also be Hermitian: A
†

A
†

A

A A A and B† B B B. Thus, we can show the following three relations:

A 2 B 2 A B
(2.100)
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For instance, since A
†

A we have A
†
A A 2

A 2 . Hence, the Schwarz inequality (2.99) becomes

A 2 B 2 A B
2

(2.101)

Notice that the last term A B of this equation can be written as

A B
1

2
[ A B]

1

2
A B

1

2
[A B]

1

2
A B (2.102)

where we have used the fact that [ A B] [A B]. Since [A B] is anti-Hermitian and
A B is Hermitian and since the expectation value of a Hermitian operator is real and

that the expectation value of an anti-Hermitian operator is imaginary (see Example 2.6), the

expectation value A B of (2.102) becomes equal to the sum of a real part A B 2

and an imaginary part [A B] 2; hence

A B
2 1

4
[A B]

2 1

4
A B

2
(2.103)

Since the last term is a positive real number, we can infer the following relation:

A B
2 1

4
[A B]

2
(2.104)

Comparing equations (2.101) and (2.104), we conclude that

A 2 B 2 1

4
[A B]

2
(2.105)

which (by taking its square root) can be reduced to

A B
1

2
[A B] (2.106)

This uncertainty relation plays an important role in the formalism of quantum mechanics. Its

application to position and momentum operators leads to the Heisenberg uncertainty relations,

which represent one of the cornerstones of quantum mechanics; see the next example.

Example 2.9 (Heisenberg uncertainty relations)

Find the uncertainty relations between the components of the position and the momentum op-

erators.

Solution

By applying (2.106) to the x-components of the position operator X , and the momentum op-
erator Px , we obtain x px

1
2

[X Px ] . But since [X Px ] ih I , we have
x px h 2; the uncertainty relations for the y and z components follow immediately:

x px
h

2
y py

h

2
z pz

h

2
(2.107)

These are the Heisenberg uncertainty relations.
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2.4.6 Functions of Operators

Let F A be a function of an operator A. If A is a linear operator, we can Taylor expand F A
in a power series of A:

F A
n 0

anA
n

(2.108)

where an is just an expansion coefficient. As an illustration of an operator function, consider

eaA, where a is a scalar which can be complex or real. We can expand it as follows:

eaA

n 0

an

n!
A
n

I aA
a2

2!
A
2 a3

3!
A
3

(2.109)

Commutators involving function operators

If A commutes with another operator B, then B commutes with any operator function that
depends on A:

[A B] 0 [B F A ] 0 (2.110)

in particular, F A commutes with A and with any other function, G A , of A:

[A F A ] 0 [A
n
F A ] 0 [F A G A ] 0 (2.111)

Hermitian adjoint of function operators

The adjoint of F A is given by

[F A ]† F A
†

(2.112)

Note that if A is Hermitian, F A is not necessarily Hermitian; F A will be Hermitian only if

F is a real function and A is Hermitian. An example is

eA † eA
†

ei A † e i A† ei A † e i A† (2.113)

where is a complex number. So if A is Hermitian, an operator function which can be ex-

panded as F A n 0 anA
n
will be Hermitian only if the expansion coefficients an are real

numbers. But in general, F A is not Hermitian even if A is Hermitian, since

F A
†

n 0

an A
† n (2.114)

Relations involving function operators

Note that

[A B] 0 [B F A ] 0 (2.115)

in particular, eAeB eA B . Using (2.109) we can ascertain that

eAeB eA Be[A B] 2 (2.116)

eABe A B [A B]
1

2!
[A [A B]]

1

3!
[A [A [A B]]] (2.117)



98 CHAPTER 2. MATHEMATICAL TOOLS OF QUANTUM MECHANICS

2.4.7 Inverse and Unitary Operators

Inverse of an operator: Assuming it exists3 the inverse A
1
of a linear operator A is defined

by the relation

A
1
A AA

1
I (2.118)

where I is the unit operator, the operator that leaves any state unchanged.

Quotient of two operators: Dividing an operator A by another operator B (provided that the
inverse B 1 exists) is equivalent to multiplying A by B 1:

A

B
AB 1 (2.119)

The side on which the quotient is taken matters:

A

B
A
I

B
AB 1 and

I

B
A B 1A (2.120)

In general, we have AB 1 B 1A. For an illustration of these ideas, see Problem 2.12. We
may mention here the following properties about the inverse of operators:

ABCD
1

D 1C 1B 1A
1

A
n 1

A
1 n

(2.121)

Unitary operators: A linear operator U is said to be unitary if its inverse U 1 is equal to its

adjoint U†:

U† U 1 or UU† U†U I (2.122)

The product of two unitary operators is also unitary, since

UV UV † UV V †U† U VV † U† UU† I (2.123)

or UV † UV 1. This result can be generalized to any number of operators; the product

of a number of unitary operators is also unitary, since

ABCD ABCD † ABCD D†C†B†A
†

ABC DD† C†B†A
†

AB CC† B†A
†

A BB† A
†

AA
†

I (2.124)

or ABCD † ABCD 1.

Example 2.10 (Unitary operator)

What conditions must the parameter and the operator G satisfy so that the operatorU ei G

is unitary?

3Not every operator has an inverse, just as in the case of matrices. The inverse of a matrix exists only when its

determinant is nonzero.
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Solution

Clearly, if is real and G is Hermitian, the operator ei G would be unitary. Using the property

[F A ]† F A
†
, we see that

ei G † e i G ei G 1 (2.125)

that is, U† U 1.

2.4.8 Eigenvalues and Eigenvectors of an Operator

Having studied the properties of operators and states, we are now ready to discuss how to find

the eigenvalues and eigenvectors of an operator.

A state vector is said to be an eigenvector (also called an eigenket or eigenstate) of an
operator A if the application of A to gives

A a (2.126)

where a is a complex number, called an eigenvalue of A. This equation is known as the eigen-
value equation, or eigenvalue problem, of the operator A. Its solutions yield the eigenvalues
and eigenvectors of A. In Section 2.5.3 we will see how to solve the eigenvalue problem in a
discrete basis.

A simple example is the eigenvalue problem for the unity operator I :

I (2.127)

This means that all vectors are eigenvectors of I with one eigenvalue, 1. Note that

A a An an and F A F a (2.128)

For instance, we have

A a ei A eia (2.129)

Example 2.11 (Eigenvalues of the inverse of an operator)

Show that if A
1
exists, the eigenvalues of A

1
are just the inverses of those of A.

Solution

Since A
1
A I we have on the one hand

A
1
A (2.130)

and on the other hand

A
1
A A

1
A aA

1
(2.131)

Combining the previous two equations, we obtain

aA
1

(2.132)
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hence

A
1 1

a
(2.133)

This means that is also an eigenvector of A
1
with eigenvalue 1 a. That is, if A

1
exists,

then

A a A
1 1

a
(2.134)

Some useful theorems pertaining to the eigenvalue problem

Theorem 2.1 For a Hermitian operator, all of its eigenvalues are real and the eigenvectors
corresponding to different eigenvalues are orthogonal.

If A
†

A A n an n an real number, and m n mn

(2.135)

Proof of Theorem 2.1

Note that

A n an n m A n an m n (2.136)

and

m A† am m m A† n am m n (2.137)

Subtracting (2.137) from (2.136) and using the fact that A is Hermitian, A A
†
, we have

an am m n 0 (2.138)

Two cases must be considered separately:

Case m n: since n n 0, we must have an an ; hence the eigenvalues an must
be real.

Case m n: since in general an am , we must have m n 0; that is, m and

n must be orthogonal.

Theorem 2.2 The eigenstates of a Hermitian operator define a complete set of mutually or-
thonormal basis states. The operator is diagonal in this eigenbasis with its diagonal elements
equal to the eigenvalues. This basis set is unique if the operator has no degenerate eigenvalues
and not unique (in fact it is infinite) if there is any degeneracy.

Theorem 2.3 If two Hermitian operators, A and B, commute and if A has no degenerate eigen-
value, then each eigenvector of A is also an eigenvector of B. In addition, we can construct a
common orthonormal basis that is made of the joint eigenvectors of A and B.

Proof of Theorem 2.3

Since A is Hermitian with no degenerate eigenvalue, to each eigenvalue of A there corresponds
only one eigenvector. Consider the equation

A n an n (2.139)
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Since A commutes with B we can write

BA n AB n or A B n an B n (2.140)

that is, B n is an eigenvector of A with eigenvalue an . But since this eigenvector is unique
(apart from an arbitrary phase constant), the ket n must also be an eigenvector of B:

B n bn n (2.141)

Since each eigenvector of A is also an eigenvector of B (and vice versa), both of these operators
must have a common basis. This basis is unique; it is made of the joint eigenvectors of A and
B. This theorem also holds for any number of mutually commuting Hermitian operators.
Now, if an is a degenerate eigenvalue, we can only say that B n is an eigenvector of

A with eigenvalue an; n is not necessarily an eigenvector of B. If one of the operators is
degenerate, there exist an infinite number of orthonormal basis sets that are common to these

two operators; that is, the joint basis does exist and it is not unique.

Theorem 2.4 The eigenvalues of an anti-Hermitian operator are either purely imaginary or
equal to zero.

Theorem 2.5 The eigenvalues of a unitary operator are complex numbers of moduli equal to
one; the eigenvectors of a unitary operator that has no degenerate eigenvalues are mutually
orthogonal.

Proof of Theorem 2.5

Let n and m be eigenvectors to the unitary operator U with eigenvalues an and am ,
respectively. We can write

m U† U n aman m n (2.142)

Since U†U I this equation can be rewritten as

aman 1 m n 0 (2.143)

which in turn leads to the following two cases:

Case n m: since n n 0 then anan an 2 1, and hence an 1.

Case n m: the only possibility for this case is that m and n are orthogonal,

m n 0.

2.4.9 Infinitesimal and Finite Unitary Transformations

We want to study here how quantities such as kets, bras, operators, and scalars transform under

unitary transformations. A unitary transformation is the application of a unitary operator U to
one of these quantities.
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2.4.9.1 Unitary Transformations

Kets and bras transform as follows:

U U† (2.144)

Let us now find out how operators transform under unitary transformations. Since the transform

of A is A , we can rewrite A as A U U

U A which, in turn, leads to A U U A. Multiplying both sides of A U U A byU† and

since UU† U†U I , we have

A U AU† A U†A U (2.145)

The results reached in (2.144) and (2.145) may be summarized as follows:

U U† A U AU† (2.146)

U† U A U†A U (2.147)

Properties of unitary transformations

If an operator A is Hermitian, its transformed A is also Hermitian, since

A † U AU† † U A
†
U† U AU† A (2.148)

The eigenvalues of A and those of its transformed A are the same:

A n an n A n an n (2.149)

since

A n U AU† U n U A U†U n

U A n an U n an n (2.150)

Commutators that are equal to (complex) numbers remain unchanged under unitary trans-

formations, since the transformation of [A B] a, where a is a complex number, is
given by

[A B ] [U AU† UBU†] U AU† UBU† UBU† U AU†

U [A B]U† UaU† aUU† a

[A B] (2.151)

We can also verify the following general relations:

A B C A B C (2.152)

A BCD A B C D (2.153)

where A , B , C , and D are the transforms of A, B, C , and D, respectively.
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Since the result (2.151) is valid for any complex number, we can state that complex

numbers, such as A , remain unchanged under unitary transformations, since

A U† U AU† U U†U A U†U A
(2.154)

Taking A I we see that scalar products of the type

(2.155)

are invariant under unitary transformations; notably, the norm of a state vector is con-

served:

(2.156)

We can also verify that UAU†
n

UA
n
U† since

UAU†
n

UAU† UAU† UAU† UA U†U A U†U U†U AU†

UA
n
U† (2.157)

We can generalize the previous result to obtain the transformation of any operator func-

tion f A :

U f A U† f U AU† f A (2.158)

or more generally

U f A B C U† f U AU† UBU† UCU† f A B C (2.159)

A unitary transformation does not change the physics of a system; it merely transforms one

description of the system to another physically equivalent description.

In what follows we want to consider two types of unitary transformations: infinitesimal

transformations and finite transformations.

2.4.9.2 Infinitesimal Unitary Transformations

Consider an operator U which depends on an infinitesimally small real parameter and which

varies only slightly from the unity operator I :

U G I i G (2.160)

where G is called the generator of the infinitesimal transformation. Clearly, U is a unitary

transformation only when the parameter is real and G is Hermitian, since

U U
†

I i G I i G† I i G G† I (2.161)

where we have neglected the quadratic terms in .

The transformation of a state vector is

I i G (2.162)
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where

i G (2.163)

The transformation of an operator A is given by

A I i G A I i G A i [G A] (2.164)

If G commutes with A, the unitary transformation will leave A unchanged, A A:

[G A] 0 A I i G A I i G A (2.165)

2.4.9.3 Finite Unitary Transformations

We can construct a finite unitary transformation from (2.160) by performing a succession of
infinitesimal transformations in steps of ; the application of a series of successive unitary

transformations is equivalent to the application of a single unitary transformation. Denoting

N , where N is an integer and is a finite parameter, we can apply the same unitary

transformation N times; in the limit N we obtain

U G lim
N

N

k 1

1 i
N
G lim

N
1 i

N
G

N
ei G (2.166)

where G is now the generator of the finite transformation and is its parameter.

As shown in (2.125), U is unitary only when the parameter is real and G is Hermitian,
since

ei G † e i G ei G 1 (2.167)

Using the commutation relation (2.117), we can write the transformation A of an operator A
as follows:

ei G Ae i G A i [G A]
i 2

2!
G [G A]

i 3

3!
G [G [G A]]

(2.168)

If G commutes with A, the unitary transformation will leave A unchanged, A A:

[G A] 0 A ei G Ae i G A (2.169)

In Chapter 3, we will consider some important applications of infinitesimal unitary transfor-

mations to study time translations, space translations, space rotations, and conservation laws.

2.5 Representation in Discrete Bases

By analogy with the expansion of Euclidean space vectors in terms of the basis vectors, we need

to express any ket of the Hilbert space in terms of a complete set of mutually orthonormal

base kets. State vectors are then represented by their components in this basis.
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2.5.1 Matrix Representation of Kets, Bras, and Operators

Consider a discrete, complete, and orthonormal basis which is made of an infinite4 set of kets

1 , 2 , 3 , , n and denote it by n . Note that the basis n is discrete, yet

it has an infinite number of unit vectors. In the limit n , the ordering index n of the unit
vectors n is discrete or countable; that is, the sequence 1 , 2 , 3 , is countably

infinite. As an illustration, consider the special functions, such as the Hermite, Legendre, or

Laguerre polynomials, Hn x , Pn x , and Ln x . These polynomials are identified by a discrete
index n and by a continuous variable x ; although n varies discretely, it can be infinite.
In Section 2.6, we will consider bases that have a continuous and infinite number of base

vectors; in these bases the index n increases continuously. Thus, each basis has a continuum of
base vectors.

In this section the notation n will be used to abbreviate an infinitely countable set of

vectors (i.e., 1 , 2 , 3 , ) of the Hilbert space H. The orthonormality condition of

the base kets is expressed by

n m nm (2.170)

where nm is the Kronecker delta symbol defined by

nm
1 n m
0 n m

(2.171)

The completeness, or closure, relation for this basis is given by

n 1

n n I (2.172)

where I is the unit operator; when the unit operator acts on any ket, it leaves the ket unchanged.

2.5.1.1 Matrix Representation of Kets and Bras

Let us now examine how to represent the vector within the context of the basis n .

The completeness property of this basis enables us to expand any state vector in terms of

the base kets n :

I
n 1

n n
n 1

an n (2.173)

where the coefficient an , which is equal to n , represents the projection of onto n ;

an is the component of along the vector n . Recall that the coefficients an are complex
numbers. So, within the basis n , the ket is represented by the set of its components,

a1, a2, a3, along 1 , 2 , 3 , , respectively. Hence can be represented by a

column vector which has a countably infinite number of components:

1

2

n

a1
a2

an

(2.174)

4Kets are elements of the Hilbert space, and the dimension of a Hilbert space is infinite.
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The bra can be represented by a row vector:

1 2 n

1 2 n

a1 a2 an (2.175)

Using this representation, we see that a bra-ket is a complex number equal to the matrix

product of the row matrix corresponding to the bra with the column matrix corresponding

to the ket :

a1 a2 an

b1
b2

bn n

anbn (2.176)

where bn n . We see that, within this representation, the matrices representing

and are Hermitian adjoints of each other.

Remark

A ket is normalized if n an
2 1. If is not normalized and we want

to normalized it, we need simply to multiply it by a constant so that 2

1, and hence 1 .

Example 2.12

Consider the following two kets:

5i
2

i

3

8i
9i

(a) Find and .

(b) Is normalized? If not, normalize it.

(c) Are and orthogonal?

Solution

(a) The expressions of and are given by

5i
2

i
5i 2 i (2.177)

where we have used the fact that is equal to the complex conjugate of the transpose of the

ket . Hence, we should reiterate the important fact that .

(b) The norm of is given by

5i 2 i
5i
2

i
5i 5i 2 2 i i 30 (2.178)
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Thus, is not normalized. By multiplying it with 1 30, it becomes normalized:

1

30

1

30

5i
2

i
1 (2.179)

(c) The kets and are not orthogonal since their scalar product is not zero:

5i 2 i
3

8i
9i

5i 3 2 8i i 9i 9 i (2.180)

2.5.1.2 Matrix Representation of Operators

For each linear operator A, we can write

A I AI
n 1

n n A
m 1

m m
nm

Anm n m (2.181)

where Anm is the nm matrix element of the operator A:

Anm n A m (2.182)

We see that the operator A is represented, within the basis n , by a square matrix A (A
without a hat designates a matrix), which has a countably infinite number of columns and a

countably infinite number of rows:

A

A11 A12 A13
A21 A22 A23
A31 A32 A33 (2.183)

For instance, the unit operator I is represented by the unit matrix; when the unit matrix is
multiplied with another matrix, it leaves that unchanged:

I

1 0 0

0 1 0

0 0 1 (2.184)

In summary, kets are represented by column vectors, bras by row vectors, and operators by
square matrices.
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2.5.1.3 Matrix Representation of Some Other Operators

(a) Hermitian adjoint operation

Let us now look at the matrix representation of the Hermitian adjoint operation of an operator.

First, recall that the transpose of a matrix A, denoted by AT , is obtained by interchanging the
rows with the columns:

AT nm Amn or

A11 A12 A13
A21 A22 A23
A31 A32 A33

T
A11 A21 A31
A12 A22 A32
A13 A23 A33

(2.185)

Similarly, the transpose of a column matrix is a row matrix, and the transpose of a row matrix

is a column matrix:

a1
a2

an

T

a1 a2 an and a1 a2 an
T

a1
a2

an

(2.186)

So a square matrix A is symmetric if it is equal to its transpose, AT A. A skew-symmetric
matrix is a square matrix whose transpose equals the negative of the matrix, AT A.
The complex conjugate of a matrix is obtained by simply taking the complex conjugate of

all its elements: A nm Anm .

The matrix which represents the operator A
†
is obtained by taking the complex conjugate

of the matrix transpose of A:

A† AT or A
†
nm n A

†
m m A n Amn (2.187)

that is,

A11 A12 A13
A21 A22 A23
A31 A32 A33

†
A11 A21 A31
A12 A22 A32
A13 A23 A33

(2.188)

If an operator A is Hermitian, its matrix satisfies this condition:

AT A or Amn Anm (2.189)

The diagonal elements of a Hermitian matrix therefore must be real numbers. Note that a
Hermitian matrix must be square.

(b) Inverse and unitary operators

A matrix has an inverse only if it is square and its determinant is nonzero; a matrix that has

an inverse is called a nonsingular matrix and a matrix that has no inverse is called a singular



2.5. REPRESENTATION IN DISCRETE BASES 109

matrix. The elements A 1
nm of the inverse matrix A

1, representing an operator A
1
, are given

by the relation

A 1
nm

cofactor of Amn
determinant of A

or A 1 BT

determinant of A
(2.190)

where B is the matrix of cofactors (also called the minor); the cofactor of element Amn is equal
to 1 m n times the determinant of the submatrix obtained from A by removing the mth row
and the nth column. Note that when the matrix, representing an operator, has a determinant
equal to zero, this operator does not possess an inverse. Note that A 1A AA 1 I where I
is the unit matrix.

The inverse of a product of matrices is obtained as follows:

ABC PQ 1 Q 1P 1 C 1B 1A 1 (2.191)

The inverse of the inverse of a matrix is equal to the matrix itself, A 1 1
A.

A unitary operator U is represented by a unitary matrix. A matrix U is said to be unitary if
its inverse is equal to its adjoint:

U 1 U† or U†U I (2.192)

where I is the unit matrix.

Example 2.13 (Inverse of a matrix)

Calculate the inverse of the matrix A
2 i 0

3 1 5

0 i 2

. Is this matrix unitary?

Solution

Since the determinant of A is det A 4 16i , we have A 1 BT 4 16i , where the
elements of the cofactor matrix B are given by Bnm 1 n m times the determinant of the

submatrix obtained from A by removing the nth row and the mth column. In this way, we have

B11 1 1 1 A22 A23
A32 A33

1 2
1 5

i 2
2 5i (2.193)

B12 1 1 2 A21 A23
A31 A33

1 3
3 5

0 2
6 (2.194)

B13 1 1 3 A21 A22
A31 A32

1 4
3 1

0 i
3i (2.195)

B21 1 3
i 0

i 2
2i B22 1 4

2 0

0 2
4 (2.196)

B23 1 5
2 i
0 i

2i B31 1 4
i 0

1 5
5i (2.197)

B32 1 5
2 0

3 5
10 B33 1 6

2 i
3 1

2 3i (2.198)
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and hence

B
2 5i 6 3i
2i 4 2i
5i 10 2 3i

(2.199)

Taking the transpose of B, we obtain

A 1 1

4 16i
BT

1 4i

68

2 5i 2i 5i
6 4 10

3i 2i 2 3i

1

68

22 3i 8 2i 20 5i
6 24i 4 16i 10 40i
12 3i 8 2i 14 5i

(2.200)

Clearly, this matrix is not unitary since its inverse is not equal to its Hermitian adjoint:

A 1 A†.

(c) Matrix representation of

It is now easy to see that the product is indeed an operator, since its representation

within n is a square matrix:

a1
a2
a3 a1 a2 a3

a1a1 a1a2 a1a3
a2a1 a2a2 a2a3
a3a1 a3a2 a3a3

(2.201)

(d) Trace of an operator

The trace Tr A of an operator A is given, within an orthonormal basis n , by the expression

Tr A
n

n A n
n

Ann (2.202)

we will see later that the trace of an operator does not depend on the basis. The trace of a matrix

is equal to the sum of its diagonal elements:

Tr

A11 A12 A13
A21 A22 A23
A31 A32 A33 A11 A22 A33 (2.203)

Properties of the trace

We can ascertain that

Tr A
†

Tr A (2.204)

Tr A B C Tr A Tr B Tr C (2.205)

and the trace of a product of operators is invariant under the cyclic permutations of these oper-

ators:

Tr ABCDE Tr E ABCD Tr DEABC Tr CDEAB (2.206)
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Example 2.14

(a) Show that Tr AB Tr BA .
(b) Show that the trace of a commutator is always zero.

(c) Illustrate the results shown in (a) and (b) on the following matrices:

A
8 2i 4i 0

1 0 1 i
8 i 6i

B
i 2 1 i
6 1 i 3i
1 5 7i 0

Solution

(a) Using the definition of the trace,

Tr AB
n

n AB n (2.207)

and inserting the unit operator between A and B we have

Tr AB
n

n A
m

m m B n
nm

n A m m B n

nm

AnmBmn (2.208)

On the other hand, since Tr AB n n AB n , we have

Tr BA
m

m B
n

n n A m
m

m B n n A m

nm

BmnAnm (2.209)

Comparing (2.208) and (2.209), we see that Tr AB Tr BA .
(b) Since Tr AB Tr BA we can infer at once that the trace of any commutator is always

zero:

Tr [A B] Tr AB Tr BA 0 (2.210)

(c) Let us verify that the traces of the products AB and BA are equal. Since

AB
2 16i 12 6 10i
1 2i 14 2i 1 i
20i 59 31i 11 8i

BA
8 5 i 8 4i

49 35i 3 24i 16

13 5i 4i 12 2i
(2.211)

we have

Tr AB Tr

2 16i 12 6 10i
1 2i 14 2i 1 i
20i 59 31i 11 8i

1 26i (2.212)

Tr BA Tr

8 5 i 8 4i
49 35i 3 24i 16

13 5i 4i 12 2i
1 26i Tr AB (2.213)

This leads to Tr AB Tr BA 1 26i 1 26i 0 or Tr [A B] 0.
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2.5.1.4 Matrix Representation of Several Other Quantities

(a) Matrix representation of A
The relation A can be cast into the algebraic form I I AI or

n
n n

n
n n A

m
m m (2.214)

which in turn can be written as

n

bn n
nm

am n n A m
nm

am Anm n (2.215)

where bn n , Anm n A m , and am m . It is easy to see that (2.215)

yields bn m Anmam ; hence the matrix representation of A is given by

b1
b2
b3

A11 A12 A13
A21 A22 A23
A31 A32 A33

a1
a2
a3 (2.216)

(b) Matrix representation of A
As for A we have

A I AI
n 1

n n A
m 1

m m

nm
n n A m m

nm

bnAnmam (2.217)

This is a complex number; its matrix representation goes as follows:

A b1 b2 b3

A11 A12 A13
A21 A22 A23
A31 A32 A33

a1
a2
a3 (2.218)

Remark

It is now easy to see explicitly why products of the type , , A , or A
are forbidden. They cannot have matrix representations; they are nonsensical. For instance,

is represented by the product of two column matrices:

1

2

1

2 (2.219)

This product is clearly not possible to perform, for the product of two matrices is possible only

when the number of columns of the first is equal to the number of rows of the second; in (2.219)

the first matrix has one single column and the second an infinite number of rows.
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2.5.1.5 Properties of a Matrix A

Real if A A or Amn Amn

Imaginary if A A or Amn Amn

Symmetric if A AT or Amn Anm

Antisymmetric if A AT or Amn Anm with Amm 0

Hermitian if A A† or Amn Anm

Anti-Hermitian if A A† or Amn Anm

Orthogonal if AT A 1 or AAT I or AAT mn mn

Unitary if A† A 1 or AA† I or AA† mn mn

Example 2.15

Consider a matrix A (which represents an operator A), a ket , and a bra :

A
5 3 2i 3i
i 3i 8

1 i 1 4

1 i
3

2 3i
6 i 5

(a) Calculate the quantities A , A, A , and .

(b) Find the complex conjugate, the transpose, and the Hermitian conjugate of A, , and

.

(c) Calculate and ; are they equal? Comment on the differences between the

complex conjugate, Hermitian conjugate, and transpose of kets and bras.

Solution

(a) The calculations are straightforward:

A
5 3 2i 3i
i 3i 8

1 i 1 4

1 i
3

2 3i

5 17i
17 34i
11 14i

(2.220)

A 6 i 5

5 3 2i 3i
i 3i 8

1 i 1 4

34 5i 26 12i 20 10i

(2.221)

A 6 i 5

5 3 2i 3i
i 3i 8

1 i 1 4

1 i
3

2 3i
59 155i (2.222)

1 i
3

2 3i
6 i 5

6 6i 1 i 5 5i
18 3i 15

12 18i 3 2i 10 15i
(2.223)



114 CHAPTER 2. MATHEMATICAL TOOLS OF QUANTUM MECHANICS

(b) To obtain the complex conjugate of A, , and , we need simply to take the

complex conjugate of their elements:

A
5 3 2i 3i
i 3i 8

1 i 1 4

1 i
3

2 3i
6 i 5

(2.224)

For the transpose of A, , and , we simply interchange columns with rows:

AT
5 i 1 i

3 2i 3i 1

3i 8 4

T 1 i 3 2 3i T
6

i
5
(2.225)

The Hermitian conjugate can be obtained by taking the complex conjugates of the transpose

expressions calculated above: A† AT , † T , † T :

A†
5 i 1 i

3 2i 3i 1

3i 8 4

1 i 3 2 3i
6

i
5
(2.226)

(c) Using the kets and bras above, we can easily calculate the needed scalar products:

6 i 5

1 i
3

2 3i
6 1 i i 3 5 2 3i 4 18i (2.227)

1 i 3 2 3i
6

i
5

6 1 i i 3 5 2 3i 4 18i (2.228)

We see that and are not equal; they are complex conjugates of each other:

4 18i (2.229)

Remark

We should underscore the importance of the differences between , T , and †. Most

notably, we should note (from equations (2.224)–(2.226)) that is a ket, while T and
† are bras. Additionally, we should note that is a bra, while T and † are kets.

2.5.2 Change of Bases and Unitary Transformations

In a Euclidean space, a vector A may be represented by its components in different coordinate
systems or in different bases. The transformation from one basis to the other is called a change

of basis. The components of A in a given basis can be expressed in terms of the components of
A in another basis by means of a transformation matrix.
Similarly, state vectors and operators of quantum mechanics may also be represented in

different bases. In this section we are going to study how to transform from one basis to

another. That is, knowing the components of kets, bras, and operators in a basis n , how
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does one determine the corresponding components in a different basis n ? Assuming that

n and n are two different bases, we can expand each ket n of the old basis in

terms of the new basis n as follows:

n
m

m m n
m

Umn m (2.230)

where

Umn m n (2.231)

The matrix U , providing the transformation from the old basis n to the new basis n ,

is given by

U
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

(2.232)

Example 2.16 (Unitarity of the transformation matrix)

Let U be a transformation matrix which connects two complete and orthonormal bases n

and n . Show that U is unitary.

Solution

For this we need to prove that UU† I , which reduces to showing that m UU† n

mn . This goes as follows:

m UU† n m U
l

l l U† n
l

UmlUnl (2.233)

where Uml m U l and Unl l U† n n U l . According to

(2.231), Uml m l and Unl l n ; we can thus rewrite (2.233) as

l

UmlUnl
l

m l l n m n mn (2.234)

Combining (2.233) and (2.234), we infer m UU† n mn , or UU† I .

2.5.2.1 Transformations of Kets, Bras, and Operators

The components n of a state vector in a new basis n can be expressed in terms

of the components n of in an old basis n as follows:

m m I m
n

n n
n

Umn n (2.235)

This relation, along with its complex conjugate, can be generalized into

ne U old ne old U† (2.236)
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Let us now examine how operators transform when we change from one basis to another. The

matrix elements Amn m A n of an operator A in the new basis can be expressed in

terms of the old matrix elements, A jl j A l , as follows:

Amn m
j

j j A
l

l l n
jl

Umj A jlUnl (2.237)

that is,

Ane U AoldU
† or Aold U†Ane U (2.238)

We may summarize the results of the change of basis in the following relations:

ne U old ne old U† Ane U AoldU
† (2.239)

or

old U† ne old ne U Aold U†Ane U (2.240)

These relations are similar to the ones we derived when we studied unitary transformations; see

(2.146) and (2.147).

Example 2.17

Show that the operator U n n n satisfies all the properties discussed above.

Solution

First, note that U is unitary:

UU†

nl
n n l l

nl
n l nl

n
n n I (2.241)

Second, the action ofU on a ket of the old basis gives the corresponding ket from the new basis:

U m
n

n n m
n

n nm m (2.242)

We can also verify that the actionU† on a ket of the new basis gives the corresponding ket from
the old basis:

U† m
l

l l m
l

l lm m (2.243)

How does a trace transform under unitary transformations? Using the cyclic property of the

trace, Tr ABC Tr CAB Tr BCA , we can ascertain that

Tr A Tr U AU† Tr U†U A Tr A (2.244)
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Tr n m
l

l n m l
l

m l l n

m
l

l l n m n mn (2.245)

Tr m n n m (2.246)

Example 2.18 (The trace is base independent)

Show that the trace of an operator does not depend on the basis in which it is expressed.

Solution

Let us show that the trace of an operator A in a basis n is equal to its trace in another basis

n . First, the trace of A in the basis n is given by

Tr A
n

n A n (2.247)

and in n by

Tr A
n

n A n (2.248)

Starting from (2.247) and using the completeness of the other basis, n , we have

Tr A
n

n A n
n

n
m

m m A n

nm
n m m A n (2.249)

All we need to do now is simply to interchange the positions of the numbers (scalars) n m

and m A n :

Tr A
m

m A
n

n n m
m

m A m (2.250)

From (2.249) and (2.250) we see that

Tr A
n

n A n
n

n A n (2.251)

2.5.3 Matrix Representation of the Eigenvalue Problem

At issue here is to work out the matrix representation of the eigenvalue problem (2.126) and

then solve it. That is, we want to find the eigenvalues a and the eigenvectors of an operator

A such that
A a (2.252)
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where a is a complex number. Inserting the unit operator between A and and multiplying

by m , we can cast the eigenvalue equation in the form

m A
n

n n a m
n

n n (2.253)

or

n

Amn n a
n

n nm (2.254)

which can be rewritten as

n

[Amn a nm] n 0 (2.255)

with Amn m A n .

This equation represents an infinite, homogeneous system of equations for the coefficients

n , since the basis n is made of an infinite number of base kets. This system of

equations can have nonzero solutions only if its determinant vanishes:

det Amn a nm 0 (2.256)

The problem that arises here is that this determinant corresponds to a matrix with an infinite

number of columns and rows. To solve (2.256) we need to truncate the basis n and assume

that it contains only N terms, where N must be large enough to guarantee convergence. In this
case we can reduce (2.256) to the following N th degree determinant:

A11 a A12 A13 A1N
A21 A22 a A23 A2N
A31 A32 A33 a A3N

AN1 AN2 AN3 ANN a

0 (2.257)

This is known as the secular or characteristic equation. The solutions of this equation yield
the N eigenvalues a1, a2, a3, , aN , since it is an N th order equation in a. The set of these
N eigenvalues is called the spectrum of A. Knowing the set of eigenvalues a1, a2, a3, , aN ,
we can easily determine the corresponding set of eigenvectors 1 , 2 , , N . For

each eigenvalue am of A, we can obtain from the “secular” equation (2.257) the N components

1 , 2 , 3 , , N of the corresponding eigenvector m .

If a number of different eigenvectors (two or more) have the same eigenvalue, this eigen-

value is said to be degenerate. The order of degeneracy is determined by the number of linearly
independent eigenvectors that have the same eigenvalue. For instance, if an eigenvalue has five

different eigenvectors, it is said to be fivefold degenerate.

In the case where the set of eigenvectors n of A is complete and orthonormal, this set
can be used as a basis. In this basis the matrix representing the operator A is diagonal,

A

a1 0 0

0 a2 0

0 0 a3 (2.258)
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the diagonal elements being the eigenvalues an of A, since

m A n an m n an mn (2.259)

Note that the trace and determinant of a matrix are given, respectively, by the sum and product

of the eigenvalues:

Tr A
n

an a1 a2 a3 (2.260)

det A
n

an a1a2a3 (2.261)

Properties of determinants

Let us mention several useful properties that pertain to determinants. The determinant of a

product of matrices is equal to the product of their determinants:

det ABCD det A det B det C det D (2.262)

det A det A det A† det A (2.263)

det AT det A det A eTr ln A (2.264)

Some theorems pertaining to the eigenvalue problem

Here is a list of useful theorems (the proofs are left as exercises):

The eigenvalues of a symmetric matrix are real; the eigenvectors form an orthonormal

basis.

The eigenvalues of an antisymmetric matrix are purely imaginary or zero.

The eigenvalues of a Hermitian matrix are real; the eigenvectors form an orthonormal

basis.

The eigenvalues of a skew-Hermitian matrix are purely imaginary or zero.

The eigenvalues of a unitary matrix have absolute value equal to one.

If the eigenvalues of a square matrix are not degenerate (distinct), the corresponding

eigenvectors form a basis (i.e., they form a linearly independent set).

Example 2.19 (Eigenvalues and eigenvectors of a matrix)

Find the eigenvalues and the normalized eigenvectors of the matrix

A
7 0 0

0 1 i
0 i 1
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Solution

To find the eigenvalues of A, we simply need to solve the secular equation det A aI 0:

0

7 a 0 0

0 1 a i
0 i 1 a

7 a 1 a 1 a i2 7 a a2 2

(2.265)

The eigenvalues of A are thus given by

a1 7 a2 2 a3 2 (2.266)

Let us now calculate the eigenvectors of A. To find the eigenvector corresponding to the first
eigenvalue, a1 7, we need to solve the matrix equation

7 0 0

0 1 i
0 i 1

x
y
z

7

x
y
z

7x 7x
y iz 7y
iy z 7z

(2.267)

this yields x 1 (because the eigenvector is normalized) and y z 0. So the eigenvector

corresponding to a1 7 is given by the column matrix

a1

1

0

0

(2.268)

This eigenvector is normalized since a1 a1 1.

The eigenvector corresponding to the second eigenvalue, a2 2, can be obtained from

the matrix equation

7 0 0

0 1 i
0 i 1

x
y
z

2

x
y
z

7 2 x 0

1 2 y i z 0

iy 1 2 z 0

(2.269)

this yields x 0 and z i 2 1 y. So the eigenvector corresponding to a2 2 is given

by the column matrix

a2

0

y
i 2 1 y

(2.270)

The value of the variable y can be obtained from the normalization condition of a2 :

1 a2 a2 0 y i 2 1 y
0

y
i 2 1 y

2 2 2 y 2

(2.271)

Taking only the positive value of y (a similar calculation can be performed easily if one is

interested in the negative value of y), we have y 1 2 2 2 ; hence the eigenvector

(2.270) becomes

a2

0
1

2 2 2

i 2 1

2 2 2

(2.272)
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Following the same procedure that led to (2.272), we can show that the third eigenvector is

given by

a3

0

y
i 1 2 y

(2.273)

its normalization leads to y 1 2 2 2 (we have considered only the positive value of

y); hence

a3

0
1

2 2 2

i 1 2

2 2 2

(2.274)

2.6 Representation in Continuous Bases

In this section we are going to consider the representation of state vectors, bras, and operators

in continuous bases. After presenting the general formalism, we will consider two important
applications: representations in the position and momentum spaces.
In the previous section we saw that the representations of kets, bras, and operators in a

discrete basis are given by discrete matrices. We will show here that these quantities are repre-

sented in a continuous basis by continuous matrices, that is, by noncountable infinite matrices.

2.6.1 General Treatment

The orthonormality condition of the base kets of the continuous basis k is expressed not by

the usual discrete Kronecker delta as in (2.170) but by Dirac’s continuous delta function:

k k k k (2.275)

where k and k are continuous parameters and where k k is the Dirac delta function (see
Appendix A), which is defined by

x
1

2
eikxdk (2.276)

As for the completeness condition of this continuous basis, it is not given by a discrete sum as

in (2.172), but by an integral over the continuous variable

dk k k I (2.277)

where I is the unit operator.
Every state vector can be expanded in terms of the complete set of basis kets k :

I dk k k dk b k k (2.278)
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where b k , which is equal to k , represents the projection of on k .

The norm of the discrete base kets is finite ( n n 1), but the norm of the continuous

base kets is infinite; a combination of (2.275) and (2.276) leads to

k k 0
1

2
dk (2.279)

This implies that the kets k are not square integrable and hence are not elements of the

Hilbert space; recall that the space spanned by square-integrable functions is a Hilbert space.

Despite the divergence of the norm of k , the set k does constitute a valid basis of vectors

that span the Hilbert space, since for any state vector , the scalar product k is finite.

The Dirac delta function

Before dealing with the representation of kets, bras, and operators, let us make a short detour

to list some of the most important properties of the Dirac delta function (for a more detailed

presentation, see Appendix A):

x 0 for x 0 (2.280)

b

a
f x x x0 dx

f x0 if a x0 b
0 elsewhere

(2.281)

f x
dn x a

dxn
dx 1 n

dn f x

dxn x a
(2.282)

r r x x y y z z
1

r2 sin
r r (2.283)

Representation of kets, bras, and operators

The representation of kets, bras, and operators can be easily inferred from the study that was

carried out in the previous section, for the case of a discrete basis. For instance, the ket

is represented by a single column matrix which has a continuous (noncountable) and infinite

number of components (rows) b k :

k (2.284)

The bra is represented by a single row matrix which has a continuous (noncountable)

and infinite number of components (columns):

k (2.285)

Operators are represented by square continuous matrices whose rows and columns have

continuous and infinite numbers of components:

A
A k k

(2.286)

As an application, we are going to consider the representations in the position and momentum

bases.
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2.6.2 Position Representation

In the position representation, the basis consists of an infinite set of vectors r which are

eigenkets to the position operator R:

R r r r (2.287)

where r (without a hat), the position vector, is the eigenvalue of the operator R. The orthonor-
mality and completeness conditions are respectively given by

r r r r x x y y z z (2.288)

d3 r r r I (2.289)

since, as discussed in Appendix A, the three-dimensional delta function is given by

r r
1

2 3
d3k eik r r (2.290)

So every state vector can be expanded as follows:

d3 r r r d3r r r (2.291)

where r denotes the components of in the r basis:

r r (2.292)

This is known as the wave function for the state vector . Recall that, according to the

probabilistic interpretation of Born, the quantity r 2 d3r represents the probability of
finding the system in the volume element d3r .
The scalar product between two state vectors, and , can be expressed in this form:

d3r r r d3r r r (2.293)

Since R r r r we have

r R n r r n r r (2.294)

Note that the operator R is Hermitian, since

R d3r r r r d3r r r r

R (2.295)
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2.6.3 Momentum Representation

The basis p of the momentum representation is obtained from the eigenkets of the momen-

tum operator P:

P p p p (2.296)

where p is the momentum vector. The algebra relevant to this representation can be easily
inferred from the position representation. The orthonormality and completeness conditions of

the momentum space basis p are given by

p p p p and d3p p p I (2.297)

Expanding in this basis, we obtain

d3 p p p d3 p p p (2.298)

where the expansion coefficient p represents the momentum space wave function. The
quantity p 2 d3 p is the probability of finding the system’s momentum in the volume
element d3 p located between p and p d p.
By analogy with (2.293) the scalar product between two states is given in the momentum

space by

d3 p p p d3 p p p (2.299)

Since P p p p we have

p P n p p n p p (2.300)

2.6.4 Connecting the Position and Momentum Representations

Let us now study how to establish a connection between the position and the momentum rep-

resentations. By analogy with the foregoing study, when changing from the r basis to the

p basis, we encounter the transformation function r p .
To find the expression for the transformation function r p , let us establish a connection

between the position and momentum representations of the state vector :

r r d3 p p p d3 p r p p (2.301)

that is,

r d3 p r p p (2.302)

Similarly, we can write

p p p d3r r r d3r p r r (2.303)
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The last two relations imply that r and p are to be viewed as Fourier transforms of each
other. In quantum mechanics the Fourier transform of a function f r is given by

f r
1

2 h 3 2
d3 p ei p r hg p (2.304)

notice the presence of Planck’s constant. Hence the function r p is given by

r p
1

2 h 3 2
ei p r h (2.305)

This function transforms from the momentum to the position representation. The function

corresponding to the inverse transformation, p r , is given by

p r r p
1

2 h 3 2
e i p r h (2.306)

The quantity r p 2 represents the probability density of finding the particle in a region

around r where its momentum is equal to p.

Remark

If the position wave function

r
1

2 h 3 2
d3 p ei p r h p (2.307)

is normalized (i.e., d3r r r 1), its Fourier transform

p
1

2 h 3 2
d3r e i p r h r (2.308)

must also be normalized, since

d3 p p p d3 p p
1

2 h 3 2
d3r e i p r h r

d3r r
1

2 h 3 2
d3 p p e i p r h

d3r r r

1 (2.309)

This result is known as Parseval’s theorem.

2.6.4.1 Momentum Operator in the Position Representation

To determine the form of the momentum operator P in the position representation, let us cal-

culate r P :

r P r P p p d3 p p r p p d3 p

1

2 h 3 2
p ei p r h p d3 p (2.310)
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where we have used the relation p p d3 p I along with Eq. (2.305). Now, since

p ei p r h ih ei p r h , and using Eq. (2.305) again, we can rewrite (2.310) as

r P ih
1

2 h 3 2
ei p r h p d3 p

ih r p p d3 p

ih r (2.311)

Thus, P is given in the position representation by

P ih (2.312)

Its Cartesian components are

Px ih
x

Py ih
y

Pz ih
z

(2.313)

Note that the form of the momentum operator (2.312) can be derived by simply applying the

gradient operator on a plane wave function r t Aei p r Et h :

ih r t p r t P r t (2.314)

It is easy to verify that P is Hermitian (see equation (2.378)).

Now, since P ih , we can write the Hamiltonian operator H P 2 2m V in the
position representation as follows:

H
h2

2m
2 V r

h2

2m

2

x2

2

y2

2

z2
V r (2.315)

where 2 is the Laplacian operator; it is given in Cartesian coordinates by 2 2 x2
2 y2 2 z2.

2.6.4.2 Position Operator in the Momentum Representation

The form of the position operator R in the momentum representation can be easily inferred

from the representation of P in the position space. In momentum space the position operator
can be written as follows:

R j ih
p j

j x y z (2.316)

or

X ih
px

Y ih
py

Z ih
pz

(2.317)
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2.6.4.3 Important Commutation Relations

Let us now calculate the commutator [R j Pk] in the position representation. As the separate

actions of X Px and Px X on the wave function r are given by

X Px r ihx
r

x
(2.318)

Px X r ih
x
x r ih r ihx

r

x
(2.319)

we have

[X Px ] r X Px r Px X r ihx
r

x
ih r ihx

r

x
ih r (2.320)

or

[X Px ] ih (2.321)

Similar relations can be derived at once for the y and the z components:

[X Px ] ih [Y PY ] ih [Z PZ ] ih (2.322)

We can verify that

[X Py] [X Pz] [Y Px ] [Y Pz] [Z Px ] [Z Py] 0 (2.323)

since the x , y, z degrees of freedom are independent; the previous two relations can be grouped
into

[R j Pk] ih jk [R j Rk] 0 [Pj Pk] 0 j k x y z (2.324)

These relations are often called the canonical commutation relations.
Now, from (2.321) we can show that (for the proof see Problem 2.8 on page 139)

[Xn Px ] ihnXn 1 [X Pnx ] ihnPn 1
x (2.325)

Following the same procedure that led to (2.320), we can obtain a more general commutation

relation of Px with an arbitrary function f X :

[ f X Px ] ih
d f X

dX
P F R ih F R (2.326)

where F is a function of the operator R.
The explicit form of operators thus depends on the representation adopted. We have seen,

however, that the commutation relations for operators are representation independent. In par-
ticular, the commutator [R j Pk] is given by ih jk in the position and the momentum represen-

tations; see the next example.
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Example 2.20 (Commutators are representation independent)

Calculate the commutator [X P] in the momentum representation and verify that it is equal to
ih.

Solution

As the operator X is given in the momentum representation by X ih p, we have

[X P] p X P p PX p ih
p
p p ih p

p

p

ih p ih p
p

p
ih p

p

p
ih p (2.327)

Thus, the commutator [X P] is given in the momentum representation by

[X P] ih
p
P ih (2.328)

The commutator [X P] was also shown to be equal to ih in the position representation (see
equation (2.321):

[X P] X ih
px

ih (2.329)

2.6.5 Parity Operator

The space reflection about the origin of the coordinate system is called an inversion or a parity
operation. This transformation is discrete. The parity operator P is defined by its action on the
kets r of the position space:

P r r r P† r (2.330)

such that

P r r (2.331)

The parity operator is Hermitian, P† P , since

d3r r P r d3r r r d3r r r

d3r P r r (2.332)

From the definition (2.331), we have

P2 r P r r (2.333)

hence P2 is equal to the unity operator:

P2 I or P P 1 (2.334)
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The parity operator is therefore unitary, since its Hermitian adjoint is equal to its inverse:

P† P 1 (2.335)

Now, since P2 I , the eigenvalues of P are 1 or 1 with the corresponding eigenstates

P r r r P r r r (2.336)

The eigenstate is said to be even and is odd. Therefore, the eigenfunctions of the
parity operator have definite parity: they are either even or odd.
Since and are joint eigenstates of the same Hermitian operator P but with

different eigenvalues, these eigenstates must be orthogonal:

d3r r r d3r r r (2.337)

hence is zero. The states and form a complete set since any function

can be written as r r r , which leads to

r
1

2
r r r

1

2
r r (2.338)

Since P2 I we have

Pn
P when n is odd
I when n is even

(2.339)

Even and odd operators

An operator A is said to be even if it obeys the condition

PAP A (2.340)

and an operator B is odd if
PBP B (2.341)

We can easily verify that even operators commute with the parity operator P and that odd

operators anticommute with P:

AP PAP P PAP2 PA (2.342)

BP PBP P PBP2 PB (2.343)

The fact that even operators commute with the parity operator has very useful consequences.

Let us examine the following two important cases depending on whether an even operator has

nondegenerate or degenerate eigenvalues:

If an even operator is Hermitian and none of its eigenvalues is degenerate, then this oper-

ator has the same eigenvectors as those of the parity operator. And since the eigenvectors

of the parity operator are either even or odd, the eigenvectors of an even, Hermitian, and

nondegenerate operator must also be either even or odd; they are said to have a defi-
nite parity. This property will have useful applications when we solve the Schrödinger
equation for even Hamiltonians.
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If the even operator has a degenerate spectrum, its eigenvectors do not necessarily have a

definite parity.

What about the parity of the position and momentum operators, R and P? We can easily show
that both of them are odd, since they anticommute with the parity operator:

PR RP PP PP (2.344)

hence

PRP† R PPP† P (2.345)

since PP† 1. For instance, to show that R anticommutes with P , we need simply to look at
the following relations:

PR r rP r r r (2.346)

RP r R r r r (2.347)

If the operators A and B are even and odd, respectively, we can verify that

PA
n
P A

n
PBnP 1 nBn (2.348)

These relations can be shown as follows:

PA
n
P PAP PAP PAP A

n
(2.349)

PBnP PBP PBP PBP 1 nBn (2.350)

2.7 Matrix and Wave Mechanics

In this chapter we have so far worked out the mathematics pertaining to quantum mechanics in

two different representations: discrete basis systems and continuous basis systems. The theory
of quantum mechanics deals in essence with solving the following eigenvalue problem:

H E (2.351)

where H is the Hamiltonian of the system. This equation is general and does not depend on
any coordinate system or representation. But to solve it, we need to represent it in a given basis

system. The complexity associated with solving this eigenvalue equation will then vary from

one basis to another.

In what follows we are going to examine the representation of this eigenvalue equation in a

discrete basis and then in a continuous basis.

2.7.1 Matrix Mechanics

The representation of quantum mechanics in a discrete basis yields a matrix eigenvalue prob-
lem. That is, the representation of (2.351) in a discrete basis n yields the following matrix
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eigenvalue equation (see (2.257)):

H11 E H12 H13 H1N
H21 H22 E H23 H2N
H31 H32 H33 E H3N

HN1 HN2 HN3 HNN E

0 (2.352)

This is an N th order equation in E ; its solutions yield the energy spectrum of the system: E1,
E2, E3, , EN . Knowing the set of eigenvalues E1, E2, E3, , EN , we can easily determine
the corresponding set of eigenvectors 1 , 2 , , N .

The diagonalization of the Hamiltonian matrix (2.352) of a system yields the energy spec-

trum as well as the state vectors of the system. This procedure, which was worked out by

Heisenberg, involves only matrix quantities and matrix eigenvalue equations. This formulation

of quantum mechanics is known as matrix mechanics.
The starting point of Heisenberg, in his attempt to find a theoretical foundation to Bohr’s

ideas, was the atomic transition relation, mn Em En h, which gives the frequencies of
the radiation associated with the electron’s transition from orbit m to orbit n. The frequencies

mn can be arranged in a square matrix, where the mn element corresponds to the transition
from the mth to the nth quantum state.
We can also construct matrices for other dynamical quantities related to the transition

m n. In this way, every physical quantity is represented by a matrix. For instance, we
represent the energy levels by an energy matrix, the position by a position matrix, the momen-

tum by a momentum matrix, the angular momentum by an angular momentum matrix, and so

on. In calculating the various physical magnitudes, one has thus to deal with the algebra of

matrix quantities. So, within the context of matrix mechanics, one deals with noncommuting

quantities, for the product of matrices does not commute. This is an essential feature that dis-

tinguishes matrix mechanics from classical mechanics, where all the quantities commute. Take,

for instance, the position and momentum quantities. While commuting in classical mechanics,

px xp, they do not commute within the context of matrix mechanics; they are related by
the commutation relation [X Px ] ih. The same thing applies for the components of an-
gular momentum. We should note that the role played by the commutation relations within

the context of matrix mechanics is similar to the role played by Bohr’s quantization condition

in atomic theory. Heisenberg’s matrix mechanics therefore requires the introduction of some

mathematical machinery—linear vector spaces, Hilbert space, commutator algebra, and matrix

algebra—that is entirely different from the mathematical machinery of classical mechanics.

Here lies the justification for having devoted a somewhat lengthy section, Section 2.5, to study

the matrix representation of quantum mechanics.

2.7.2 Wave Mechanics

Representing the formalism of quantum mechanics in a continuous basis yields an eigenvalue
problem not in the form of a matrix equation, as in Heisenberg’s formulation, but in the form

of a differential equation. The representation of the eigenvalue equation (2.351) in the position
space yields

r H E r (2.353)
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As shown in (2.315), the Hamiltonian is given in the position representation by h2 2 2m
V r , so we can rewrite (2.353) in a more familiar form:

h2

2m
2 r V r r E r (2.354)

where r r is the wave function of the system. This differential equation is known
as the Schrödinger equation (its origin will be discussed in Chapter 3). Its solutions yield
the energy spectrum of the system as well as its wave function. This formulation of quantum

mechanics in the position representation is called wave mechanics.
Unlike Heisenberg, Schödinger took an entirely different starting point in his quest to find

a theoretical justification for Bohr’s ideas. He started from the de Broglie particle–wave hy-

pothesis and extended it to the electrons orbiting around the nucleus. Schrödinger aimed at

finding an equation that describes the motion of the electron within an atom. Here the focus

is on the wave aspect of the electron. We can show, as we did in Chapter 1, that the Bohr
quantization condition, L nh, is equivalent to the de Broglie relation, 2 h p. To es-
tablish this connection, we need simply to make three assumptions: (a) the wavelength of the

wave associated with the orbiting electron is connected to the electron’s linear momentum p
by 2 h p, (b) the electron’s orbit is circular, and (c) the circumference of the electron’s
orbit is an integer multiple of the electron’s wavelength, i.e., 2 r n . This leads at once
to 2 r n 2 h p or nh rp L. This means that, for every orbit, there is only one
wavelength (or one wave) associated with the electron while revolving in that orbit. This wave

can be described by means of a wave function. So Bohr’s quantization condition implies, in
essence, a uniqueness of the wave function for each orbit of the electron. In Chapter 3 we will

show how Schrödinger obtained his differential equation (2.354) to describe the motion of an

electron in an atom.

2.8 Concluding Remarks

Historically, the matrix formulation of quantum mechanics was worked out by Heisenberg

shortly before Schrödinger introduced his wave theory. The equivalence between the matrix

and wave formulations was proved a few years later by using the theory of unitary transfor-

mations. Different in form, yet identical in contents, wave mechanics and matrix mechanics

achieve the same goal: finding the energy spectrum and the states of quantum systems.

The matrix formulation has the advantage of greater (formal) generality, yet it suffers from

a number of disadvantages. On the conceptual side, it offers no visual idea about the structure

of the atom; it is less intuitive than wave mechanics. On the technical side, it is difficult to

use in some problems of relative ease such as finding the stationary states of atoms. Matrix

mechanics, however, becomes powerful and practical in solving problems such as the harmonic

oscillator or in treating the formalism of angular momentum.

But most of the efforts of quantum mechanics focus on solving the Schrödinger equation,

not the Heisenberg matrix eigenvalue problem. So in the rest of this text we deal mostly with

wave mechanics. Matrix mechanics is used only in a few problems, such as the harmonic

oscillator, where it is more suitable than Schrödinger’s wave mechanics.

In wave mechanics we need only to specify the potential in which the particle moves; the

Schrödinger equation takes care of the rest. That is, knowing V r , we can in principle solve
equation (2.354) to obtain the various energy levels of the particle and their corresponding wave



2.9. SOLVED PROBLEMS 133

functions. The complexity we encounter in solving the differential equation depends entirely on

the form of the potential; the simpler the potential the easier the solution. Exact solutions of the

Schrödinger equation are possible only for a few idealized systems; we deal with such systems

in Chapters 4 and 6. However, exact solutions are generally not possible, for real systems do not

yield themselves to exact solutions. In such cases one has to resort to approximate solutions.

We deal with such approximate treatments in Chapters 9 and 10; Chapter 9 deals with time-

independent potentials and Chapter 10 with time-dependent potentials.

Before embarking on the applications of the Schrödinger equation, we need first to lay down

the theoretical foundations of quantum mechanics. We take up this task in Chapter 3, where

we deal with the postulates of the theory as well as their implications; the postulates are the

bedrock on which the theory is built.

2.9 Solved Problems

Problem 2.1

Consider the states 9i 1 2 2 and
i
2

1
1

2
2 , where the two

vectors 1 and 2 form a complete and orthonormal basis.

(a) Calculate the operators and . Are they equal?

(b) Find the Hermitian conjugates of , , , and .

(c) Calculate Tr and Tr . Are they equal?

(d) Calculate and and the traces Tr and Tr . Are they

projection operators?

Solution

(a) The bras corresponding to 9i 1 2 2 and i 1 2 2 2

are given by 9i 1 2 2 and i
2

1
1

2
2 , respectively. Hence we

have

1

2
9i 1 2 2 i 1 2

1

2
9 1 1 9i 1 2 2i 2 1 2 2 2

(2.355)

1

2
9 1 1 2i 1 2 9i 2 1 2 2 2 (2.356)

As expected, and are not equal; they would be equal only if the states

and were proportional and the proportionality constant real.

(b) To find the Hermitian conjugates of , , , and , we need simply

to replace the factors with their respective complex conjugates, the bras with kets, and the kets

with bras:

† 9i 1 2 2
† 1

2
i 1 2 (2.357)
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† 1

2
9 1 1 2i 1 2

9i 2 1 2 2 2 (2.358)

† 1

2
9 1 1 9i 1 2

2i 2 1 2 2 2 (2.359)

(c) Using the property Tr AB Tr BA and since 1 1 2 2 1 and

1 2 2 1 0, we obtain

Tr Tr

i

2
1

1

2
2 9i 1 2 2

7

2
(2.360)

Tr Tr

9i 1 2 2
i

2
1

1

2
2

7

2

Tr (2.361)

The traces Tr and Tr are equal only because the scalar product of and

is a real number. Were this product a complex number, the traces would be different; in

fact, they would be the complex conjugate of one another.

(d) The expressions and are

9i 1 2 2 9i 1 2 2

81 1 1 18i 1 2 18i 2 1 4 2 2

(2.362)

1

2
1 1 i 1 2 i 2 1 2 2

1

2
1 i 1 2 i 2 1 (2.363)

In deriving (2.363) we have used the fact that the basis is complete, 1 1 2 2 1.

The traces Tr and Tr can then be calculated immediately:

Tr 9i 1 2 2 9i 1 2 2 85 (2.364)

Tr
1

2
i 1 2 i 1 2 1 (2.365)

So is normalized but is not. Since is normalized, we can easily ascertain that

is a projection operator, because it is Hermitian, † , and equal to

its own square:

2 (2.366)

As for , although it is Hermitian, it cannot be a projection operator since is not

normalized. That is, is not equal to its own square:

2 85 (2.367)
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Problem 2.2

(a) Find a complete and orthonormal basis for a space of the trigonometric functions of the

form N
n 0 an cos n .

(b) Illustrate the results derived in (a) for the case N 5; find the basis vectors.

Solution

(a) Since cos n 1
2
ein e in , we can write

N
n 0 an cos n as

1

2

N

n 0

an ein e in 1

2

N

n 0

ane
in

0

n N

a ne
in

N

n N

Cne
in (2.368)

where Cn an 2 for n 0, Cn a n 2 for n 0, and C0 a0. Since any trigonometric
function of the form x N

n 0 an cos n can be expressed in terms of the functions

n ein 2 , we can try to take the set n as a basis. As this set is complete, let us

see if it is orthonormal. The various functions n are indeed orthonormal, since their scalar

products are given by

m n m n d
1

2
ei n m d nm (2.369)

In deriving this result, we have considered two cases: n m and n m. First, the case n m
is obvious, since n n

1
2

d 1. On the other hand, when n m we have

m n
1

2
ei n m d

1

2

ei n m e i n m

i n m

2i sin n m

2i n m
0

(2.370)

since sin n m 0. So the functions n ein 2 form a complete and orthonor-

mal basis. From (2.368) we see that the basis has 2N 1 functions n ; hence the dimension

of this space of functions is equal to 2N 1.

(b) In the case where N 5, the dimension of the space is equal to 11, for the basis

has 11 vectors: 5 e 5i 2 , 4 e 4i 2 , , 0 1 2 , ,

4 e4i 2 , 5 e5i 2 .

Problem 2.3

(a) Show that the sum of two projection operators cannot be a projection operator unless

their product is zero.

(b) Show that the product of two projection operators cannot be a projection operator unless

they commute.

Solution

Recall that an operator P is a projection operator if it satisfies P† P and P2 P .
(a) If two operators A and B are projection operators and if AB BA, we want to show

that A B † A B and that A B 2 A B. First, the hermiticity is easy to ascertain

since A and B are both Hermitian: A B † A B. Let us now look at the square of

A B ; since A
2

A and B2 B, we can write

A B 2 A
2

B2 AB BA A B AB BA (2.371)
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Clearly, only when the product of A and B is zero will their sum be a projection operator.
(b) At issue here is to show that if two operators A and B are projection operators and if

they commute, [A B] 0, their product is a projection operator. That is, we need to show that

AB † AB and AB 2 AB. Again, since A and B are Hermitian and since they commute,

we see that AB † BA AB. As for the square of AB, we have

AB 2 AB AB A BA B A AB B A
2
B2 AB (2.372)

hence the product AB is a projection operator.

Problem 2.4

Consider a state 1

2
1

1

5
2

1

10
3 which is given in terms of three orthonormal

eigenstates 1 , 2 and 3 of an operator B such that B n n2 n . Find the expectation

value of B for the state .

Solution

Using Eq (2.58), we can write the expectation value of B for the state as B B
where

1

2
1

1

5
2

1

10
3

1

2
1

1

5
2

1

10
3

8

10
(2.373)

and

B
1

2
1

1

5
2

1

10
3 B

1

2
1

1

5
2

1

10
3

1

2

22

5

32

10
22

10
(2.374)

Hence, the expectation value of B is given by

B
B 22 10

8 10

11

4
(2.375)

Problem 2.5

(a) Study the hermiticity of these operators: X , d dx , and id dx . What about the complex
conjugate of these operators? Are the Hermitian conjugates of the position and momentum

operators equal to their complex conjugates?

(b) Use the results of (a) to discuss the hermiticity of the operators eX , ed dx , and eid dx .
(c) Find the Hermitian conjugate of the operator Xd dx .
(d) Use the results of (a) to discuss the hermiticity of the components of the angular mo-

mentum operator (Chapter 5): Lx ih Y z Z y , L y ih Z x X z ,

L z ih X y Y x .
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Solution

(a) Using (2.69) and (2.70), and using the fact that the eigenvalues of X are real (i.e., X

X or x x), we can verify that X is Hermitian (i.e., X† X) since

X x x x dx x x x dx

x x x dx X (2.376)

Now, since x vanishes as x , an integration by parts leads to

d

dx
x

d x

dx
dx x x

x

x

d x

dx
x dx

d x

dx
x dx

d

dx
(2.377)

So, d dx is anti-Hermitian: d dx † d dx . Since d dx is anti-Hermitian, id dx must be

Hermitian, since id dx † i d dx id dx . The results derived above are

X† X
d

dx

† d

dx
i
d

dx

†

i
d

dx
(2.378)

From this relation we see that the momentum operator P ihd dx is Hermitian: P† P .
We can also infer that, although the momentum operator is Hermitian, its complex conjugate is

not equal to P , since P ihd dx ihd dx P . We may group these results into
the following relation:

X† X X X P† P P P (2.379)

(b) Using the relations eA † eA
†
and ei A † e i A

†
derived in (2.113), we infer

eX † eX ed dx † e d dx eid dx † eid dx (2.380)

(c) Since X is Hermitian and d dx is anti-Hermitian, we have

X
d

dx

† d

dx

†
X †

d

dx
X (2.381)

where dX dx is given by

d

dx
X x 1 x

d

dx
x (2.382)

hence

X
d

dx

†
X
d

dx
1 (2.383)
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(d) From the results derived in (a), we infer that the operators Y , Z , i x , and i y are
Hermitian. We can verify that Lx is also Hermitian:

L
†
x ih

z
Y

y
Z ih Y

z
Z
y

Lx (2.384)

in deriving this relation, we used the fact that the y and z degrees of freedom commute (i.e.,
Y z Y z and Z y Z y), for they are independent. Similarly, the hermiticity of

L y ih Z x X z and L z ih X y Y x is obvious.

Problem 2.6

(a) Show that the operator A i X2 1 d dx i X is Hermitian.
(b) Find the state x for which A x 0 and normalize it.

(c) Calculate the probability of finding the particle (represented by x ) in the region:
1 x 1.

Solution

(a) From the previous problem we know that X† X and d dx † d dx . We can thus
infer the Hermitian conjugate of A:

A
†

i
d

dx

†
X2 † i

d

dx

†
i X† i

d

dx
X2 i

d

dx
i X

i X2
d

dx
i
d

dx
X2 i

d

dx
i X (2.385)

Using the relation [B C2] C[B C] [B C]C along with [d dx X] 1, we can easily

evaluate the commutator [d dx X2]:

d

dx
X2 X

d

dx
X

d

dx
X X 2X (2.386)

A combination of (2.385) and (2.386) shows that A is Hermitian:

A
†

i X2 1
d

dx
i X A (2.387)

(b) The state x for which A x 0, i.e.,

i X2 1
d x

dx
i X x 0 (2.388)

corresponds to
d x

dx

x

x2 1
x (2.389)

The solution to this equation is given by

x
B

x2 1
(2.390)
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Since dx x2 1 we have

1 x 2 dx B2
dx

x2 1
B2 (2.391)

which leads to B 1 and hence x 1

x2 1
.

(c) Using the integral
1
1 dx x2 1 2, we can obtain the probability immediately:

P
1

1

x 2 dx
1 1

1

dx

x2 1

1

2
(2.392)

Problem 2.7

Discuss the conditions for these operators to be unitary: (a) 1 i A 1 i A ,

(b) A i B A
2

B2 .

Solution

An operator U is unitary if UU† U†U I (see (2.122)).
(a) Since

1 i A

1 i A

†
1 i A

†

1 i A
†

(2.393)

we see that if A is Hermitian, the expression 1 i A 1 i A is unitary:

1 i A

1 i A

†
1 i A

1 i A

1 i A

1 i A

1 i A

1 i A
I (2.394)

(b) Similarly, if A and B are Hermitian and commute, the expression A i B A
2

B2

is unitary:

A i B

A
2

B2

†
A i B

A
2

B2

A i B

A
2

B2

A i B

A
2

B2

A
2

B2 i AB BA

A
2

B2

A
2

B2

A
2

B2
I (2.395)

Problem 2.8

(a) Using the commutator [X p] ih, show that [Xm P] imhXm 1, with m 1. Can

you think of a direct way to get to the same result?

(b) Use the result of (a) to show the general relation [F X P] ihdF X dX , where
F X is a differentiable operator function of X .
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Solution

(a) Let us attempt a proof by induction. Assuming that [Xm P] imhXm 1 is valid for

m k (note that it holds for n 1; i.e., [X P] ih),

[Xk P] ikhXk 1 (2.396)

let us show that it holds for m k 1:

[X k 1 P] [XkX P] X k[X P] [X k P]X (2.397)

where we have used the relation [AB C] A[B C] [A C]B. Now, since [X P] ih
and [X k P] ikhX k 1, we rewrite (2.397) as

[Xk 1 P] ihXk ikhXk 1 X ih k 1 X k (2.398)

So this relation is valid for any value of k, notably for k m 1:

[Xm P] imhXm 1 (2.399)

In fact, it is easy to arrive at this result directly through brute force as follows. Using the relation

[A
n
B] A

n 1
[A B] [A

n 1
B]A along with [X Px ] ih, we can obtain

[X2 Px ] X[X Px ] [X Px ]X 2ihX (2.400)

which leads to

[X3 Px ] X2[X Px ] [X2 Px ]X 3i X2h (2.401)

this in turn leads to

[X4 Px ] X3[X Px ] [X3 Px ]X 4i X3h (2.402)

Continuing in this way, we can get to any power of X : [Xm P] imhXm 1.

A more direct and simpler method is to apply the commutator [Xm P] on some wave
function x :

[Xm Px ] x XmPx Px X
m x

xm ih
d x

dx
ih
d

dx
xm x

xm ih
d x

dx
imhxm 1 x xm ih

d x

dx

imhxm 1 x (2.403)

Since [Xm Px ] x imhxm 1 x we see that [Xm P] imhXm 1.

(b) Let us Taylor expand F X in powers of X , F X k akX
k , and insert this expres-

sion into [F X P]:

F X P
k

akX
k P

k

ak[X
k P] (2.404)
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where the commutator [Xk P] is given by (2.396). Thus, we have

F X P ih
k

kakX
k 1 ih

d k akX
k

dX
ih
dF X

dX
(2.405)

A much simpler method again consists in applying the commutator F X P on some

wave function x . Since F X x F x x , we have

F X P x F X P x ih
d

dx
F x x

F X P x ih
d x

dx
F x ih

dF x

dx
x

F X P x F X P x ih
dF x

dx
x

ih
dF x

dx
x (2.406)

Since F X P x ih dF xdx x we see that F X P ih dF X
dX

.

Problem 2.9

Consider the matrices A
7 0 0

0 1 i
0 i 1

and B
1 0 3

0 2i 0

i 0 5i
.

(a) Are A and B Hermitian? Calculate AB and BA and verify that Tr AB Tr BA ; then
calculate [A B] and verify that Tr [A B] 0.

(b) Find the eigenvalues and the normalized eigenvectors of A. Verify that the sum of the
eigenvalues of A is equal to the value of Tr A calculated in (a) and that the three eigenvectors

form a basis.

(c) Verify thatU†AU is diagonal and thatU 1 U†, whereU is the matrix formed by the
normalized eigenvectors of A.

(d) Calculate the inverse of A U†AU and verify that A 1
is a diagonal matrix whose

eigenvalues are the inverse of those of A .

Solution

(a) Taking the Hermitian adjoints of the matrices A and B (see (2.188))

A†
7 0 0

0 1 i
0 i 1

B†
1 0 i
0 2i 0

3 0 5i
(2.407)

we see that A is Hermitian and B is not. Using the products

AB
7 0 21

1 2i 5

i 2 5i
BA

7 3i 3

0 2i 2

7i 5 5i
(2.408)
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we can obtain the commutator

[A B]
0 3i 24

1 0 7

8i 7 0

(2.409)

From (2.408) we see that

Tr AB 7 2i 5i 7 7i Tr BA (2.410)

That is, the cyclic permutation of matrices leaves the trace unchanged; see (2.206). On the other

hand, (2.409) shows that the trace of the commutator [A B] is zero: Tr [A B] 0 0 0

0.

(b) The eigenvalues and eigenvectors of A were calculated in Example 2.19 (see (2.266),
(2.268), (2.272), (2.274)). We have a1 7, a2 2, and a3 2:

a1

1

0

0

a2

0
1

2 2 2

i 2 1

2 2 2

a3

0
1

2 2 2

i 1 2

2 2 2

(2.411)

One can easily verify that the eigenvectors a1 , a2 , and a3 are mutually orthogonal:

ai a j i j where i j 1 2 3. Since the set of a1 , a2 , and a3 satisfy the

completeness condition

3

j 1

a j a j

1 0 0

0 1 0

0 0 1

(2.412)

and since they are orthonormal, they form a complete and orthonormal basis.

(c) The columns of the matrix U are given by the eigenvectors (2.411):

U

1 0 0

0 1

2 2 2

1

2 2 2

0 i 2 1

2 2 2

i 1 2

2 2 2

(2.413)

We can show that the productU†AU is diagonal where the diagonal elements are the eigenval-

ues of the matrix A; U†AU is given by

1 0 0

0 1

2 2 2

i 2 1

2 2 2

0 1

2 2 2

i 1 2

2 2 2

7 0 0

0 1 i
0 i 1

1 0 0

0 1

2 2 2

1

2 2 2

0 i 2 1

2 2 2

i 1 2

2 2 2

7 0 0

0 2 0

0 0 2

(2.414)
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We can also show that U†U 1:

1 0 0

0 1

2 2 2

i 2 1

2 2 2

0 1

2 2 2

i 1 2

2 2 2

1 0 0

0 1

2 2 2

1

2 2 2

0 i 2 1

2 2 2

i 1 2

2 2 2

1 0 0

0 1 0

0 0 1

(2.415)

This implies that the matrix U is unitary: U† U 1. Note that, from (2.413), we have

det U i 1.

(d) Using (2.414) we can verify that the inverse of A U†AU is a diagonal matrix whose
elements are given by the inverse of the diagonal elements of A :

A
7 0 0

0 2 0

0 0 2

A 1

1
7

0 0

0 1

2
0

0 0 1

2

(2.416)

Problem 2.10

Consider a particle whose Hamiltonian matrix is H
2 i 0

i 1 1

0 1 0

.

(a) Is

i
7i
2

an eigenstate of H? Is H Hermitian?

(b) Find the energy eigenvalues, a1, a2, and a3, and the normalized energy eigenvectors,
a1 , a2 , and a3 , of H .
(c) Find the matrix corresponding to the operator obtained from the ket-bra product of the

first eigenvector P a1 a1 . Is P a projection operator? Calculate the commutator [P H ]
firstly by using commutator algebra and then by using matrix products.

Solution

(a) The ket is an eigenstate of H only if the action of the Hamiltonian on is of the

form H b , where b is constant. This is not the case here:

H
2 i 0

i 1 1

0 1 0

i
7i
2

7 2i
1 7i
7i

(2.417)

Using the definition of the Hermitian adjoint of matrices (2.188), it is easy to ascertain that H
is Hermitian:

H†
2 i 0

i 1 1

0 1 0

H (2.418)

(b) The energy eigenvalues can be obtained by solving the secular equation

0

2 a i 0

i 1 a 1

0 1 a
2 a [ 1 a a 1] i i a

a 1 a 1 3 a 1 3 (2.419)
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which leads to

a1 1 a2 1 3 a3 1 3 (2.420)

To find the eigenvector corresponding to the first eigenvalue, a1 1, we need to solve the

matrix equation

2 i 0

i 1 1

0 1 0

x
y
z

x
y
z

x iy 0

i x z 0

y z 0

(2.421)

which yields x 1, y z i . So the eigenvector corresponding to a1 1 is

a1

1

i
i

(2.422)

This eigenvector is not normalized since a1 a1 1 i i i i 3. The normalized

a1 is therefore

a1
1

3

1

i
i

(2.423)

Solving (2.421) for the other two energy eigenvalues, a2 1 3, a3 1 3, and

normalizing, we end up with

a2
1

6 2 3

i 2 3

1 3

1

a3
1

6 2 3

i 2 3

1 3

1

(2.424)

(c) The operator P is given by

P a1 a1
1

3

1

i
i

1 i i
1

3

1 i i
i 1 1

i 1 1

(2.425)

Since this matrix is Hermitian and since the square of P is equal to P ,

P2
1

9

1 i i
i 1 1

i 1 1

1 i i
i 1 1

i 1 1

1

3

1 i i
i 1 1

i 1 1

P (2.426)

so P is a projection operator. Using the relations H a1 a1 and a1 H a1 (because

H is Hermitian), and since P a1 a1 , we can evaluate algebraically the commutator

[P H ] as follows:

[P H ] PH HP a1 a1 H H a1 a1 a1 a1 a1 a1 0 (2.427)

We can reach the same result by using the matrices of H and P:

[P H ]
1

3

1 i i
i 1 1

i 1 1

2 i 0

i 1 1

0 1 0

1

3

2 i 0

i 1 1

0 1 0

1 i i
i 1 1

i 1 1

0 0 0

0 0 0

0 0 0

(2.428)
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Problem 2.11

Consider the matrices A
0 0 i
0 1 0

i 0 0

and B
2 i 0

3 1 5

0 i 2

.

(a) Check if A and B are Hermitian and find the eigenvalues and eigenvectors of A. Any
degeneracies?

(b) Verify that Tr AB Tr BA , det AB det A det B , and det B† det B .

(c) Calculate the commutator [A B] and the anticommutator A B .
(d) Calculate the inverses A 1, B 1, and AB 1. Verify that AB 1 B 1A 1.

(e) Calculate A2 and infer the expressions of A2n and A2n 1. Use these results to calculate

the matrix of ex A.

Solution

(a) The matrix A is Hermitian but B is not. The eigenvalues of A are a1 1 and a2
a3 1 and its normalized eigenvectors are

a1
1

2

1

0

i
a2

1

2

1

0

i
a3

0

1

0

(2.429)

Note that the eigenvalue 1 is doubly degenerate, since the two eigenvectors a2 and a3
correspond to the same eigenvalue a2 a3 1.

(b) A calculation of the products AB and BA reveals that the traces Tr AB and Tr BA
are equal:

Tr AB Tr

0 1 2i
3 1 5

2i 1 0

1

Tr BA Tr

0 i 2i
5i 1 3i
2i i 0

1 Tr AB (2.430)

From the matrices A and B, we have det A i i 1, det B 4 16i . We can thus
write

det AB det

0 1 2i
3 1 5

2i 1 0

4 16i 1 4 16i det A det B (2.431)

On the other hand, since det B 4 16i and det B† 4 16i , we see that det B†

4 16i 4 16i det B .

(c) The commutator [A B] is given by

AB BA
0 1 2i
3 1 5

2i 1 0

0 i 2i
5i 1 3i
2i i 0

0 1 i 4i
3 5i 0 5 3i
4i 1 i 0

(2.432)
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and the anticommutator A B by

AB BA
0 1 2i
3 1 5

2i 1 0

0 i 2i
5i 1 3i
2i i 0

0 1 i 0

3 5i 2 5 3i
0 1 i 0

(2.433)

(d) A calculation similar to (2.200) leads to the inverses of A, B, and AB:

A 1
0 0 i
0 1 0

i 0 0

B 1 1

68

22 3i 8 2i 20 5i
6 24i 4 16i 10 40i
12 3i 8 2i 14 5i

(2.434)

AB 1 1

68

5 20i 8 2i 3 22i
40 10i 4 16i 24 6i
5 14i 8 2i 3 12i

(2.435)

From (2.434) it is now easy to verify that the product B 1A 1 is equal to AB 1:

B 1A 1 1

68

5 20i 8 2i 3 22i
40 10i 4 16i 24 6i
5 14i 8 2i 3 12i

AB 1 (2.436)

(e) Since

A2
0 0 i
0 1 0

i 0 0

0 0 i
0 1 0

i 0 0

1 0 0

0 1 0

0 0 1

I (2.437)

we can write A3 A, A4 I , A5 A, and so on. We can generalize these relations to any
value of n: A2n I and A2n 1 A:

A2n
1 0 0

0 1 0

0 0 1

I A2n 1
0 0 i
0 1 0

i 0 0

A (2.438)

Since A2n I and A2n 1 A, we can write

ex A

n 0

xnAn

n!
n 0

x2nA2n

2n !
n 0

x2n 1A2n 1

2n 1 !
I
n 0

x2n

2n !
A
n 0

x2n 1

2n 1 !

(2.439)

The relations

n 0

x2n

2n !
cosh x

n 0

x2n 1

2n 1 !
sinh x (2.440)

lead to

ex A I cosh x A sinh x
1 0 0

0 1 0

0 0 1

cosh x
0 0 i
0 1 0

i 0 0

sinh x

cosh x 0 i sinh x
0 cosh x sinh x 0

i sinh x 0 cosh x
(2.441)
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Problem 2.12

Consider two matrices: A
0 i 2

0 1 0

i 0 0

and B
2 i 0

3 1 5

0 i 2

. Calculate A 1 B

and B A 1. Are they equal?

Solution

As mentioned above, a calculation similar to (2.200) leads to the inverse of A:

A 1
0 0 i
0 1 0

1 2 i 2 0

(2.442)

The products A 1 B and B A 1 are given by

A 1B
0 0 i
0 1 0

1 2 i 2 0

2 i 0

3 1 5

0 i 2

0 1 2i
3 1 5

1 3i 2 0 5i 2
(2.443)

BA 1
2 i 0

3 1 5

0 i 2

0 0 i
0 1 0

1 2 i 2 0

0 i 2i
5 2 1 5i 2 3i
1 0 0

(2.444)

We see that A 1 B and B A 1 are not equal.

Remark

We should note that the quotient B A of two matrices A and B is equal to the product BA 1

and not A 1B; that is:

B

A
BA 1

2 i 0

3 1 5

0 i 2

0 i 2

0 1 0

i 0 0

0 i 2i
5 2 1 5i 2 3i
1 0 0

(2.445)

Problem 2.13

Consider the matrices A
0 1 0

1 0 1

0 1 0

and B
1 0 0

0 0 0

0 0 1

.

(a) Find the eigenvalues and normalized eigenvectors of A and B. Denote the eigenvectors
of A by a1 , a2 , a3 and those of B by b1 , b2 , b3 . Are there any degenerate
eigenvalues?

(b) Show that each of the sets a1 , a2 , a3 and b1 , b2 , b3 forms an orthonormal
and complete basis, i.e., show that a j ak jk and

3
j 1 a j a j I , where I is the

3 3 unit matrix; then show that the same holds for b1 , b2 , b3 .
(c) Find the matrix U of the transformation from the basis a to b . Show that

U 1 U†. Verify that U†U I . Calculate how the matrix A transforms under U , i.e.,

calculate A U AU†.
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Solution

(a) It is easy to verify that the eigenvalues of A are a1 0, a2 2, a3 2 and their

corresponding normalized eigenvectors are

a1
1

2

1

0

1

a2
1

2

1

2

1

a3
1

2

1

2

1

(2.446)

The eigenvalues of B are b1 1, b2 0, b3 1 and their corresponding normalized

eigenvectors are

b1

1

0

0

b2

0

1

0

b3

0

0

1

(2.447)

None of the eigenvalues of A and B are degenerate.
(b) The set a1 , a2 , a3 is indeed complete because the sum of a1 a1 , a2 a2 ,

and a3 a3 as given by

a1 a1
1

2

1

0

1

1 0 1
1

2

1 0 1

0 0 0

1 0 1

(2.448)

a2 a2
1

4

1

2

1

1 2 1
1

4

1 2 1

2 2 2

1 2 1

(2.449)

a3 a3
1

4

1

2

1

1 2 1
1

4

1 2 1

2 2 2

1 2 1

(2.450)

is equal to unity:

3

j 1

a j a j
1

2

1 0 1

0 0 0

1 0 1

1

4

1 2 1

2 2 2

1 2 1

1

4

1 2 1

2 2 2

1 2 1

1 0 0

0 1 0

0 0 1

(2.451)

The states a1 , a2 , a3 are orthonormal, since a1 a2 a1 a3 a3 a2 0 and

a1 a1 a2 a2 a3 a3 1. Following the same procedure, we can ascertain that

b1 b1 b2 b2 b3 b3

1 0 0

0 1 0

0 0 1

(2.452)
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We can verify that the states b1 , b2 , b3 are orthonormal, since b1 b2 b1 b3
b3 b2 0 and b1 b1 b2 b2 b3 b3 1.

(c) The elements of the matrix U , corresponding to the transformation from the basis a
to b , are given by U jk b j ak where j k 1 2 3:

U
b1 a1 b1 a2 b1 a3
b2 a1 b2 a2 b2 a3
b3 a1 b3 a2 b3 a3

(2.453)

where the elements b j ak can be calculated from (2.446) and (2.447):

U11 b1 a1
1

2
1 0 0

1

0

1

2

2
(2.454)

U12 b1 a2
1
2

1 0 0

1

2

1

1

2
(2.455)

U13 b1 a3
1
2

1 0 0

1

2

1

1

2
(2.456)

U21 b2 a1
1

2
0 1 0

1

0

1

0 (2.457)

U22 b2 a2
1
2

0 1 0

1

2

1

2

2
(2.458)

U23 b2 a3
1
2

0 1 0

1

2

1

2

2
(2.459)

U31 b3 a1
1

2
0 0 1

1

0

1

2

2
(2.460)

U32 b3 a2
1
2

0 0 1

1

2

1

1

2
(2.461)

U33 b3 a3
1
2

0 0 1

1

2

1

1

2
(2.462)

Collecting these elements, we obtain

U
1

2

2 1 1

0 2 2

2 1 1

(2.463)
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Calculating the inverse ofU as we did in (2.200), we see that it is equal to its Hermitian adjoint:

U 1 1

2

2 0 2

1 2 1

1 2 1

U† (2.464)

This implies that the matrix U is unitary. The matrix A transforms as follows:

A U AU†
1

4

2 1 1

0 2 2

2 1 1

0 1 0

1 0 1

0 1 0

2 0 2

1 2 1

1 2 1

1

2

1 2 1 1

1 2 1

1 1 1 2

(2.465)

Problem 2.14

Calculate the following expressions involving Dirac’s delta function:

(a)
5
5 cos 3x x 3 dx

(b)
10
0 e2x 7 4 x 3 dx

(c) 2 cos2 3x sin x 2 x
(d) 0 cos 3 2 d

(e)
9
2 x2 5x 2 [2 x 4 ] dx .

Solution

(a) Since x 3 lies within the interval ( 5 5), equation (2.281) yields

5

5

cos 3x x 3 dx cos 3
3

1 (2.466)

(b) Since x 3 lies outside the interval (0 10), Eq (2.281) yields at once

10

0

e2x 7 4 x 3 dx 0 (2.467)

(c) Using the relation f x x a f a x a which is listed in Appendix A, we

have

2 cos2 3x sin x 2 x 2 cos2 3 sin 2 x

3 x (2.468)

(d) Inserting n 3 into Eq (2.282) and since cos 3 27 sin 3 , we obtain

0

cos 3 2 d 1 3 cos 3 2 1 3 27 sin 3 2

27 (2.469)
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(e) Since [2 x 4 ] 1 2 x 4 , we have

9

2

x2 5x 2 [2 x 4 ] dx
1

2

9

2

x2 5x 2 x 4 dx

1

2
42 5 4 2 1 (2.470)

Problem 2.15

Consider a system whose Hamiltonian is given by H 1 2 2 1 , where is

a real number having the dimensions of energy and 1 , 2 are normalized eigenstates of a

Hermitian operator A that has no degenerate eigenvalues.
(a) Is H a projection operator? What about 2H2?
(b) Show that 1 and 2 are not eigenstates of H .
(c) Calculate the commutators [H 1 1 ] and [H 2 2 ] then find the relation

that may exist between them.

(d) Find the normalized eigenstates of H and their corresponding energy eigenvalues.
(e) Assuming that 1 and 2 form a complete and orthonormal basis, find the matrix

representing H in the basis. Find the eigenvalues and eigenvectors of the matrix and compare
the results with those derived in (d).

Solution

(a) Since 1 and 2 are eigenstates of A and since A is Hermitian, they must be
orthogonal, 1 2 0 (instance of Theorem 2.1). Now, since 1 and 2 are both

normalized and since 1 2 0, we can reduce H2 to

H2 2
1 2 2 1 1 1 2 2

2
1 2 2 1 (2.471)

which is different from H ; hence H is not a projection operator. The operator 2H2 is a
projection operator since it is both Hermitian and equal to its own square. Using (2.471) we

can write

2H2 2 1 2 2 1 1 2 2 1

1 1 2 2
2H2 (2.472)

(b) Since 1 and 2 are both normalized, and since 1 2 0, we have

H 1 1 2 1 2 1 1 2 (2.473)

H 2 1 (2.474)

hence 1 and 2 are not eigenstates of H . In addition, we have

1 H 1 2 H 2 0 (2.475)

(c) Using the relations derived above, H 1 2 and H 2 1 , we can

write

[H 1 1 ] 2 1 1 2 (2.476)
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[H 2 2 ] 1 2 2 1 (2.477)

hence

[H 1 1 ] [H 2 2 ] (2.478)

(d) Consider a general state 1 1 2 2 . Applying H to this state, we get

H 1 2 2 1 1 1 2 2

2 1 1 2 (2.479)

Now, since is normalized, we have

1
2

2
2 1 (2.480)

The previous two equations show that 1 2 1 2 and that 1 2. Hence the

eigenstates of the system are:

1

2
1 2 (2.481)

The corresponding eigenvalues are :

H (2.482)

(e) Since 1 2 2 1 0 and 1 1 2 2 1, we can verify

that H11 1 H 1 0, H22 2 H 2 0, H12 1 H 2 ,

H21 2 H 1 . The matrix of H is thus given by

H
0 1

1 0
(2.483)

The eigenvalues of this matrix are equal to and the corresponding eigenvectors are 1

2

1

1
.

These results are indeed similar to those derived in (d).

Problem 2.16

Consider the matrices A
1 0 0

0 7 3i
0 3i 5

and B
0 i 3i
i 0 i
3i i 0

.

(a) Check the hermiticity of A and B.
(b) Find the eigenvalues of A and B; denote the eigenvalues of A by a1, a2, and a3. Explain

why the eigenvalues of A are real and those of B are imaginary.
(c) Calculate Tr A and det A . Verify Tr A a1 a2 a3, det A a1a2a3.

Solution

(a) Matrix A is Hermitian but B is anti-Hermitian:

A†
1 0 0

0 7 3i
0 3i 5

A B†
0 i 3i
i 0 i
3i i 0

B (2.484)
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(b) The eigenvalues of A are a1 6 10, a2 1, and a3 6 10 and those of B

are b1 i 3 17 2, b2 3i , and b3 i 3 17 2. The eigenvalues of A are

real and those of B are imaginary. This is expected since, as shown in (2.74) and (2.75), the
expectation values of Hermitian operators are real and those of anti-Hermitian operators are

imaginary.

(c) A direct calculation of the trace and the determinant of A yields Tr A 1 7 5 13

and det A 7 5 3i 3i 26. Adding and multiplying the eigenvalues a1 6 10,

a2 1, a3 6 10, we have a1 a2 a3 6 10 1 6 10 13 and

a1a2a3 6 10 1 6 10 26. This confirms the results (2.260) and (2.261):

Tr A a1 a2 a3 13 det A a1a2a3 26 (2.485)

Problem 2.17

Consider a one-dimensional particle which moves along the x-axis and whose Hamiltonian is
H Ed2 dx2 16EX2, where E is a real constant having the dimensions of energy.

(a) Is x Ae 2x2 , where A is a normalization constant that needs to be found, an
eigenfunction of H? If yes, find the energy eigenvalue.
(b) Calculate the probability of finding the particle anywhere along the negative x-axis.
(c) Find the energy eigenvalue corresponding to the wave function x 2x x .
(d) Specify the parities of x and x . Are x and x orthogonal?

Solution

(a) The integral e 4x2dx 2 allows us to find the normalization constant:

1 x 2 dx A2 e 4x2dx A2
2

(2.486)

this leads to A 2 and hence x 2 e 2x2 . Since the first and second

derivatives of x are given by

x
d x

dx
4x x x

d2 x

dx2
16x2 4 x (2.487)

we see that x is an eigenfunction of H with an energy eigenvalue equal to 4E :

H x E
d2 x

dx2
16Ex2 x E 16x2 4 x 16Ex2 x 4E x (2.488)

(b) Since
0 e 4x2dx 4, the probability of finding the particle anywhere along the

negative x-axis is equal to 1
2
:

0

x 2 dx
2 0

e 4x2dx
1

2
(2.489)

This is expected, since this probability is half the total probability, which in turn is equal to one.
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(c) Since the second derivative of x 2x x is x 4 x 2x x
8x 3 4x2 x 4 3 4x2 x , we see that x is an eigenfunction of H with an
energy eigenvalue equal to 12E :

H x E
d2 x

dx2
16Ex2 x 4E 3 4x2 x 16Ex2 x 12E x

(2.490)

(d) The wave functions x and x are even and odd, respectively, since x x
and x x ; hence their product is an odd function. Therefore, they are orthogonal,
since the symmetric integration of an odd function is zero:

x x dx x x dx x x dx

x x dx 0 (2.491)

Problem 2.18

(a) Find the eigenvalues and the eigenfunctions of the operator A d2 dx2; restrict the
search for the eigenfunctions to those complex functions that vanish everywhere except in the

region 0 x a.
(b) Normalize the eigenfunction and find the probability in the region 0 x a 2.

Solution

(a) The eigenvalue problem for d2 dx2 consists of solving the differential equation

d2 x

dx2
x (2.492)

and finding the eigenvalues and the eigenfunction x . The most general solution to this
equation is

x Aeibx Be ibx (2.493)

with b2. Using the boundary conditions of x at x 0 and x a, we have

0 A B 0 B A a Aeiba Be iba 0 (2.494)

A substitution of B A into the second equation leads to A eiba e iba 0 or eiba

e iba which leads to e2iba 1. Thus, we have sin 2ba 0 and cos 2ba 1, so ba n . The

eigenvalues are then given by n n2 2 a2 and the corresponding eigenvectors by n x
A ein x a e in x a ; that is,

n
n2 2

a2
n x Cn sin

n x

a
(2.495)

So the eigenvalue spectrum of the operator A d2 dx2 is discrete, because the eigenvalues
and eigenfunctions depend on a discrete number n.
(b) The normalization of n x ,

1 C2n

a

0

sin2
n x

a
dx

C2n
2

a

0

1 cos
2n x

a
dx

C2n
2
a (2.496)
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yields Cn 2 a and hence n x 2 a sin n x a . The probability in the region
0 x a 2 is given by

2

a

a 2

0

sin2
n x

a
dx

1

a

a 2

0

1 cos
2n x

a
dx

1

2
(2.497)

This is expected since the total probability is 1:
a
0 n x 2 dx 1.

2.10 Exercises

Exercise 2.1

Consider the two states i 1 3i 2 3 and 1 i 2 5i 3 ,

where 1 , 2 and 3 are orthonormal.

(a) Calculate , , , , and infer . Are the scalar

products and equal?

(b) Calculate and . Are they equal? Calculate their traces and compare

them.

(c) Find the Hermitian conjugates of , , , and .

Exercise 2.2

Consider two states 1 1 4i 2 5 3 and 2 b 1 4 2 3i 3 , where

1 , 2 , and 3 are orthonormal kets, and where b is a constant. Find the value of b so that

1 and 2 are orthogonal.

Exercise 2.3

If 1 , 2 , and 3 are orthonormal, show that the states i 1 3i 2 3

and 1 i 2 5i 3 satisfy

(a) the triangle inequality and

(b) the Schwarz inequality.

Exercise 2.4

Find the constant so that the states 1 5 2 and 3 1 4 2

are orthogonal; consider 1 and 2 to be orthonormal.

Exercise 2.5

If 1 2 and 1 2 , prove the following relations (note that 1

and 2 are not orthonormal):

(a) 2 1 1 2 2 2 ,

(b) 2 1 2 2 2 1 .

Exercise 2.6

Consider a state which is given in terms of three orthonormal vectors 1 , 2 , and 3 as

follows:
1

15
1

1

3
2

1

5
3

where n are eigenstates to an operator B such that: B n 3n2 1 n with n 1 2 3.

(a) Find the norm of the state .

(b) Find the expectation value of B for the state .

(c) Find the expectation value of B2 for the state .



Chapter 3

Postulates of Quantum Mechanics

3.1 Introduction

The formalism of quantum mechanics is based on a number of postulates. These postulates are

in turn based on a wide range of experimental observations; the underlying physical ideas of

these experimental observations have been briefly mentioned in Chapter 1. In this chapter we

present a formal discussion of these postulates, and how they can be used to extract quantitative

information about microphysical systems.

These postulates cannot be derived; they result from experiment. They represent the mini-

mal set of assumptions needed to develop the theory of quantum mechanics. But how does one

find out about the validity of these postulates? Their validity cannot be determined directly;

only an indirect inferential statement is possible. For this, one has to turn to the theory built

upon these postulates: if the theory works, the postulates will be valid; otherwise they will

make no sense. Quantum theory not only works, but works extremely well, and this represents

its experimental justification. It has a very penetrating qualitative as well as quantitative pre-

diction power; this prediction power has been verified by a rich collection of experiments. So

the accurate prediction power of quantum theory gives irrefutable evidence to the validity of

the postulates upon which the theory is built.

3.2 The Basic Postulates of Quantum Mechanics

According to classical mechanics, the state of a particle is specified, at any time t , by two fun-
damental dynamical variables: the position r t and the momentum p t . Any other physical
quantity, relevant to the system, can be calculated in terms of these two dynamical variables.

In addition, knowing these variables at a time t , we can predict, using for instance Hamilton’s
equations dx dt H p and dp dt H x , the values of these variables at any later
time t .
The quantum mechanical counterparts to these ideas are specified by postulates, which

enable us to understand:

how a quantum state is described mathematically at a given time t ,

how to calculate the various physical quantities from this quantum state, and

165
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knowing the system’s state at a time t , how to find the state at any later time t ; that is,
how to describe the time evolution of a system.

The answers to these questions are provided by the following set of five postulates.

Postulate 1: State of a system

The state of any physical system is specified, at each time t , by a state vector t in a Hilbert

space H; t contains (and serves as the basis to extract) all the needed information about

the system. Any superposition of state vectors is also a state vector.

Postulate 2: Observables and operators

To every physically measurable quantity A, called an observable or dynamical variable, there
corresponds a linear Hermitian operator A whose eigenvectors form a complete basis.

Postulate 3: Measurements and eigenvalues of operators

The measurement of an observable A may be represented formally by the action of A on a state
vector t . The only possible result of such a measurement is one of the eigenvalues an
(which are real) of the operator A. If the result of a measurement of A on a state t is an ,
the state of the system immediately after the measurement changes to n :

A t an n (3.1)

where an n t . Note: an is the component of t when projected1 onto the eigen-

vector n .

Postulate 4: Probabilistic outcome of measurements

Discrete spectra: When measuring an observable A of a system in a state , the proba-

bility of obtaining one of the nondegenerate eigenvalues an of the corresponding operator
A is given by

Pn an
n

2 an 2
(3.2)

where n is the eigenstate of Awith eigenvalue an . If the eigenvalue an ism-degenerate,
Pn becomes

Pn an

m
j 1

j
n

2 m
j 1 a

j
n

2

(3.3)

The act of measurement changes the state of the system from to n . If the sys-

tem is already in an eigenstate n of A, a measurement of A yields with certainty the
corresponding eigenvalue an : A n an n .

Continuous spectra: The relation (3.2), which is valid for discrete spectra, can be ex-

tended to determine the probability density that a measurement of A yields a value be-
tween a and a da on a system which is initially in a state :

dP a

da

a 2 a 2

a 2da
(3.4)

for instance, the probability density for finding a particle between x and x dx is given
by dP x dx x 2 .

1To see this, we need only to expand t in terms of the eigenvectors of A which form a complete basis: t

n n n t n an n .
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Postulate 5: Time evolution of a system

The time evolution of the state vector t of a system is governed by the time-dependent

Schrödinger equation

ih
t

t
H t (3.5)

where H is the Hamiltonian operator corresponding to the total energy of the system.

Remark

These postulates fall into two categories:

The first four describe the system at a given time.

The fifth shows how this description evolves in time.

In the rest of this chapter we are going to consider the physical implications of each one of the

four postulates. Namely, we shall look at the state of a quantum system and its interpretation,

the physical observables, measurements in quantum mechanics, and finally the time evolution

of quantum systems.

3.3 The State of a System

To describe a system in quantum mechanics, we use a mathematical entity (a complex function)

belonging to a Hilbert space, the state vector t , which contains all the information we need
to know about the system and from which all needed physical quantities can be computed. As

discussed in Chapter 2, the state vector t may be represented in two ways:

A wave function r t in the position space: r t r t .

A momentum wave function p t in the momentum space: p t p t .

So, for instance, to describe the state of a one-dimensional particle in quantum mechanics we

use a complex function x t instead of two real real numbers x p in classical physics.
The wave functions to be used are only those that correspond to physical systems. What

are the mathematical requirements that a wave function must satisfy to represent a physical

system? Wave functions x that are physically acceptable must, along with their first deriv-

atives d x dx , be finite, continuous, and single-valued everywhere. As will be discussed in
Chapter 4, we will examine the underlying physics behind the continuity conditions of x
and d x dx (we will see that x and d x dx must be be continuous because the prob-
ability density and the linear momentum are continuous functions of x).

3.3.1 Probability Density

What about the physical meaning of a wave function? Only the square of its norm, r t 2,

has meaning. According to Born’s probabilistic interpretation, the square of the norm of

r t ,

P r t r t 2 (3.6)
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represents a position probability density; that is, the quantity r t 2d3r represents the prob-
ability of finding the particle at time t in a volume element d3r located between r and r dr .
Therefore, the total probability of finding the system somewhere in space is equal to 1:

r t 2d3r dx dy r t 2dz 1 (3.7)

A wave function r t satisfying this relation is said to be normalized. We may mention
that r has the physical dimensions of 1 L3, where L is a length. Hence, the physical
dimensions of r 2 is 1 L3: r 2 1 L3.

Note that the wave functions r t and ei r t , where is a real number, represent the

same state.

Example 3.1 (Physical and unphysical wave functions)

Which among the following functions represent physically acceptable wave functions: f x
3 sin x , g x 4 x , h2 x 5x , and e x x2.

Solution

Among these functions only f x 3 sin x represents a physically acceptable wave function,
since f x and its derivative are finite, continuous, single-valued everywhere, and integrable.
The other functions cannot be wave functions, since g x 4 x is not continuous,

not finite, and not square integrable; h2 x 5x is neither finite nor square integrable; and
e x x2 is neither finite nor square integrable.

3.3.2 The Superposition Principle

The state of a system does not have to be represented by a single wave function; it can be rep-
resented by a superposition of two or more wave functions. An example from the macroscopic
world is a vibrating string; its state can be represented by a single wave or by the superposition

(linear combination) of many waves.

If 1 r t and 2 r t separately satisfy the Schrödinger equation, then the wave function
r t 1 1 r t 2 2 r t also satisfies the Schrödinger equation, where 1 and 2 are

complex numbers. The Schrödinger equation is a linear equation. So in general, according to

the superposition principle, the linear superposition of many wave functions (which describe

the various permissible physical states of a system) gives a new wave function which represents

a possible physical state of the system:

i
i i (3.8)

where the i are complex numbers. The quantity

P
i

i i

2

(3.9)
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represents the probability for this superposition. If the states i are mutually orthonormal,
the probability will be equal to the sum of the individual probabilities:

P
i

i i

2

i
i
2 P1 P2 P3 (3.10)

where Pi i
2; Pi is the probability of finding the system in the state i .

Example 3.2

Consider a system whose state is given in terms of an orthonormal set of three vectors: 1 ,

2 , 3 as

3

3
1

2

3
2

2

3
3

(a) Verify that is normalized. Then, calculate the probability of finding the system in

any one of the states 1 , 2 , and 3 . Verify that the total probability is equal to one.

(b) Consider now an ensemble of 810 identical systems, each one of them in the state .

If measurements are done on all of them, how many systems will be found in each of the states

1 , 2 , and 3 ?

Solution

(a) Using the orthonormality condition j k jk where j , k 1 2 3, we can verify

that is normalized:

1

3
1 1

4

9
2 2

2

9
3 3

1

3

4

9

2

9
1 (3.11)

Since is normalized, the probability of finding the system in 1 is given by

P1 1
2 3

3
1 1

2

3
1 2

2

3
1 3

2
1

3
(3.12)

since 1 1 1 and 1 2 1 3 0.

Similarly, from the relations 2 2 1 and 2 1 2 3 0, we obtain the

probability of finding the system in 2 :

P2 2
2 2

3
2 2

2
4

9
(3.13)

As for 3 3 1 and 3 1 3 2 0, they lead to the probability of finding the

system in 3 :

P3 3
2 2

3
3 3

2
2

9
(3.14)

As expected, the total probability is equal to one:

P P1 P2 P3
1

3

4

9

2

9
1 (3.15)
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(b) The number of systems that will be found in the state 1 is

N1 810 P1
810

3
270 (3.16)

Likewise, the number of systems that will be found in states 2 and 3 are given, respec-

tively, by

N2 810 P2
810 4

9
360 N3 810 P3

810 2

9
180 (3.17)

3.4 Observables and Operators

An observable is a dynamical variable that can be measured; the dynamical variables encoun-

tered most in classical mechanics are the position, linear momentum, angular momentum, and

energy. How do we mathematically represent these and other variables in quantum mechanics?

According to the second postulate, a Hermitian operator is associated with every physical
observable. In the preceding chapter, we have seen that the position representation of the
linear momentum operator is given in one-dimensional space by P ih x and in three-

dimensional space by P ih .

In general, any function, f r p , which depends on the position and momentum variables,
r and p, can be "quantized" or made into a function of operators by replacing r and p with their
corresponding operators:

f r p F R P f R ih (3.18)

or f x p F X ih x . For instance, the operator corresponding to the Hamiltonian

H
1

2m
p 2 V r t (3.19)

is given in the position representation by

H
h2

2m
2 V R t (3.20)

where 2 is the Laplacian operator; it is given in Cartesian coordinates by: 2 2 x2
2 y2 2 z2.

Since the momentum operator P is Hermitian, and if the potential V R t is a real function,
the Hamiltonian (3.19) is Hermitian. We saw in Chapter 2 that the eigenvalues of Hermitian

operators are real. Hence, the spectrum of the Hamiltonian, which consists of the entire set

of its eigenvalues, is real. This spectrum can be discrete, continuous, or a mixture of both. In

the case of bound states, the Hamiltonian has a discrete spectrum of values and a continuous
spectrum for unbound states. In general, an operator will have bound or unbound spectra in the

same manner that the corresponding classical variable has bound or unbound orbits. As for R

and P , they have continuous spectra, since r and p may take a continuum of values.
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Table 3.1 Some observables and their corresponding operators.

Observable Corresponding operator

r R

p P ih

T p2

2m T h2

2m
2

E p2

2m V r t H h2

2m
2 V R t

L r p L ihR

According to Postulate 5, the total energy E for time-dependent systems is associated to the
operator

H ih
t

(3.21)

This can be seen as follows. The wave function of a free particle of momentum p and total
energy E is given by r t Aei p r Et h , where A is a constant. The time derivative of
r t yields

ih
r t

t
E r t (3.22)

Let us look at the eigenfunctions and eigenvalues of the momentum operator P . The eigen-
value equation

ih r p r (3.23)

yields the eigenfunction r corresponding to the eigenvalue p such that r 2d3r is the
probability of finding the particle with a momentum p in the volume element d3r centered
about r . The solution to the eigenvalue equation (3.23) is

r Aei p r h (3.24)

where A is a normalization constant. Since p hk is the eigenvalue of the operator P , the

eigenfunction (3.24) reduces to r Aeik r ; hence the eigenvalue equation (3.23) becomes

P r hk r (3.25)

To summarize, there is a one-to-one correspondence between observables and operators

(Table 3.1).

Example 3.3 (Orbital angular momentum)

Find the operator representing the classical orbital angular momentum.

Solution

The classical expression for the orbital angular momentum of a particle whose position and

linear momentum are r and p is given by L r p lx i ly j lzk, where lx ypz zpy ,
ly zpx xpz , lz xpy ypx .
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To find the operator representing the classical angular momentum, we need simply to re-

place r and p with their corresponding operators R and P ih : L ihR . This

leads to

Lx Y Pz Z Py ih Y
z

Z
y

(3.26)

L y Z Px X Pz ih Z
x

X
Z

(3.27)

L z X Py Y Px ih X
y

Y
x

(3.28)

Recall that in classical mechanics the position and momentum components commute, xpx
px x , and so do the components of the angular momentum, lx ly lylx . In quantum mechanics,

however, this is not the case, since X Px Px X ih and, as will be shown in Chapter 5,
Lx L y L yLx ihL z , and so on.

3.5 Measurement in Quantum Mechanics

Quantum theory is about the results of measurement; it says nothing about what might happen

in the physical world outside the context of measurement. So the emphasis is on measurement.

3.5.1 How Measurements Disturb Systems

In classical physics it is possible to perform measurements on a system without disturbing it

significantly. In quantum mechanics, however, the measurement process perturbs the system

significantly. While carrying out measurements on classical systems, this perturbation does

exist, but it is small enough that it can be neglected. In atomic and subatomic systems, however,

the act of measurement induces nonnegligible or significant disturbances.

As an illustration, consider an experiment that measures the position of a hydrogenic elec-

tron. For this, we need to bombard the electron with electromagnetic radiation (photons). If we

want to determine the position accurately, the wavelength of the radiation must be sufficiently

short. Since the electronic orbit is of the order of 10 10m, we must use a radiation whose

wavelength is smaller than 10 10m. That is, we need to bombard the electron with photons of

energies higher than

h h
c

h
3 108

10 10
104 eV (3.29)

When such photons strike the electron, not only will they perturb it, they will knock it com-

pletely off its orbit; recall that the ionization energy of the hydrogen atom is about 13 5 eV.

Thus, the mere act of measuring the position of the electron disturbs it appreciably.

Let us now discuss the general concept of measurement in quantum mechanics. The act of
measurement generally changes the state of the system. In theory we can represent the measur-
ing device by an operator so that, after carrying out the measurement, the system will be in one

of the eigenstates of the operator. Consider a system which is in a state . Before measuring

an observable A, the state can be represented by a linear superposition of eigenstates n
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of the corresponding operator A:

n
n n

n

an n (3.30)

According to Postulate 4, the act of measuring A changes the state of the system from to one

of the eigenstates n of the operator A, and the result obtained is the eigenvalue an . The only
exception to this rule is when the system is already in one of the eigenstates of the observable
being measured. For instance, if the system is in the eigenstate n , a measurement of the

observable A yields with certainty (i.e., with probability = 1) the value an without changing the
state n .

Before a measurement, we do not know in advance with certainty in which eigenstate,

among the various states n , a system will be after the measurement; only a probabilistic

outcome is possible. Postulate 4 states that the probability of finding the system in one particular

nondegenerate eigenstate n is given by

Pn
n

2

(3.31)

Note that the wave function does not predict the results of individual measurements; it instead

determines the probability distribution, P 2, over measurements on many identical sys-

tems in the same state.

Finally, we may state that quantum mechanics is the mechanics applicable to objects for

which measurements necessarily interfere with the state of the system. Quantum mechanically,

we cannot ignore the effects of the measuring equipment on the system, for they are important.

In general, certain measurements cannot be performed without major disturbances to other

properties of the quantum system. In conclusion, it is the effects of the interference by the
equipment on the system which is the essence of quantum mechanics.

3.5.2 Expectation Values

The expectation value A of A with respect to a state is defined by

A
A

(3.32)

For instance, the energy of a system is given by the expectation value of the Hamiltonian:

E H H .

In essence, the expectation value A represents the average result of measuring A on the
state . To see this, using the complete set of eigenvectors n of A as a basis (i.e., A is
diagonal in n), we can rewrite A as follows:

A
1

nm
m m A n n

n

an
n

2

(3.33)

where we have used m A n an nm . Since the quantity n
2 gives the

probability Pn of finding the value an after measuring the observable A, we can indeed interpret
A as an average of a series of measurements of A:

A
n

an
n

2

n

anPn (3.34)
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That is, the expectation value of an observable is obtained by adding all permissible eigenvalues

an , with each an multiplied by the corresponding probability Pn .
The relation (3.34), which is valid for discrete spectra, can be extended to a continuous

distribution of probabilities P a as follows:

A
a a 2da

a 2da
a dP a (3.35)

The expectation value of an observable can be obtained physically as follows: prepare a very

large number of identical systems each in the same state . The observable A is then mea-
sured on all these identical systems; the results of these measurements are a1, a2, , an , ;

the corresponding probabilities of occurrence are P1, P2, , Pn , . The average value of all

these repeated measurements is called the expectation value of A with respect to the state .

Note that the process of obtaining different results when measuring the same observable

on many identically prepared systems is contrary to classical physics, where these measure-

ments must give the same outcome. In quantum mechanics, however, we can predict only the

probability of obtaining a certain value for an observable.

Example 3.4

Consider a system whose state is given in terms of a complete and orthonormal set of five

vectors 1 , 2 , 3 , 4 , 5 as follows:

1

19
1

2

19
2

2

19
3

3

19
4

5

19
5

where n are eigenstates to the system’s Hamiltonian, H n n 0 n with n 1 2 3 4 5,

and where 0 has the dimensions of energy.

(a) If the energy is measured on a large number of identical systems that are all initially in

the same state , what values would one obtain and with what probabilities?

(b) Find the average energy of one such system.

Solution

First, note that is not normalized:

5

n 1

a2n n n

5

n 1

a2n
1

19

4

19

2

19

3

19

5

19

15

19
(3.36)

since j k jk with j , k 1 2 3 4 5.

(a) Since En n H n n 0 (n 1 2 3 4 5), the various measurements of the

energy of the system yield the values E1 0, E2 2 0, E3 3 0, E4 4 0, E5 5 0 with

the following probabilities:

P1 E1
1

2 1

19
1 1

2 19

15

1

15
(3.37)

P2 E2
2

2 2

19
2 2

2 19

15

4

15
(3.38)
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P3 E3
3

2 2

19
3 3

2
19

15

2

15
(3.39)

P4 E4
4

2 3

19
4 4

2
19

15

3

15
(3.40)

and

P5 E5
5

2 5

19
5 5

2
19

15

5

15
(3.41)

(b) The average energy of a system is given by

E
5

j 1

Pj E j
1

15
0

8

15
0

6

15
0

12

15
0

25

15
0

52

15
0 (3.42)

This energy can also be obtained from the expectation value of the Hamiltonian:

E
H 19

15

5

n 1

a2n n H n
19

15

1

19

8

19

6

19

12

19

25

19
0

52

15
0 (3.43)

where the values of the coefficients a2n are listed in (3.36).

3.5.3 Complete Sets of Commuting Operators (CSCO)

Two observables A and B are said to be compatible when their corresponding operators com-
mute, [A B] 0; observables corresponding to noncommuting operators are said to be non-
compatible.
In what follows we are going to consider the task of measuring two observables A and B

on a given system. Since the act of measurement generally perturbs the system, the result of
measuring A and B therefore depends on the order in which they are carried out. Measuring A
first and then B leads2 in general to results that are different from those obtained by measuring
B first and then A. How does this take place?

If A and B do not commute and if the system is in an eigenstate a
n of A, a measurement

of A yields with certainty a value an , since A
a
n an

a
n . Then, when we measure B, the

state of the system will be left in one of the eigenstates of B. If we measure A again, we will
find a value which will be different from an . What is this new value? We cannot answer this
question with certainty: only a probabilistic outcome is possible. For this, we need to expand

the eigenstates of B in terms of those of A, and thus provide a probabilistic answer as to the
value of measuring A. So if A and B do not commute, they cannot be measured simultaneously;
the order in which they are measured matters.

2The act of measuring A first and then B is represented by the action of product BA of their corresponding operators
on the state vector.
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What happens when A and B commute? We can show that the results of their measurements
will not depend on the order in which they are carried out. Before showing this, let us mention

a useful theorem.

Theorem 3.1 If two observables are compatible, their corresponding operators possess a set
of common (or simultaneous) eigenstates (this theorem holds for both degenerate and nonde-
generate eigenstates).

Proof

We provide here a proof for the nondegenerate case only. If n is a nondegenerate eigenstate

of A, A n an n , we have

m [A B] n am an m B n 0 (3.44)

since A and B commute. So m B n must vanish unless an am . That is,

m B n n B n nm (3.45)

Hence the n are joint or simultaneous eigenstates of A and B (this completes the proof).

Denoting the simultaneous eigenstate of A and B by a
n1

b
n2 , we have

A a
n1

b
n2 an1

a
n1

b
n2 (3.46)

B a
n1

b
n2 bn2

a
n1

b
n2 (3.47)

Theorem 3.1 can be generalized to the case of many mutually compatible observables A,
B, C , . These compatible observables possess a complete set of joint eigenstates

n
a
n1

b
n2

c
n3 (3.48)

The completeness and orthonormality conditions of this set are

n1 n2 n3

a
n1

b
n2

c
n3

a
n1

b
n2

c
n3 1 (3.49)

n n n n n1 n1 n2 n2 n3 n3 (3.50)

Let us now show why, when two observables A and B are compatible, the order in which
we carry out their measurements is irrelevant. Measuring A first, we would find a value an
and would leave the system in an eigenstate of A. According to Theorem 3.1, this eigenstate is
also an eigenstate of B. Thus a measurement of B yields with certainty bn without affecting the
state of the system. In this way, if we measure A again, we obtain with certainty the same initial
value an . Similarly, another measurement of B will yield bn and will leave the system in the
same joint eigenstate of A and B. Thus, if two observables A and B are compatible, and if the
system is initially in an eigenstate of one of their operators, their measurements not only yield

precise values (eigenvalues) but they will not depend on the order in which the measurements

were performed. In this case, A and B are said to be simultaneously measurable. So com-
patible observables can be measured simultaneously with arbitrary accuracy; noncompatible
observables cannot.
What happens if an operator, say A, has degenerate eigenvalues? The specification of

one eigenvalue does not uniquely determine the state of the system. Among the degenerate
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eigenstates of A, only a subset of them are also eigenstates of B. Thus, the set of states that
are joint eigenstates of both A and B is not complete. To resolve the degeneracy, we can
introduce a third operator C which commutes with both A and B; then we can construct a set of
joint eigenstates of A, B, and C that is complete. If the degeneracy persists, we may introduce a
fourth operator D that commutes with the previous three and then look for their joint eigenstates
which form a complete set. Continuing in this way, we will ultimately exhaust all the operators

(that is, there are no more independent operators) which commute with each other. When that

happens, we have then obtained a complete set of commuting operators (CSCO). Only then will
the state of the system be specified unambiguously, for the joint eigenstates of the CSCO are

determined uniquely and will form a complete set (recall that a complete set of eigenvectors of

an operator is called a basis). We should, at this level, state the following definition.

Definition: A set of Hermitian operators, A, B, C , , is called a CSCO if the operators

mutually commute and if the set of their common eigenstates is complete and not degenerate

(i.e., unique).

The complete commuting set may sometimes consist of only one operator. Any operator
with nondegenerate eigenvalues constitutes, all by itself, a CSCO. For instance, the position
operator X of a one-dimensional, spinless particle provides a complete set. Its momentum
operator P is also a complete set; together, however, X and P cannot form a CSCO, for they
do not commute. In three-dimensional problems, the three-coordinate position operators X , Y ,
and Z form a CSCO; similarly, the components of the momentum operator Px , Py , and Pz also

form a CSCO. In the case of spherically symmetric three-dimensional potentials, the set H ,

L 2, L z forms a CSCO. Note that in this case of spherical symmetry, we need three operators

to form a CSCO because H , L 2, and L z are all degenerate; hence the complete and unique
determination of the wave function cannot be achieved with one operator or with two.

In summary, when a given operator, say A, is degenerate, the wave function cannot be
determined uniquely unless we introduce one or more additional operators so as to form a

complete commuting set.

3.5.4 Measurement and the Uncertainty Relations

We have seen in Chapter 2 that the uncertainty condition pertaining to the measurement of any

two observables A and B is given by

A B
1

2
[A B] (3.51)

where A A
2

A 2.

Let us illustrate this on the joint measurement of the position and momentum observables.

Since these observables are not compatible, their simultaneous measurement with infinite ac-

curacy is not possible; that is, since [X P] ih there exists no state which is a simultaneous
eigenstate of X and P . For the case of the position and momentum operators, the relation (3.51)
yields

x p
h

2
(3.52)

This condition shows that the position and momentum of a microscopic system cannot be mea-

sured with infinite accuracy both at once. If the position is measured with an uncertainty x ,
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the uncertainty associated with its momentum measurement cannot be smaller than h 2 x .
This is due to the interference between the two measurements. If we measure the position first,
we perturb the system by changing its state to an eigenstate of the position operator; then the

measurement of the momentum throws the system into an eigenstate of the momentum operator.

Another interesting application of the uncertainty relation (3.51) is to the orbital angular

momentum of a particle. Since its components satisfy the commutator [Lx L y] ihLz , we
obtain

Lx L y
1

2
h L z (3.53)

We can obtain the other two inequalities by means of a cyclic permutation of x , y, and z. If
L z 0, Lx and L y will have sharp values simultaneously. This occurs when the particle is in

an s state. In fact, when a particle is in an s state, we have Lx L y Lz 0; hence all

the components of orbital angular momentum will have sharp values simultaneously.

3.6 Time Evolution of the System’s State

3.6.1 Time Evolution Operator

We want to examine here how quantum states evolve in time. That is, given the initial state

t0 , how does one find the state t at any later time t? The two states can be related by
means of a linear operator U t t0 such that

t U t t0 t0 t t0 (3.54)

U t t0 is known as the time evolution operator or propagator. From (3.54), we infer that

U t0 t0 I (3.55)

where I is the unit (identity) operator.
The issue now is to find U t t0 . For this, we need simply to substitute (3.54) into the

time-dependent Schrödinger equation (3.5):

ih
t
U t t0 t0 H U t t0 t0 (3.56)

or
U t t0
t

i

h
HU t t0 (3.57)

The integration of this differential equation depends on whether or not the Hamiltonian depends

on time. If it does not depend on time, and taking into account the initial condition (3.55), we

can easily ascertain that the integration of (3.57) leads to

U t t0 e i t t0 H h and t e i t t0 H h t0 (3.58)

We will show in Section 3.7 that the operator U t t0 e i t t0 H h represents a finite time

translation.

If, on the other hand, H depends on time the integration of (3.57) becomes less trivial. We
will deal with this issue in Chapter 10 when we look at time-dependent potentials or at the
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time-dependent perturbation theory. In this chapter, and in all chapters up to Chapter 10, we

will consider only Hamiltonians that do not depend on time.

Note that U t t0 is a unitary operator, since

U t t0 U
† t t0 U t t0 U

1 t t0 e i t t0 H hei t t0 H h I (3.59)

or U† U 1.

3.6.2 Stationary States: Time-Independent Potentials

In the position representation, the time-dependent Schrödinger equation (3.5) for a particle of

mass m moving in a time-dependent potential V r t can be written as follows:

ih
r t

t

h2

2m
2 r t V r t r t (3.60)

Now, let us consider the particular case of time-independent potentials: V r t V r . In
this case the Hamiltonian operator will also be time independent, and hence the Schrödinger

equation will have solutions that are separable, i.e., solutions that consist of a product of two
functions, one depending only on r and the other only on time:

r t r f t (3.61)

Substituting (3.61) into (3.60) and dividing both sides by r f t , we obtain

ih
1

f t

d f t

dt

1

r

h2

2m
2 r V r r (3.62)

Since the left-hand side depends only on time and the right-hand side depends only on r , both
sides must be equal to a constant; this constant, which we denote by E , has the dimensions of
energy. We can therefore break (3.62) into two separate differential equations, one depending

on time only,

ih
d f t

dt
E f t (3.63)

and the other on the space variable r ,

h2

2m
2 V r r E r (3.64)

This equation is known as the time-independent Schrödinger equation for a particle of mass m
moving in a time-independent potential V r .
The solutions to (3.63) can be written as f t e i Et h ; hence the state (3.61) becomes

r t r e i Et h (3.65)

This particular solution of the Schrödinger equation (3.60) for a time-independent potential
is called a stationary state. Why is this state called stationary? The reason is obvious: the
probability density is stationary, i.e., it does not depend on time:

r t 2 r e i Et h 2 r 2 (3.66)
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Note that such a state has a precise value for the energy, E h .

In summary, stationary states, which are given by the solutions of (3.64), exist only for

time-independent potentials. The set of energy levels that are solutions to this equation are

called the energy spectrum of the system. The states corresponding to discrete and continuous
spectra are called bound and unbound states, respectively. We will consider these questions in
detail in Chapter 4.

The most general solution to the time-dependent Schrödinger equation (3.60) can be written

as an expansion in terms of the stationary states n r exp i Ent h :

r t
n

cn n r exp
i Ent

h
(3.67)

where cn n t 0 n r r d3r . The general solution (3.67) is not a stationary
state, because a linear superposition of stationary states is not necessarily a stationary state.

Remark

The time-dependent and time-independent Schrödinger equations are given in one dimension

by (see (3.60) and (3.64))

ih
x t

t

h2

2m

2 x t

x2
V x t x t (3.68)

h2

2m

d2 x

dx2
V x x E x (3.69)

3.6.3 Schrödinger Equation and Wave Packets

Can we derive the Schrödinger equation (3.5) formally from first principles? No, we cannot;

we can only postulate it. What we can do, however, is to provide an educated guess on the

formal steps leading to it. Wave packets offer the formal tool to achieve that. We are going to
show how to start from a wave packet and end up with the Schrödinger equation.

As seen in Chapter 1, the wave packet representing a particle of energy E and momentum
p moving in a potential V is given by

x t
1

2 h
p exp

i

h
px Et dp

1

2 h
p exp

i

h
px

p2

2m
V t dp (3.70)

recall that wave packets unify the corpuscular (E and p) and the wave (k and ) features of

particles: k p h, h E p2 2m V . A partial time derivative of (3.70) yields

ih
t

x t
1

2 h
p

p2

2m
V exp

i

h
px

p2

2m
V t dp (3.71)
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Since p2 2m h2 2m 2 x2 and assuming that V is constant, we can take the term
h2 2m 2 x2 V outside the integral sign, for it does not depend on p:

ih
t

x t
h2

2m

2

x2
V

1

2 h
p exp

i

h
px

p2

2m
V t dp

(3.72)

This can be written as

ih
t

x t
h2

2m

2

x2
V x t (3.73)

Now, since this equation is valid for spatially varying potentials V V x , we see that we have
ended up with the Schrödinger equation (3.68).

3.6.4 The Conservation of Probability

Since the Hamiltonian operator is Hermitian, we can show that the norm t t , which is
given by

t t r t 2 d3r (3.74)

is time independent. This means, if t is normalized, it stays normalized for all subsequent

times. This is a direct consequence of the hermiticity of H .
To prove that t t is constant, we need simply to show that its time derivative is

zero. First, the time derivative of t t is

d

dt
t t

d

dt
t t t

d t

dt
(3.75)

where d t dt and d t dt can be obtained from (3.5):

d

dt
t

i

h
H t (3.76)

d

dt
t

i

h
t H†

i

h
t H (3.77)

Inserting these two equations into (3.75), we end up with

d

dt
t t

i

h

i

h
t H t 0 (3.78)

Thus, the probability density does not evolve in time.

In what follows we are going to calculate the probability density in the position representa-

tion. For this, we need to invoke the time-dependent Schrödinger equation

ih
r t

t

h2

2m
2 r t V r t r t (3.79)

and its complex conjugate

ih
r t

t

h2

2m
2 r t V r t r t (3.80)
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Multiplying both sides of (3.79) by r t and both sides of (3.80) by r t , and subtracting
the two resulting equations, we obtain

ih
t

r t r t
h2

2m
r t 2 r t 2 (3.81)

We can rewrite this equation as

r t

t
J 0 (3.82)

where r t and J are given by

r t r t r t J r t
ih

2m
(3.83)

r t is called the probability density, while J r t is the probability current density, or sim-
ply the current density, or even the particle density flux. By analogy with charge conservation
in electrodynamics, equation (3.82) is interpreted as the conservation of probability.
Let us find the relationship between the density operators t and t0 . Since t

U t t0 t0 and t t0 U† t t0 , we have

t t t U t t0 0 0 U† t t0 (3.84)

This is known as the density operator for the state t . Hence knowing t0 we can calcu-
late t as follows:

t U t t0 t0 U
† t t0 (3.85)

3.6.5 Time Evolution of Expectation Values

We want to look here at the time dependence of the expectation value of a linear operator; if the

state t is normalized, the expectation value is given by

A t A t (3.86)

Using (3.76) and (3.77), we can write d A dt as follows:

d

dt
A

1

ih
t AH H A t t

A

t
t (3.87)

or

d

dt
A

1

ih
[A H ]

A

t
(3.88)

Two important results stem from this relation. First, if the observable A does not depend ex-
plicitly on time, the term A t will vanish, so the rate of change of the expectation value of A
is given by [A H ] ih. Second, besides not depending explicitly on time, if the observable A
commutes with the Hamiltonian, the quantity d A dt will then be zero; hence the expectation
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value A will be constant in time. So if A commutes with the Hamiltonian and is not dependent
on time, the observable A is said to be a constant of the motion; that is, the expectation value of
an operator that does not depend on time and that commutes with the Hamiltonian is constant
in time:

If [H A] 0 and
A

t
0

d A

dt
0 A constant (3.89)

For instance, we can verify that the energy, the linear momentum, and the angular momentum

of an isolated system are conserved: d H dt 0, d P dt 0, and d L dt 0. This

implies that the expectation values of H , P , and L are constant. Recall from classical physics
that the conservation of energy, linear momentum, and angular momentum are consequences

of the following symmetries, respectively: homogeneity of time, homogeneity of space, and

isotropy of space. We will show in the following section that these symmetries are associated,

respectively, with invariances in time translation, space translation, and space rotation.

As an example, let us consider the time evolution of the expectation value of the den-

sity operator t t t ; see (3.84). From (3.5), which leads to t t
1 ih H t and t t 1 ih t H , we have

t

t

1

ih
H t t

1

ih
t t H

1

ih
[ t H ] (3.90)

A substitution of this relation into (3.88) leads to

d

dt
t

1

ih
[ t H ]

t

t

1

ih
[ t H ]

1

ih
[ t H ] 0 (3.91)

So the density operator is a constant of the motion. In fact, we can easily show that

[ t H ] t [ t t H ] t

t t t H t t H t t t

0 (3.92)

which, when combined with (3.90), yields t t 0.

Finally, we should note that the constants of motion are nothing but observables that can be

measured simultaneously with the energy to arbitrary accuracy. If a system has a complete set

of commuting operators (CSCO), the number of these operators is given by the total number of

constants of the motion.

3.7 Symmetries and Conservation Laws

We are interested here in symmetries that leave the Hamiltonian of an isolated system invariant.
We will show that for each such symmetry there corresponds an observable which is a constant

of the motion. The invariance principles relevant to our study are the time translation invariance

and the space translation invariance. We may recall from classical physics that whenever a

system is invariant under space translations, its total momentum is conserved; and whenever it

is invariant under rotations, its total angular momentum is also conserved.

To prepare the stage for symmetries and conservation laws in quantum mechanics, we are

going to examine the properties of infinitesimal and finite unitary transformations that are most

essential to these invariance principles.
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3.7.1 Infinitesimal Unitary Transformations

In Chapter 2 we saw that the transformations of a state vector and an operator A under an
infinitesimal unitary transformation U G I i G are given by

I i G (3.93)

A I i G A I i G A i [G A] (3.94)

where and G are called the parameter and the generator of the transformation, respectively.
Let us consider two important applications of infinitesimal unitary transformations: time

and space translations.

3.7.1.1 Time Translations: G H h

The application of U t H I i h t H on a state t gives

I
i

h
t H t t

i

h
t H t (3.95)

Since H t ih t t we have

I
i

h
t H t t t

t

t
t t (3.96)

because t t t t is nothing but the first-order Taylor expansion of t t . We
conclude from (3.96) that the application ofU t H to t generates a state t t which

consists simply of a time translation of t by an amount equal to t . The Hamiltonian in
I i h t H is thus the generator of infinitesimal time translations. Note that this translation
preserves the shape of the state t , for its overall shape is merely translated in time by t .

3.7.1.2 Spatial Translations: G Px h

The application of U Px I i h Px to x gives

I
i

h
Px x x

i

h
Px x (3.97)

Since Px ih x and since the first-order Taylor expansion of x is given by

x x x x , we have

I
i

h
Px x x

x

x
x (3.98)

So, when U Px acts on a wave function, it translates it spatially by an amount equal to .

Using [X Px ] ih we infer from (3.94) that the position operator X transforms as follows:

X I
i

h
Px X I

i

h
Px X

i

h
[Px X] X (3.99)

The relations (3.98) and (3.99) show that the linear momentum operator in I i h Px is a
generator of infinitesimal spatial translations.
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3.7.2 Finite Unitary Transformations

In Chapter 2 we saw that a finite unitary transformation can be constructed by performing a
succession of infinitesimal transformations. For instance, by applying a single infinitesimal

time translation N times in steps of N , we can generate a finite time translation

U H lim
N

N

k 1

I
i

h N
H lim

N
I

i

h
H

N

exp
i

h
H (3.100)

where the Hamiltonian is the generator of finite time translations. We should note that the

time evolution operator U t t0 e i t t0 H h , displayed in (3.58), represents a finite unitary

transformation where H is the generator of the time translation.
By analogy with (3.96) we can show that the application of U H to t yields

U H t exp
i

h
H t t (3.101)

where t is merely a time translation of t .

Similarly, we can infer from (3.98) that the application ofUa P exp ia P h to a wave
function causes it to be translated in space by a vector a:

Ua P r exp
i

h
a P r r a (3.102)

To calculate the transformed position vector operator R , let us invoke a relation we derived
in Chapter 2:

A ei G Ae i G A i [G A]
i 2

2!
[G [G A]]

i 3

3!
[G [G [G A]]]

(3.103)

An application of this relation to the spatial translation operator Ua P yields

R exp
i

h
a P R exp

i

h
a P R

i

h
[a P R] R a (3.104)

In deriving this, we have used the fact that [a P R] iha and that the other commutators

are zero, notably [a P [a P R]] 0. From (3.102) and (3.104), we see that the linear

momentum in exp ia P h is a generator of finite spatial translations.

3.7.3 Symmetries and Conservation Laws

We want to show here that every invariance principle of H is connected with a conservation
law.

The Hamiltonian of a system transforms under a unitary transformation ei G as follows;
see (3.103):

H ei GHe i G H i [G H ]
i 2

2!
[G [G H ]]

i 3

3!
[G [G [G H ]]]

(3.105)
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If H commutes with G, it also commutes with the unitary transformation U G ei G .
In this case we may infer two important conclusions. On the one hand, there is an invariance
principle: the Hamiltonian is invariant under the transformation U G , since

H ei GHe i G ei Ge i GH H (3.106)

On the other hand, if in addition to [G H ] 0, the operator G does not depend on time
explicitly, there is a conservation law: equation (3.88) shows that G is a constant of the motion,
since

d

dt
G

1

ih
[G H]

G

t
0 (3.107)

We say that G is conserved.
So whenever the Hamiltonian is invariant under a unitary transformation, the generator of

the transformation is conserved. We may say, in general, that for every invariance symmetry of
the Hamiltonian, there corresponds a conservation law.

3.7.3.1 Conservation of Energy and Linear Momentum

Let us consider two interesting applications pertaining to the invariance of the Hamiltonian

of an isolated system with respect to time translations and to space translations. First, let us
consider time translations. As shown in (3.58), time translations are generated in the case of

time-independent Hamiltonians by the evolution operator U t t0 e i t t0 H h . Since H
commutes with the generator of the time translation (which is given by H itself), it is invariant
under time translations. As H is invariant under time translations, the energy of an isolated
system is conserved. We should note that if the system is invariant under time translations,
this means there is a symmetry of time homogeneity. Time homogeneity implies that the time-

displaced state t , like t , satisfies the Schrödinger equation.
The second application pertains to the spatial translations, or to transformations under

Ua P exp ia P h , of an isolated system. The linear momentum is invariant underUa P
and the position operator transforms according to (3.104):

P P R R a (3.108)

For instance, since the Hamiltonian of a free particle does not depend on the coordinates, it

commutes with the linear momentum [H P] 0. The Hamiltonian is then invariant under

spatial translations, since

H exp
i

h
a P H exp

i

h
a P exp

i

h
a P exp

i

h
a P H H (3.109)

Since [H P] 0 and since the linear momentum operator does not depend explicitly on time,

we infer from (3.88) that P is a constant of the motion, since

d

dt
P

1

ih
[P H ]

P

t
0 (3.110)

So if [H P] 0 the Hamiltonian will be invariant under spatial translations and the linear
momentum will be conserved. A more general case where the linear momentum is a constant
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of the motion is provided by an isolated system, for its total linear momentum is conserved.

Note that the invariance of the system under spatial translations means there is a symmetry of

spatial homogeneity. The requirement for the homogeneity of space implies that the spatially

displaced wave function r a , much like r , satisfies the Schrödinger equation.
In summary, the symmetry of time homogeneity gives rise to the conservation of energy,

whereas the symmetry of space homogeneity gives rise to the conservation of linear momentum.

In Chapter 7 we will see that the symmetry of space isotropy, or the invariance of the

Hamiltonian with respect to space rotations, leads to conservation of the angular momentum.

Parity operator

The unitary transformations we have considered so far, time translations and space translations,

are continuous. We may consider now a discrete unitary transformation, the parity. As seen in
Chapter 2, the parity transformation consists of an inversion or reflection through the origin of

the coordinate system:

P r r (3.111)

If the parity operator commutes with the system’s Hamiltonian,

[H P] 0 (3.112)

the parity will be conserved, and hence a constant of the motion. In this case the Hamiltonian
and the parity operator have simultaneous eigenstates. For instance, we will see in Chapter 4

that the wave functions of a particle moving in a symmetric potential, V r V r , have
definite parities: they can be only even or odd. Similarly, we can ascertain that the parity of an

isolated system is a constant of the motion.

3.8 Connecting Quantum to Classical Mechanics

3.8.1 Poisson Brackets and Commutators

To establish a connection between quantum mechanics and classical mechanics, we may look

at the time evolution of observables.

Before describing the time evolution of a dynamical variable within the context of classical

mechanics, let us review the main ideas of the mathematical tool relevant to this description,

the Poisson bracket. The Poisson bracket between two dynamical variables A and B is defined
in terms of the generalized coordinates qi and the momenta pi of the system:

A B
j

A

q j

B

p j

A

p j

B

q j
(3.113)

Since the variables qi are independent of pi , we have q j pk 0, p j qk 0; thus we can

show that

q j qk p j pk 0 q j pk jk (3.114)

Using (3.113) we can easily infer the following properties of the Poisson brackets:

Antisymmetry

A B B A (3.115)
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Linearity

A B C D A B A C A D (3.116)

Complex conjugate

A B A B (3.117)

Distributivity

A BC A B C B A C AB C A B C A C B (3.118)

Jacobi identity

A B C B C A C A B 0 (3.119)

Using d f n x dx n f n 1 x d f x dx , we can show that

A Bn nBn 1 A B An B nAn 1 A B (3.120)

These properties are similar to the properties of the quantum mechanical commutators seen in

Chapter 2.

The total time derivative of a dynamical variable A is given by

d A

dt
j

A

q j

q j
t

A

p j

p j
t

A

t
j

A

q j

H

p j

A

p j

H

p j

A

t
(3.121)

in deriving this relation we have used the Hamilton equations of classical mechanics:

dq j
dt

H

p j

dp j
dt

H

q j
(3.122)

where H is the Hamiltonian of the system. The total time evolution of a dynamical variable A
is thus given by the following equation of motion:

d A

dt
A H

A

t
(3.123)

Note that if A does not depend explicitly on time, its time evolution is given simply by d A dt
A H . If d A dt 0 or A H 0, A is said to be a constant of the motion.
Comparing the classical relation (3.123) with its quantum mechanical counterpart (3.88),

d

dt
A

1

ih
[A H ]

A

t
(3.124)

we see that they are identical only if we identify the Poisson bracket A H with the commuta-

tor [A H ] ih . We may thus infer the following general rule. The Poisson bracket of any pair
of classical variables can be obtained from the commutator between the corresponding pair of

quantum operators by dividing it by ih:

1

ih
[A B] A B classical (3.125)
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Note that the expressions of classical mechanics can be derived from their quantum counter-

parts, but the opposite is not possible. That is, dividing quantum mechanical expressions by ih
leads to their classical analog, but multiplying classical mechanical expressions by ih doesn’t
necessarily lead to their quantum counterparts.

Example 3.5

(a) Evaluate the Poisson bracket x p between the position, x , and momentum, p, vari-
ables.

(b) Compare the commutator X P with Poisson bracket x p calculated in Part (a).

Solution

(a) Applying the general relation

A B
j

A

x j

B

p j

A

p j

B

x j
(3.126)

to x and p, we can readily evaluate the given Poisson bracket:

x p
x

x

p

p

x

p

p

x
x

x

p

p
1

(3.127)

(b) Using the fact that [X P] ih , we see that

1

ih
[ X P] 1 (3.128)

which is equal to the Poisson bracket (3.127); that is,

1

ih
[ X P] x p classical 1 (3.129)

This result is in agreement with Eq. (3.125).

3.8.2 The Ehrenfest Theorem

If quantum mechanics is to be more general than classical mechanics, it must contain classical

mechanics as a limiting case. To illustrate this idea, let us look at the time evolution of the

expectation values of the position and momentum operators, R and P , of a particle moving in
a potential V r , and then compare these relations with their classical counterparts.
Since the position and the momentum observables do not depend explicitly on time, within

the context of wave mechanics, the terms R t and P t are zero. Hence, inserting
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H P 2 2m V R t into (3.88) and using the fact that R commutes with V R t , we can
write

d

dt
R

1

ih
[R H ]

1

ih
[R

P 2

2m
V R t ]

1

2imh
[R P 2] (3.130)

Since

[R P 2] 2ihP (3.131)

we have
d

dt
R

1

m
P (3.132)

As for d P dt , we can infer its expression from a treatment analogous to d R dt . Using

[P V R t ] ih V R t (3.133)

we can write
d

dt
P

1

ih
[P V R t ] V R t (3.134)

The two relations (3.132) and (3.134), expressing the time evolution of the expectation values

of the position and momentum operators, are known as the Ehrenfest theorem, or Ehrenfest
equations. Their respective forms are reminiscent of the Hamilton–Jacobi equations of classical

mechanics,
dr

dt

p

m

d p

dt
V r (3.135)

which reduce to Newton’s equation of motion for a classical particle of mass m, position r , and
momentum p:

d p

dt
m
d2r

dt2
V r (3.136)

Notice h has completely disappeared in the Ehrenfest equations (3.132) and (3.134). These two
equations certainly establish a connection between quantum mechanics and classical mechan-

ics. We can, within this context, view the center of the wave packet as moving like a classical

particle when subject to a potential V r .

3.8.3 Quantum Mechanics and Classical Mechanics

In Chapter 1 we focused mainly on those experimental observations which confirm the failure

of classical physics at the microscopic level. We should bear in mind, however, that classical

physics works perfectly well within the realm of the macroscopic world. Thus, if the theory

of quantum mechanics is to be considered more general than classical physics, it must yield

accurate results not only on the microscopic scale but at the classical limit as well.

How does one decide on when to use classical or quantummechanics to describe the motion

of a given system? That is, how do we know when a classical description is good enough or

when a quantum description becomes a must? The answer is provided by comparing the size of

those quantities of the system that have the dimensions of an action with the Planck constant,

h. Since, as shown in (3.125), the quantum relations are characterized by h, we can state that
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if the value of the action of a system is too large compared to h, this system can be accurately
described by means of classical physics. Otherwise, the use of a quantal description becomes

unavoidable. One should recall that, for microscopic systems, the size of action variables is of

the order of h; for instance, the angular momentum of the hydrogen atom is L nh, where n
is finite.

Another equivalent way of defining the classical limit is by means of "length." Since
h p the classical domain can be specified by the limit 0. This means that, when the de

Broglie wavelength of a system is too small compared to its size, the system can be described

accurately by means of classical physics.

In summary, the classical limit can be described as the limit h 0 or, equivalently, as the

limit 0. In these limits the results of quantum mechanics should be similar to those of

classical physics:

lim
h 0

Quantum Mechanics Classical Mechanics (3.137)

lim
0
Quantum Mechanics Classical Mechanics (3.138)

Classical mechanics can thus be regarded as the short wavelength limit of quantum mechanics.

In this way, quantum mechanics contains classical mechanics as a limiting case. So, in the limit

of h 0 or 0, quantum dynamical quantities should have, as proposed by Bohr, a one-to-

one correspondence with their classical counterparts. This is the essence of the correspondence
principle.
But how does one reconcile, in the classical limit, the probabilistic nature of quantum me-

chanics with the determinism of classical physics? The answer is quite straightforward: quan-

tum fluctuations must become negligible or even vanish when h 0, for Heisenberg’s un-

certainty principle would acquire the status of certainty; when h 0, the fluctuations in the

position and momentum will vanish, x 0 and p 0. Thus, the position and momentum

can be measured simultaneously with arbitrary accuracy. This implies that the probabilistic as-

sessments of dynamical quantities by quantum mechanics must give way to exact calculations

(these ideas will be discussed further when we study the WKB method in Chapter 9).

So, for those cases where the action variables of a system are too large compared to h
(or, equivalently, when the lengths of this system are too large compared to its de Broglie

wavelength), quantum mechanics gives the same results as classical mechanics.

In the rest of this text, we will deal with the various applications of the Schrödinger equation.

We start, in Chapter 4, with the simple case of one-dimensional systems and later on consider

more realistic systems.

3.9 Solved Problems

Problem 3.1

A particle of mass m, which moves freely inside an infinite potential well of length a, has the
following initial wave function at t 0:

x 0
A

a
sin

x

a

3

5a
sin

3 x

a

1

5a
sin

5 x

a
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where A is a real constant.
(a) Find A so that x 0 is normalized.
(b) If measurements of the energy are carried out, what are the values that will be found and

what are the corresponding probabilities? Calculate the average energy.

(c) Find the wave function x t at any later time t .
(d) Determine the probability of finding the system at a time t in the state x t
2 a sin 5 x a exp i E5t h ; then determine the probability of finding it in the state
x t 2 a sin 2 x a exp i E2t h .

Solution

Since the functions

n x
2

a
sin

n x

a
(3.139)

are orthonormal,

n m

a

0
n x m x dx

2

a

a

0

sin
n x

a
sin

m x

a
dx nm (3.140)

it is more convenient to write x 0 in terms of n x :

x 0
A

a
sin

x

a

3

5a
sin

3 x

a

1

5a
sin

5 x

a

A

2
1 x

3

10
3 x

1

10
5 x (3.141)

(a) Since n m nm the normalization of x 0 yields

1
A2

2

3

10

1

10
(3.142)

or A 6 5; hence

x 0
3

5
1 x

3

10
3 x

1

10
5 x (3.143)

(b) Since the second derivative of (3.139) is given by d2 n x dx2 n2 2 a2 n x ,
and since the Hamiltonian of a free particle is H h2 2m d2 dx2, the expectation value of
H with respect to n x is

En n H n
h2

2m

a

0
n x

d2 n x

dx2
dx

n2 2h2

2ma2
(3.144)

If a measurement is carried out on the system, we would obtain En n2 2h2 2ma2 with
a corresponding probability of Pn En n

2. Since the initial wave function (3.143)

contains only three eigenstates of H , 1 x , 3 x , and 5 x , the results of the energy mea-
surements along with the corresponding probabilities are

E1 1 H 1

2h2

2ma2
P1 E1 1

2 3

5
(3.145)

E3 3 H 3
9 2h2

2ma2
P3 E3 3

2 3

10
(3.146)

E5 5 H 5
25 2h2

2ma2
P5 E5 5

2 1

10
(3.147)
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The average energy is

E
n

PnEn
3

5
E1

3

10
E3

1

10
E5

29 2h2

10ma2
(3.148)

(c) As the initial state x 0 is given by (3.143), the wave function x t at any later
time t is

x t
3

5
1 x e

i E1t h
3

10
3 x e

i E3t h
1

10
5 x e

i E5t h (3.149)

where the expressions of En are listed in (3.144) and n x in (3.139).
(d) First, let us express x t in terms of n x :

x t
2

a
sin

5 x

a
e i E5t h

5 x e
i E5t h (3.150)

The probability of finding the system at a time t in the state x t is

P 2
a

0

x t x t dx
2 1

10

a

0
5 x 5 x dx

2 1

10
(3.151)

since 1 3 0 and 5 exp i E5t h .
Similarly, since x t 2 a sin 2 x a exp i E2t h 2 x exp i E2t h , we

can easily show that the probability for finding the system in the state x t is zero:

P 2
a

0

x t x t dx
2

0 (3.152)

since 1 3 5 0.

Problem 3.2

A particle of massm, which moves freely inside an infinite potential well of length a, is initially
in the state x 0 3 5a sin 3 x a 1 5a sin 5 x a .
(a) Find x t at any later time t .
(b) Calculate the probability density x t and the current density, J x t .
(c) Verify that the probability is conserved, i.e., t J x t 0.

Solution

(a) Since x 0 can be expressed in terms of n x 2 a sin n x a as

x 0
3

5a
sin

3 x

a

1

5a
sin

5 x

a

3

10
3 x

1

10
5 x (3.153)

we can write

x t
3

5a
sin

3 x

a
e i E3t h

1

5a
sin

5 x

a
e i E5t h

3

10
3 x e

i E3t h
1

10
5 x e

i E5t h (3.154)



194 CHAPTER 3. POSTULATES OF QUANTUM MECHANICS

where the expressions for En are listed in (3.144): En n2 2h2 2ma2 .
(b) Since x t x t x t , where x t is given by (3.154), we can write

x t
3

10
2
3 x

3

10
3 x 5 x ei E3 E5 t h e i E3 E5 t h

1

10
2
5 x (3.155)

From (3.144) we have E3 E5 9E1 25E1 16E1 8 2h2 ma2 . Thus, x t
becomes

x t
3

10
2
3 x

3

5
3 x 5 x cos

16E1t

h

1

10
2
5 x

3

5a
sin2

3 x

a

2 3

5a
sin

3 x

a
sin

5 x

a
cos

16E1t

h

1

5a
sin2

5 x

a
(3.156)

Since the system is one-dimensional, the action of the gradient operator on x t and x t
is given by x t d x t dx i and x t d x t dx i . We can thus write

the current density J x t ih 2m x t x t x t x t as

J x t
ih

2m
x t

d x t

dx
x t

d x t

dx
i (3.157)

Using (3.154) we have

d x t

dx

3

a

3

5a
cos

3 x

a
e i E3t h

5

a

1

5a
cos

5 x

a
e i E5t h (3.158)

d x t

dx

3

a

3

5a
cos

3 x

a
ei E3t h

5

a

1

5a
cos

5 x

a
ei E5t h (3.159)

A straightforward calculation yields

d

dx

d

dx
2i

3

5a2
5 sin

3 x

a
cos

5 x

a
3 sin

5 x

a
cos

3 x

a

sin
E3 E5
h

t (3.160)

Inserting this into (3.157) and using E3 E5 16E1, we have

J x t
h

m

3

5a2
5 sin

3 x

a
cos

5 x

a
3 sin

5 x

a
cos

3 x

a
sin

16E1t

h
i

(3.161)

(c) Performing the time derivative of (3.156) and using the expression 32 3E1 5ah
16 2h 3 5ma3 , since E1 2h2 2ma2 , we obtain

t

32 3E1
5ah

sin
3 x

a
sin

5 x

a
sin

16E1t

h

16 2h 3

5ma3
sin

3 x

a
sin

5 x

a
sin

16E1t

h
(3.162)
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Now, taking the divergence of (3.161), we end up with

J x t
d J x t

dx

16 2h 3

5ma3
sin

3 x

a
sin

5 x

a
sin

16E1t

h
(3.163)

The addition of (3.162) and (3.163) confirms the conservation of probability:

t
J x t 0 (3.164)

Problem 3.3

Consider a one-dimensional particle which is confined within the region 0 x a and whose
wave function is x t sin x a exp i t .
(a) Find the potential V x .
(b) Calculate the probability of finding the particle in the interval a 4 x 3a 4.

Solution

(a) Since the first time derivative and the second x derivative of x t are given by
x t t i x t and 2 x t x2 2 a2 x t , the Schrödinger equa-

tion (3.68) yields

ih i x t
h2

2m

2

a2
x t V x t x t (3.165)

Hence V x t is time independent and given by V x h h2 2 2ma2 .
(b) The probability of finding the particle in the interval a 4 x 3a 4 can be obtained

from (3.4):

P

3a 4
a 4 x 2dx
a
0 x 2dx

3a 4
a 4 sin2 x a dx
a
0 sin

2 x a dx

2

2
0 82 (3.166)

Problem 3.4

A system is initially in the state 0 [ 2 1 3 2 3 4 ] 7, where n are

eigenstates of the system’s Hamiltonian such that H n n2E0 n .

(a) If energy is measured, what values will be obtained and with what probabilities?

(b) Consider an operator A whose action on n is defined by A n n 1 a0 n . If

A is measured, what values will be obtained and with what probabilities?
(c) Suppose that a measurement of the energy yields 4E0. If we measure A immediately

afterwards, what value will be obtained?

Solution

(a) A measurement of the energy yields En n H n n2E0, that is

E1 E0 E2 4E0 E3 9E0 E4 16E0 (3.167)

Since 0 is normalized, 0 0 2 3 1 1 7 1, and using (3.2), we can write the

probabilities corresponding to (3.167) as P En n 0
2

0 0 n 0
2; hence,
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using the fact that n m nm , we have

P E1
2

7
1 1

2
2

7
P E2

3

7
2 2

2
3

7
(3.168)

P E3
1

7
3 3

2
1

7
P E4

1

7
4 4

2
1

7
(3.169)

(b) Similarly, a measurement of the observable A yields an n A n n 1 a0; that
is,

a1 2a0 a2 3a0 a3 4a0 a4 5a0 (3.170)

Again, using (3.2) and since 0 is normalized, we can ascertain that the probabilities cor-

responding to the values (3.170) are given by P an n 0
2

0 0 n 0
2,

or

P a1
2

7
1 1

2
2

7
P a2

3

7
2 2

2
3

7
(3.171)

P a3
1

7
3 3

2
1

7
P a4

1

7
4 4

2
1

7
(3.172)

(c) An energy measurement that yields 4E0 implies that the system is left in the state 2 .

A measurement of the observable A immediately afterwards leads to

2 A 2 3a0 2 2 3a0 (3.173)

Problem 3.5

(a) Assuming that the system of Problem 3.4 is initially in the state 3 , what values for the

energy and the observable A will be obtained if we measure: (i)H first then A, (ii) A first then
H?
(b) Compare the results obtained in (i) and (ii) and infer whether H and A are compatible.

Calculate [H A] 3 .

Solution

(a) (i) The measurement of H first then A is represented by AH 3 . Using the relations

H n n2E0 n and A n na0 n 1 , we have

AH 3 9E0A 3 27E0a0 4 (3.174)

(ii) Measuring A first and then H , we will obtain

H A 3 3a0H 4 48E0a0 4 (3.175)

(b) Equations (3.174) and (3.175) show that the actions of AH and H A yield different
results. This means that H and A do not commute; hence they are not compatible. We can thus
write

[H A] 3 48 27 E0a0 4 17E0a0 4 (3.176)



3.9. SOLVED PROBLEMS 197

Problem 3.6

Consider a physical system whose Hamiltonian H and initial state 0 are given by

H E

0 i 0

i 0 0

0 0 1
0

1

5

1 i
1 i
1

where E has the dimensions of energy.

(a) What values will we obtain when measuring the energy and with what probabilities?

(b) Calculate H , the expectation value of the Hamiltonian.

Solution

(a) The results of the energy measurement are given by the eigenvalues of H . A diago-
nalization of H yields a nondegenerate eigenenergy E1 E and a doubly degenerate value

E2 E3 E whose respective eigenvectors are given by

1
1

2

1

i
0

2
1

2

i
1

0
3

0

0

1

(3.177)

these eigenvectors are orthogonal since H is Hermitian. Note that the initial state 0 can be

written in terms of 1 , 2 , and 3 as follows:

0
1

5

1 i
1 i
1

2

5
1

2

5
2

1

5
3 (3.178)

Since 1 , 2 , and 3 are orthonormal, the probability of measuring E1 E is given by

P1 E1 1 0
2 2

5
1 1

2
2

5
(3.179)

Now, since the other eigenvalue is doubly degenerate, E2 E3 E , the probability of

measuring E can be obtained from (3.3):

P2 E2 2 0
2

3 0
2 2

5

1

5

3

5
(3.180)

(b) From (3.179) and (3.180), we have

H P1E1 P2E2
2

5
E

3

5
E

1

5
E (3.181)

We can obtain the same result by calculating the expectation value of H with respect to 0 .

Since 0 0 1, we have H 0 H 0 0 0 0 H 0 :

H 0 H 0
E

5
1 i 1 i 1

0 i 0

i 0 0

0 0 1

1 i
1 i
1

1

5
E

(3.182)
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Problem 3.7

Consider a system whose Hamiltonian H and an operator A are given by the matrices

H E0

1 1 0

1 1 0

0 0 1

A a
0 4 0

4 0 1

0 1 0

where E0 has the dimensions of energy.

(a) If we measure the energy, what values will we obtain?

(b) Suppose that when we measure the energy, we obtain a value of E0. Immediately

afterwards, we measure A. What values will we obtain for A and what are the probabilities
corresponding to each value?

(c) Calculate the uncertainty A.

Solution

(a) The possible energies are given by the eigenvalues of H . A diagonalization of H yields
three nondegenerate eigenenergies E1 0, E2 E0, and E3 2E0. The respective eigen-

vectors are

1
1

2

1

1

0
2

0

0

1
3

1

2

1

1

0

(3.183)

these eigenvectors are orthonormal.

(b) If a measurement of the energy yields E0, this means that the system is left in the

state 2 . When we measure the next observable, A, the system is in the state 2 . The result

we obtain for A is given by any of the eigenvalues of A. A diagonalization of A yields three
nondegenerate values: a1 17a, a2 0, and a3 17a; their respective eigenvectors
are given by

a1
1

34

4

17

1

a2
1

17

1

0

4

a3
1

2

4

17

1
(3.184)

Thus, when measuring A on a system which is in the state 2 , the probability of finding

17a is given by

P1 a1 a1 2
2 1

34
4 17 1

0

0

1

2

1

34
(3.185)

Similarly, the probabilities of measuring 0 and 17a are

P2 a2 a2 2
2 1

17
1 0 4

0

0

1

2

16

17
(3.186)

P3 a3 a3 2
2 1

34
4 17 1

0

0

1

2

1

34
(3.187)
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(c) Since the system, when measuring A is in the state 2 , the uncertainty A is given by
A 2 A2 2 2 A 2

2, where

2 A 2 a 0 0 1

0 4 0

4 0 1

0 1 0

0

0

1

0 (3.188)

2 A
2

2 a2 0 0 1

0 4 0

4 0 1

0 1 0

0 4 0

4 0 1

0 1 0

0

0

1

a2 (3.189)

Thus we have A a.

Problem 3.8

Consider a system whose state and two observables are given by

t
1

2

1

A
1

2

0 1 0

1 0 1

0 1 0

B
1 0 0

0 0 0

0 0 1

(a) What is the probability that a measurement of A at time t yields 1?

(b) Let us carry out a set of two measurements where B is measured first and then, imme-
diately afterwards, A is measured. Find the probability of obtaining a value of 0 for B and a
value of 1 for A.
(c) Now we measure A first then, immediately afterwards, B. Find the probability of ob-

taining a value of 1 for A and a value of 0 for B.
(d) Compare the results of (b) and (c). Explain.

(e) Which among the sets of operators A , B , and A B form a complete set of com-

muting operators (CSCO)?

Solution

(a) A measurement of A yields any of the eigenvalues of A which are given by a1 1,

a2 0, a3 1; the respective (normalized) eigenstates are

a1
1

2

1

2

1

a2
1

2

1

0

1

a3
1

2

1

2

1

(3.190)

The probability of obtaining a1 1 is

P 1
a1 t 2

t t

1

6

1

2
1 2 1

1

2

1

2

1

3
(3.191)

where we have used the fact that t t 1 2 1

1

2

1

6.

(b) A measurement of B yields a value which is equal to any of the eigenvalues of B:
b1 1, b2 0, and b3 1; their corresponding eigenvectors are

b1

0

0

1

b2

0

1

0

b3

1

0

0

(3.192)
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Since the system was in the state t , the probability of obtaining the value b2 0 for B is

P b2
b2 t 2

t t

1

6
0 1 0

1

2

1

2

2

3
(3.193)

We deal now with the measurement of the other observable, A. The observables A and B do
not have common eigenstates, since they do not commute. After measuring B (the result is
b2 0), the system is left, according to Postulate 3, in a state which can be found by

projecting t onto b2 :

b2 b2 t
0

1

0

0 1 0

1

2

1

0

2

0

(3.194)

The probability of finding 1 when we measure A is given by

P a3
a3

2 1

4

1

2
1 2 1

0

2

0

2

1

2
(3.195)

since 4. In summary, when measuring B then A, the probability of finding a value of
0 for B and 1 for A is given by the product of the probabilities (3.193) and (3.195):

P b2 a3 P b2 P a3
2

3

1

2

1

3
(3.196)

(c) Next we measure A first then B. Since the system is in the state t , the probability
of measuring a3 1 for A is given by

P a3
a3 t 2

t t

1

6

1

2
1 2 1

1

2

1

2

1

3
(3.197)

where we have used the expression (3.190) for a3 .
We then proceed to the measurement of B. The state of the system just after measuring A

(with a value a3 1) is given by a projection of t onto a3 :

a3 a3 t
1

4

1

2

1

1 2 1

1

2

1

2

2

1

2

1

(3.198)

So the probability of finding a value of b2 0 when measuring B is given by

P b2
b2

2 1

2

2

2
0 1 0

1

2

1

2

1

2
(3.199)

since 2.
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So when measuring A then B, the probability of finding a value of 1 for A and 0 for B is
given by the product of the probabilities (3.199) and (3.197):

P a3 b2 P a3 P b2
1

3

1

2

1

6
(3.200)

(d) The probabilities P b2 a3 and P a3 b2 , as shown in (3.196) and (3.200), are different.
This is expected, since A and B do not commute. The result of the successive measurements
of A and B therefore depends on the order in which they are carried out. The probability of
obtaining 0 for B then 1 for A is equal to 1

3
. On the other hand, the probability of obtaining 1

for A then 0 for B is equal to 1
6
. However, if the observables A and B commute, the result of the

measurements will not depend on the order in which they are carried out (this idea is illustrated

in the following solved problem).

(e) As stated in the text, any operator with non-degenerate eigenvalues constitutes, all by

itself, a CSCO. Hence each of A and B forms a CSCO, since their eigenvalues are not

degenerate. However, the set A B does not form a CSCO since the opertators A and B
do not commute.

Problem 3.9

Consider a system whose state and two observables A and B are given by

t
1

6

1

0

4

A
1

2

2 0 0

0 1 i
0 i 1

B
1 0 0

0 0 i
0 i 0

(a) We perform a measurement where A is measured first and then, immediately afterwards,
B is measured. Find the probability of obtaining a value of 0 for A and a value of 1 for B.
(b) Now we measure B first then, immediately afterwards, A. Find the probability of ob-

taining a value of 1 for B and a value of 0 for A.
(c) Compare the results of (b) and (c). Explain.

(d) Which among the sets of operators A , B , and A B form a complete set of com-

muting operators (CSCO)?

Solution

(a) A measurement of A yields any of the eigenvalues of A which are given by a1 0 (not

degenerate) and a2 a3 2 (doubly degenerate); the respective (normalized) eigenstates are

a1
1

2

0

i
1

a2
1

2

0

i
1

a3

1

0

0

(3.201)

The probability that a measurement of A yields a1 0 is given by

P a1
a1 t 2

t t

36

17

1

2

1

6
0 i 1

1

0

4

2

8

17
(3.202)

where we have used the fact that t t 1
36

1 0 4

1

0

4

17
36
.



202 CHAPTER 3. POSTULATES OF QUANTUM MECHANICS

Since the system was initially in the state t , after a measurement of A yields a1 0,

the system is left, as mentioned in Postulate 3, in the following state:

a1 a1 t
1

2

1

6

0

i
1

0 i 1

1

0

4

1

3

0

i
1

(3.203)

As for the measurement of B, we obtain any of the eigenvalues b1 1, b2 b3 1; their

corresponding eigenvectors are

b1
1

2

0

i
1

b2
1

2

0

i
1

b3

1

0

0

(3.204)

Since the system is now in the state , the probability of obtaining the (doubly degenerate)

value b2 b3 1 for B is

P b2
b2

2 b3
2

1

2

1

2
0 i 1

0

i
1

2

1

2
1 0 0

0

i
1

2

1 (3.205)

The reason P b2 1 is because the new state is an eigenstate of B; in fact 2 3 b2 .
In sum, when measuring A then B, the probability of finding a value of 0 for A and 1 for B

is given by the product of the probabilities (3.202) and (3.205):

P a1 b2 P a1 P b2
8

17
(3.206)

(b) Next we measure B first then A. Since the system is in the state t and since the

value b2 b3 1 is doubly degenerate, the probability of measuring 1 for B is given by

P b2
b2 t 2

t t

b3 t 2

t t

36

17

1

36

1

2
0 i 1

1

0

4

2

1 0 0

1

0

4

2

9

17
(3.207)

We now proceed to the measurement of A. The state of the system immediately after measuring
B (with a value b2 b3 1) is given by a projection of t onto b2 , and b3

b2 b2 t b3 b3 t

1

12

0

i
1

0 i 1

1

0

4

1

6

1

0

0

1 0 0

1

0

4

1

6

1

2i
2i

(3.208)
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So the probability of finding a value of a1 0 when measuring A is given by

P a1
a1

2 36

9

1

6 2
0 i 1

1

2i
2i

2

8

9
(3.209)

since 9
36
.

Therefore, when measuring B then A, the probability of finding a value of 1 for B and 0 for
A is given by the product of the probabilities (3.207) and (3.209):

P b2 a3 P b2 P a1
9

17

8

9

8

17
(3.210)

(c) The probabilities P a1 b2 and P b2 a1 , as shown in (3.206) and (3.210), are equal.
This is expected since A and B do commute. The result of the successive measurements of A
and B does not depend on the order in which they are carried out.
(d) Neither A nor B forms a CSCO since their eigenvalues are degenerate. The set

A B , however, does form a CSCO since the opertators A and B commute. The set of

eigenstates that are common to A B are given by

a2 b1
1

2

0

i
1

a1 b2
1

2

0

i
1

a3 b3

1

0

0

(3.211)

Problem 3.10

Consider a physical system which has a number of observables that are represented by the

following matrices:

A
5 0 0

0 1 2

0 2 1

B
1 0 0

0 0 3

0 3 0

C
0 3 0

3 0 2

0 2 0

D
1 0 0

0 0 i
0 i 0

(a) Find the results of the measurements of these observables.

(b) Which among these observables are compatible? Give a basis of eigenvectors common

to these observables.

(c) Which among the sets of operators A , B , C , D and their various combinations,

such as A B , A C , B C , A D , A B C , form a complete set of commuting operators
(CSCO)?

Solution

(a) The measurements of A, B, C and D yield a1 1, a2 3, a3 5, b1 3, b2 1,

b3 3, c1 1 2, c2 0, c3 1 2, d1 1, d2 d3 1; the respective eigenvectors

of A, B, C and D are

a1
1

2

0

1

1

a2
1

2

0

1

1

a3

1

0

0

(3.212)

b1
1

2

0

1

1

b2

1

0

0

b3
1

2

0

1

1

(3.213)
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c1
1

26

3

13

2

c2
1

13

2

0

3

c3
1

26

3

13

2

(3.214)

d1
1

2

0

i
1

d2

1

0

0

d3
1

2

0

1

i
(3.215)

(b)We can verify that, among the observables A, B,C , and D, only A and B are compatible,
since the matrices A and B commute; the rest do not commute with one another (neither A nor
B commutes with C or D; C and D do not commute).
From (3.212) and (3.213) we see that the three states a1 b1 , a2 b3 , a3 b2 ,

a1 b1
1

2

0

1

1

a2 b3
1

2

0

1

1

a3 b2

1

0

0

(3.216)

form a common, complete basis for A and B, since A an bm an an bm and B an bm
bm an bm .
(c) First, since the eigenvalues of the operators A , B , and C are all nondegenerate,

each one of A , B , and C forms separately a CSCO. Additionally, since two eigenvalues

of D are degenerate (d2 d3 1), the operator D does not form a CSCO.

Now, among the various combinations A B , A C , B C , A D , and A B C , only
A B forms a CSCO, because A and B are the only operators that commute; the set of

their joint eigenvectors are given by a1 b1 , a2 b3 , a3 b2 .

Problem 3.11

Consider a system whose initial state 0 and Hamiltonian are given by

0
1

5

3

0

4

H
3 0 0

0 0 5

0 5 0

(a) If a measurement of the energy is carried out, what values would we obtain and with

what probabilities?

(b) Find the state of the system at a later time t ; you may need to expand 0 in terms of

the eigenvectors of H .
(c) Find the total energy of the system at time t 0 and any later time t ; are these values

different?

(d) Does H form a complete set of commuting operators?

Solution

(a) A measurement of the energy yields the values E1 5, E2 3, E3 5; the

respective (orthonormal) eigenvectors of these values are

1
1

2

0

1

1
2

1

0

0
3

1

2

0

1

1

(3.217)
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The probabilities of finding the values E1 5, E2 3, E3 5 are given by

P E1 1 0 2 1

5 2
0 1 1

3

0

4

2

8

25
(3.218)

P E2 2 0 2 1

5
1 0 0

3

0

4

2

9

25
(3.219)

P E3 3 0 2 1

5 2
0 1 1

3

0

4

2

8

25
(3.220)

(b) To find t we need to expand 0 in terms of the eigenvectors (3.217):

0
1

5

3

0

4

2 2

5
1

3

5
2

2 2

5
3 (3.221)

hence

t
2 2

5
e i E1t

1
3

5
e i E2t

2
2 2

5
e i E3t

3
1

5

3e 3i t

4i sin 5t
4 cos 5t

(3.222)

(c) We can calculate the energy at time t 0 in three quite different ways. The first method

uses the bra-ket notation. Since 0 0 1, n m nm and since H n En n ,

we have

E 0 0 H 0
8

25
1 H 1

9

25
2 H 2

8

25
3 H 3

8

25
5

9

25
3

8

25
5

27

25
(3.223)

The second method uses matrix algebra:

E 0 0 H 0
1

25
3 0 4

3 0 0

0 0 5

0 5 0

3

0

4

27

25
(3.224)

The third method uses the probabilities:

E 0
2

n 1

P En En
8

25
5

9

25
3

8

25
5

27

25
(3.225)

The energy at a time t is

E t t H t
8

25
ei E1te i E1t

1 H 1
9

25
ei E2te i E2t

2 H 2

8

25
ei E3te i E3t

3 H 3
8

25
5

9

25
3

8

25
5

27

25
E 0 (3.226)
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As expected, E t E 0 since d H dt 0.

(d) Since none of the eigenvalues of H is degenerate, the eigenvectors 1 , 2 , 3 form

a compete (orthonormal) basis. Thus H forms a complete set of commuting operators.

Problem 3.12

(a) Calculate the Poisson bracket between the x and y components of the classical orbital
angular momentum.

(b) Calculate the commutator between the x and y components of the orbital angular mo-
mentum operator.

(c) Compare the results obtained in (a) and (b).

Solution

(a) Using the definition (3.113) we can write the Poisson bracket lx ly as

lx ly
3

j 1

lx
q j

ly
p j

lx
p j

ly
q j

(3.227)

where q1 x , q2 y, q3 z, p1 px , p2 py , and p3 pz . Since lx ypz zpy ,
ly zpx xpz , lz xpy ypx , the only partial derivatives that survive are lx z py ,
ly pz x , lx pz y, and ly z px . Thus, we have

lx ly
lx
z

ly
pz

lx
pz

ly
z

xpy ypx lz (3.228)

(b) The components of L are listed in (3.26) to (3.28): Lx Y Pz Z Py , L y Z Px X Pz ,

and LZ X Py Y Px . Since X , Y , and Z mutually commute and so do Px , Py , and Pz , we
have

[Lx L y] [Y Pz Z Py Z Px X Pz]

[Y Pz Z Px ] [Y Pz X Pz] [Z Py Z Px ] [Z Py X Pz]

Y [Pz Z ]Px X [Z Pz]Py ih X Py Y Px

ihLz (3.229)

(c) A comparison of (3.228) and (3.229) shows that

lx ly lz [Lx L y] ihLz (3.230)

Problem 3.13

Consider a charged oscillator, of positive charge q and massm, which is subject to an oscillating
electric field E0 cos t ; the particle’s Hamiltonian is H P2 2m kX2 2 qE0X cos t .
(a) Calculate d X dt , d P dt , d H dt .
(b) Solve the equation for d X dt and obtain X t such that X 0 x0.

Solution
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(a) Since the position operator X does not depend explicitly on time (i.e., X t 0),

equation (3.88) yields

d

dt
X

1

ih
[X H ]

1

ih
X
P2

2m

P

m
(3.231)

Now, since [P X ] ih, [P X2] 2ihX and P t 0, we have

d

dt
P

1

ih
[P H ]

1

ih
P
1

2
kX2 qE0X cos t k X qE0 cos t

(3.232)

d

dt
H

1

ih
[H H ]

H

t

H

t
qE0 X sin t (3.233)

(b) To find X we need to take a time derivative of (3.231) and then make use of (3.232):

d2

dt2
X

1

m

d

dt
P

k

m
X

qE0
m
cos t (3.234)

The solution of this equation is

X t X 0 cos
k

m
t

qE0
m

sin t A (3.235)

where A is a constant which can be determined from the initial conditions; since X 0 x0
we have A 0, and hence

X t x0 cos
k

m
t

qE0
m

sin t (3.236)

Problem 3.14

Consider a one-dimensional free particle of mass m whose position and momentum at time
t 0 are given by x0 and p0, respectively.
(a) Calculate P t and show that X t p0t2 m x0.
(b) Show that d X2 dt 2 PX m ih m and d P2 dt 0.

(c) Show that the position and momentum fluctuations are related by d2 x 2 dt2

2 p 2 m2 and that the solution to this equation is given by x 2 p 20t
2 m2 x 20

where x 0 and p 0 are the initial fluctuations.

Solution

(a) From the Ehrenfest equations d P dt [P V x t ] ih as shown in (3.134), and
since for a free particle V x t 0, we see that d P dt 0. As expected this leads to

P t p0, since the linear momentum of a free particle is conserved. Inserting P p0
into Ehrenfest’s other equation d X dt P m (see (3.132)), we obtain

d X

dt

1

m
p0 (3.237)
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The solution of this equation with the initial condition X 0 x0 is

X t
p0
m
t x0 (3.238)

(b) First, the proof of d P2 dt 0 is straightforward. Since [P2 H ] [P2 P2 2m] 0

and P2 t 0 (the momentum operator does not depend on time), (3.124) yields

d

dt
P2

1

ih
[P2 H ]

P2

t
0 (3.239)

For d X2 dt we have

d

dt
X2

1

ih
[X2 H ]

1

2imh
[X2 P2] (3.240)

since X2 t 0. Using [X P] ih, we obtain

[X2 P2] P[X2 P] [X2 P]P

PX [X P] P[X P]X X [X P]P [X P]X P

2ih PX X P 2ih 2PX ih (3.241)

hence
d

dt
X2

2

m
PX

ih

m
(3.242)

(c) As the position fluctuation is given by x 2 X2 X 2, we have

d x 2

dt

d X2

dt
2 X

d X

dt

2

m
PX

ih

m

2

m
X P (3.243)

In deriving this expression we have used (3.242) and d X dt P m. Now, since
d X P dt P d X dt P 2 m and

d PX

dt

1

ih
[PX H ]

1

2imh
[PX P2]

1

m
P2 (3.244)

we can write the second time derivative of (3.243) as follows:

d2 x 2

dt2
2

m

d PX

dt

d X P

dt

2

m2
P2 P 2 2

m2
p 20 (3.245)

where p 20 P2 P 2 P2 0 P 2
0; the momentum of the free particle is a constant

of the motion. We can verify that the solution of the differential equation (3.245) is given by

x 2
1

m2
p 20t

2 x 20 (3.246)

This fluctuation is similar to the spreading of a Gaussian wave packet we derived in Chapter 1.
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6.1: Time-dependent Schrödinger Equation
When we first introduced quantum mechanics, we saw that the fourth postulate of QM states that: The evolution of a closed system is
unitary (reversible). The evolution is given by the time-dependent Schrödinger equation

where  is the Hamiltonian of the system (the energy operator) and  is the reduced Planck constant (  with  the Planck constant,
allowing conversion from energy to frequency units).

We will focus mainly on the Schrödinger equation to describe the evolution of a quantum-mechanical system. The statement that the
evolution of a closed quantum system is unitary is however more general. It means that the state of a system at a later time  is given by
, where  is a unitary operator. An operator is unitary if its adjoint U  (obtained by taking the transpose and the complex conjugate
of the operator, ) is equal to its inverse:  and .

Note that the expression  is an integral equation relating the state at time zero with the state at time . For example,
classically we could write that  (where  is the speed, for constant speed). We can as well write a differential equation
that provides the same information: the Schrödinger equation. Classically for example, (in the example above) the equivalent differential
equation would be  (more generally we would have Newton’s equation linking the acceleration to the force). In QM we have a
differential equation that control the evolution of closed systems. This is the Schrödinger equation:

where  is the system’s Hamiltonian. The solution to this partial differential equation gives the wavefunction  at any later time,
when  is known.

Solutions to the Schrödinger equation

We first try to find a solution in the case where the Hamiltonian  is such that the potential  is time independent
(we can then write ). In this case we can use separation of variables to look for solutions. That is, we look for solutions that are a
product of a function of position only and a function of time only:

Then, when we take the partial derivatives we have that

The Schrödinger equation simplifies to

Dividing by  we have:

Now the LHS is a function of time only, while the RHS is a function of position only. For the equation to hold, both sides have then to be
equal to a constant (separation constant):

The two equations we find are a simple equation in the time variable:

and

that we have already seen as the time-independent Schrödinger equation. We have extensively studied the solutions of the this last
equation, as they are the eigenfunctions of the energy-eigenvalue problem, giving the stationary (equilibrium) states of quantum

iℏ = H|ψ⟩
∂|ψ⟩

∂t

H ℏ ℏ = h/2π h

t

U(t) †

=U † ( )U ∗ T =U † U −1 U = 1U †

|ψ(t)⟩ = U(t)|ψ(0)⟩ t

x(t) = x(0) + vt v

= vdx
dt

iℏ = Hψ(x, t)
∂ψ(x, t)

∂t

H ψ(x, t)

ψ(x, 0)

H = + V (x, t)
p̂

2

2m
V (x, t)

V (x)

ψ(x, t) = φ(x)f(t)

= φ(x), = f(t)  and   = f(t)
∂ψ(x, t)

∂t

df(t)

dt

∂ψ(x, t)

∂x

dφ(x)

dx

ψ(x, t)∂ 2

∂x2

φ(x)d2

dx2

iℏ φ(x) = − f(t) + V (x)φ(x)f(t)
df(t)

dt

ℏ2

2m

φ(x)d2

x2

ψ(x, t)

iℏ = − + V (x)
df(t)

dt

1

f(t)

ℏ2

2m

φ(x)d2

x2

1

φ(x)

iℏ = E, − + V (x) = E
df(t)

dt

1

f(t)

ℏ2

2m

φ(x)d2

x2

1

φ(x)

= − Ef(t),   →  f(t) = f(0)
df(t)

dt

i

ℏ
e−i

Et

ℏ

− + V (x) = E
ℏ2

2m

φ(x)d2

x2

1

φ(x)



systems. Note that for these stationary solutions  we can still find the corresponding total wavefunction, given as stated above by
, which does describe also the time evolution of the system:

Does this mean that the states that up to now we called stationary are instead evolving in time?

The answer is yes, but with a caveat. Although the states themselves evolve as stated above, any measurable quantity (such as the
probability density  or the expectation values of observable,  are still time-independent. (Check it!)

Thus we were correct in calling these states stationary and neglecting in practice their time-evolution when studying the properties of
systems they describe.

Notice that the wavefunction built from one energy eigenfunction, , is only a particular solution of the Schrödinger
equation, but many other are possible. These will be complicated functions of space and time, whose shape will depend on the
particular form of the potential . How can we describe these general solutions? We know that in general we can write a basis given
by the eigenfunction of the Hamiltonian. These are the functions  (as defined above by the time-independent Schrödinger
equation). The eigenstate of the Hamiltonian do not evolve. However we can write any wavefunction as

This just corresponds to express the wavefunction in the basis given by the energy eigenfunctions. As usual, the coefficients  can be
obtained at any instant in time by taking the inner product: .

What is the evolution of such a function? Substituting in the Schrödinger equation we have

that becomes

For each  we then have the equation in the coefficients only

A general solution of the Schrödinger equation is then

We can define the eigen-frequencies  from the eigen-energies. Thus we see that the wavefunction is a superposition of
waves  propagating in time each with a different frequency .

The behavior of quantum systems –even particles– thus often is similar to the propagation of waves. One example is the diffraction
pattern for electrons (and even heavier objects) when scattering from a slit. We saw an example in the electron diffraction video at
the beginning of the class.

What is the probability of measuring a certain energy  at a time ? It is given by the coefficient of the  eigenfunction,

. This means that the probability for the given energy is constant, does not change in time. Energy

is then a so-called constant of the motion. This is true only for the energy eigenvalues, not for other observables‘.

Consider instead the probability of finding the system at a certain position, . This of course changes in time. For
example, let

with

φ(x)

ψ(x, t) = φ(x)f(t)

ψ(x, t) = φ(x)e−i Et

ℏ

|ψ(x, t)|
2

⟨A⟩ = ∫ ψ(x, t A[ψ(x, t)]))∗

ψ(x, t) = φ(x)f(t)

V (x)

{φ(x)}

ψ(x, t) = (t) (x)∑
k

ck φk

(t)ck

⟨ ∣ ψ(x, t)⟩φk

iℏ = (t)H (x)
∂ ( (t) (x))∑k ck φk

∂t
∑
k

ck φk

iℏ (x) = (t) (x)∑
k

∂ ( (t))ck

∂t
φk ∑

k

ck Ekφk

φk

iℏ = (t)  →   (t) = (0)
dck

dt
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 Example 6.1.1

p(x) = |ψ(x, t)|
2

ψ(x, 0) = (0) (x) + (0) (x),c1 φ1 c2 φ2

+ = + = 1| (0)|c1
2

| (0)|c2
2

| |c1
2

| |c2
2



and  normalized energy eigenfunctions. Then at a later time we have

What is ?

Solution

The last term describes a wave interference between different components of the initial wavefunction.

The expressions found above for the time-dependent wavefunction are only valid if the potential is itself time-independent. If this is
not the case, the solutions are even more difficult to obtain.

Unitary Evolution
We saw two equivalent formulation of the quantum mechanical evolution, the Schrödinger equation and the Heisenberg equation. We
now present a third possible formulation: following the 4  postulate we express the evolution of a state in terms of a unitary operator,
called the propagator:

with . (Notice that a priori the unitary operator  could also be a function of space). We can show that this is equivalent to the
Schrödinger equation, by verifying that  above is a solution:

where in the second step we used the fact that since the equation holds for any wavefunction  it must hold for the operator themselves.
If the Hamiltonian is time independent, the second equation can be solved easily, obtaining:

where we set . Notice that as desired  is unitary, .

This page titled 6.1: Time-dependent Schrödinger Equation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Paola Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.
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Û eiHt/ℏe−iHt/ℏ

https://phys.libretexts.org/Bookshelves/Nuclear_and_Particle_Physics/Introduction_to_Applied_Nuclear_Physics_(Cappellaro)/06%3A_Time_Evolution_in_Quantum_Mechanics/6.01%3A_Time-dependent_Schrodinger_equation
https://creativecommons.org/licenses/by-nc-sa/4.0
http://qeg.mit.edu/Cappellaro.php
https://ocw.mit.edu/index.htm
https://ocw.mit.edu/courses/22-02-introduction-to-applied-nuclear-physics-spring-2012/

