CHAPTER 1

THE WAVE FUNCTION

1.1 THE SCHRODINGER EQUATION

Imagine a particle of mass m, constrained to move along the x-axis, subject to some
specified force F(x, t) (Figure 1.1). The program of classical mechanics is to deter-
mine the position of the particle at any given time: x(¢). Once we know that, we can
figure out the velocity (v = dx/dt), the momentum (p = mv), the kinetic energy
(T = (1/2)mv?), or any other dynamical variable of interest. And how do we go
about determining x (#)? We apply Newton’s second law: F' = ma. (For conservative
systems—the only kind we shall consider, and, fortunately, the only kind that occur
at the microscopic level—the force can be expressed as the derivative of a potential
energy function,' F = —3V /dx, and Newton’s law reads m d*x /dt? = —3V /9x.)
This, together with appropriate initial conditions (typically the position and velocity
att = (), determines x(z).

Quantum mechanics approaches this same problem quite differently. In this
case what we’re looking for is the wave function, ¥ (x, 1), of the particle, and we get
it by solving the Schrodinger equation:

ih— = ———— + V. [.1]

"Magnetic forces are an exception, but let’s not worry about them just yet. By the way, we shall
assume throughout this book that the motion is nonrelativistic (v « ¢).
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Figure 1.1: A “particle” constrained to move in one dimension under the influ-
ence of a specified force.

Here i is the square root of —1, and % is Planck’s constant—or rather, his original
constant (k) divided by 27:

h
h=— =1.054573 x 1073J s. [1.2]
27

The Schrodinger equation plays a role logically analogous to Newton’s second law:
Given suitable initial conditions [typically, W(x, 0)], the Schrédinger equation de-
termines W (x, ¢) for all future time, just as, in classical mechanics, Newton’s law
determines x (¢) for all future time.

1.2 THE STATISTICAL INTERPRETATION

But what exactly is this “wave function”, and what does it do for you once you've got
it? After all, a particle, by its nature, is localized at a point, whereas the wave function
(as its name suggests) is spread out in space (it’s a function of x, for any given time
1). How can such an object be said to describe the state of a particle? The answer is
provided by Born’s statistical interpretation of the wave function, which says that
|W (x, )|* gives the probability of finding the particle at point x, at time /—or, more
precisely,”

[1.3]

W )P dx = { probability of finding the particle }

between x and (x 4+ dx), at time ¢,

For the wave function in Figure 1.2, you would be quite likely to find the particle in
the vicinity of point 4, and relatively unlikely to find it near point 5.

The statistical interpretation introduces a kind of indeterminacy into quantum
mechanics, for even if you know everything the theory has to tell you about the

2The wave function itself is complex, but |¥|2 = ¥* W (where ¥* is the complex conjugate of W)
is real and nonnegative—as a probability, of course, must be.
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Figure 1.2: A typical wave function. The particle would be relatively likely to be
found near 4, and unlikely to be found near B. The shaded area represents the
probability of finding the particle in the range dx.

particle (to wit: its wave function), you cannot predict with certainty the outcome
of a simple experiment to measure its position—all quantum mechanics has to offer
is statistical information about the possible results. This indeterminacy has been
profoundly disturbing to physicists and philosophers alike. Is it a peculiarity of
nature, a deficiency in the theory, a fault in the measuring apparatus, or what?

Suppose I do measure the position of the particle, and I find it to be at the point
C. Question: Where was the particle just before I made the measurement? There
are three plausible answers to this question, and they serve to characterize the main
schools of thought regarding quantum indeterminacy:

1. The realist position: The particle was at C. This certainly seems like a
sensible response, and it is the one Einstein advocated. Note, however, that if this is
true then quantum mechanics is an incomplete theory, since the particle really was at
C, and yet quantum mechanics was unable to tell us so. To the realist, indeterminacy
is not a fact of nature, but a reflection of our ignorance. As d’Espagnat put it, “the
position of the particle was never indeterminate, but was merely unknown to the
experimenter.”® Evidently ¥ is not the whole story—some additional information
(known as a hidden variable) is needed to provide a complete description of the
particle.

2. The orthodox position: The particle wasn’t really anywhere. It was the act
of measurement that forced the particle to “take a stand” (though how and why it
decided on the point C we dare not ask). Jordan said it most starkly: “Observations
not only disturb what is to be measured, they produce it. ... We compel [the particle]
to assume a definite position.”* This view (the so-called Copenhagen interpretation)
is associated with Bohr and his followers. Among physicists it has always been the

3Bernard d’Espagnat, The Quantum Theory and Reality, Scientific American, Nov. 1979
(Vol. 241), p. 165.

4Quoted in a lovely article by N. David Mermin, Is the moon there when nobody looks?, Physics
Today, April 1985, p. 38.
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most widely accepted position. Note, however, that if it is correct there is something
very peculiar about the act of measurement—something that over half a century of
debate has done precious little to illuminate.

3. The agnostic position: Refuse to answer. This is not quite as silly as it
sounds—after all, what sense can there be in making assertions about the status of
a particle before a measurement, when the only way of knowing whether you were
right is precisely to conduct a measurement, in which case what you get is no longer
“before the measurement”? It is metaphysics (in the perjorative sense of the word) to
worry about something that cannot, by its nature, be tested. Pauli said, “One should
no more rack one’s brain about the problem of whether something one cannot know
anything about exists all the same, than about the ancient question of how many angels
are able to sit on the point of a needle.”® For decades this was the “fall-back” position
of most physicists: They’d try to sell you answer 2, but if you were persistent they’d
switch to 3 and terminate the conversation.

Until fairly recently, all three positions (realist, orthodox, and agnostic) had
their partisans. But in 1964 John Beil astonished the physics community by showing
that it makes an observable difference if the particle had a precise (though unknown)
position prior to the measurement. Bell’s discovery effectively eliminated agnosticism
as a viable option, and made it an experimental question whether 1 or 2 is the correct
choice. I'll return to this story at the end of the book, when you will be in a better
position to appreciate Bell’s theorem; for now, suffice it to say that the experiments
have confirmed decisively the orthodox interpretation®: A particle simply does not
have a precise position prior to measurement, any more than the ripples on a pond do;
it is the measurement process that insists on one particular number, and thereby in a
sense creates the specific result, limited only by the statistical weighting imposed by
the wave function.

But what if I made a second measurement, immediately after the first? Would I
get C again, or does the act of measurement cough up some completely new number
each time? On this question everyone is in agreement: A repeated measurement (on
the same particle) must return the same value. Indeed, it would be tough to prove that
the particle was really found at C in the first instance if this could not be confirmed
by immediate repetition of the measurement. How does the orthodox interpretation
account for the fact that the second measurement is bound to give the value C?
Evidently the first measurement radically alters the wave function, so that it is now
sharply peaked about C (Figure 1.3). We say that the wave function collapses upon
measurement, to a spike at the point C (\ soon spreads out again, in accordance with
the Schrédinger equation, so the second measurement must be made quickly). There

3Quoted by Mermin (previous footnote), p. 40.

6This statement is a little too strong: There remain a few theoretical and experimental loopholes,
some of which I shall discuss in the Afterword. And there exist other formulations (such as the many
worlds interpretation) that do not fit cleanly into any of my three categories. But I think it is wise, at least
from a pedagogical point of view, to adopt a clear and coherent platform at this stage, and worry about the
alternatives later.
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Figure 1.3: Collapse of the wave function: graph of w2 immediately after a
measurement has found the particle at point C.

are, then, two entirely distinct kinds of physical processes: “ordinary” ones, in which
the wave function evolves in a leisurely fashion under the Schrédinger equation, and
“measurements”, in which ¥ suddenly and discontinuously collapses.”

1.3 PROBABILITY

Because of the statistical interpretation, probability plays a central role in quantum
mechanics, so 1 digress now for a brief discussion of the theory of probability. It is
mainly a question of introducing some notation and terminology, and I shall do it in
the context of a simple example.

Imagine a room containing 14 people, whose ages are as follows:

one person aged 14
one person aged 15
three people aged 16
two people aged 22
two people aged 24
five people aged 25.

If we let N () represent the number of people of age j, then

TThe role of measurement in quantum mechanics is so critical and so bizarre that you may well
be wondering what precisely constitutes a measurement. Does it have to do with the interaction between
a microscopic (quantum) system and a macroscopic (classical) measuring apparatus (as Bohr insisted),
or is it characterized by the leaving of a permanent “record” (as Heisenberg claimed), or does it involve
the intervention of a conscious “observer” (as Wigner proposed)? I'll return to this thorny issue in the
Afterword; for the moment let’s take the naive view: A measurement is the kind of thing that a scientist
does in the laboratory, with rulers, stopwatches, Geiger counters, and so on.
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Figure 1.4: Histogram showing the number of people, N(}), with age j, for the
example in Section 1.3.

N(14) =1
N(15) =1
N(16) =3
NQ22) =2
NQ4) =2
N@25) =5

while N(17), for instance, is zero. The fofal number of people in the room is
o0
N=Y N@). [1.4]
j=0

(In this instance, of course, N = 14.) Figure 1.4 is a histogram of the data. The
following are some questions one might ask about this distribution. -

Question 1. If you selected one individual at random from this group, what is
the probability that this person’s age would be 15? Answer: One chance in 14, since
there are 14 possible choices, all equally likely, of whom only one has this particular
age. If P(j) is the probability of getting age j, then P(14) = 1/14, P(15) =
1/14, P(16) = 3/14, and so on. In general,

[1.5]

Notice that the probability of getting either 14 or 15 is the sum of the individual
probabilities (in this case, 1/7). In particular, the sum of all the probabilities is 1—
you’re certain to get some age:

Y P(jH=1 [1.6]
j=1
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Question 2. What is the most probable age? Answer: 25, obviously; five
people share this age, whereas at most three have any other age. In general, the most
probable j is the j for which P () is a maximum.

Question 3. What is the median age? Answer: 23, for 7 people are younger
than 23, and 7 are older. (In general, the median is that value of j such that the
probability of getting a larger result is the same as the probability of getting a smaller
result.)

Question 4. What is the average (or mean) age? Answer:

(14) + (15) +3(16) + 2(22) + 2(24) + 5(25) _ 294

=21.
14 14
In general, the average value of j (which we shall write thus: {/)) is given by
) ING) S s
()= Z—’N—’ =>_JjPW). [1.7]
7=0

Notice that there need not be anyone with the average age or the median age—in this
example nobody happens to be 21 or 23. In quantum mechanics the average is usually
the quantity of interest; in that context it has come to be called the expectation value.
It’s a misleading term, since it suggests that this is the outcome you would be most
likely to get if you made a single measurement (that would be the most probable
value, not the average value)—but I’'m afraid we’re stuck with it.

Question 5. What is the average of the squares of the ages? Answer: You
could get 142 = 196, with probability 1/14, or 152 = 225, with probability 1/14, or
16° = 256, with probability 3/14, and so on. The average, then, is

oC
(A =Y PO (1.8]
J=0
In general, the average value of some function of j is given by
oC
(f =) _fHPY)- (1.9]
j=0

(Equations 1.6, 1.7, and 1.8 are, if you like, special cases of this formula.) Beware:
The average of the squares ({;2)) is not ordinarily equal to the square of the average
({j)%). For instance, if the room contains just two babies, aged 1 and 3, then (x?) =5,
but (x)? = 4.

Now, there is a conspicuous difference between the two histograms in Figure
1.5, even though they have the same median, the same average, the same most prob-
able value, and the same number of elements: The first is sharply peaked about the
average value, whereas the second is broad and flat. (The first might represent the
age profile for students in a big-city classroom, and the second the pupils in a one-
room schoolhouse.) We need a numerical measure of the amount of “spread” in a
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Figure 1.5: Two histograms with the same median, same average, and same
most probable value, but different standard deviations.

distribution, with respect to the average. The most obvious way to do this would be
to find out how far each individual deviates from the average,

Aj=j—={Jj) [1.10]

and compute the average of Aj. Trouble is, of course, that you get zero, since, by the
nature of the average, Aj is as often negative as positive:

=Y G=MPGY=D_JP() = ()Y P()

J)*<')“0

(Note that () is constant—it does not change as you go from one member of the
sample to another—so it can be taken outside the summation.) To avoid this irritating
problem, you might decide to average the absolute value of Aj. But absolute values
are nasty to work with; instead, we get around the sign problem by squaring before
averaging:

o® = (A7) [L.11]

This quantity is known as the variance of the distribution; o itself (the square root

of the average of the square of the deviation from the average—gulp!) is called the

standard deviation. The latter is the customary measure of the spread about ().
There is a useful little theorem involving standard deviations:

= ((A)D) =) (AD*PG) =Y (j — U)*P())
=Y (=2 +H(HIP)
=Y FPD =20 Y JPDO+ NI PU)
2 W2
or

o’ = (%) = () [1.12)

Equation 1.12 provides a faster method for computing o': Simply calculate (j2) and
(/)?, and subtract. Incidentally, I warned you amoment ago that ( j2) is not, in general,
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equal to {)2. Since o2 is plainly nonnegative (from its definition in Equation 1.11),
Equation 1.12 implies that

A = ()3 [1.13]

and the two are equal only when o = 0, which is to say, for distributions with no
spread at all (every member having the same value).

So far, I have assumed that we are dealing with a discrete variable—that is, one
that can take on only certain isolated values (in the example, j had to be an integer,
since I gave ages only in years). But it is simple enough to generalize to continuous
distributions. If I select a random person off the street, the probability that her age is
precisely 16 years, 4 hours, 27 minutes, and 3.3333 seconds is zero. The only sensible
thing to speak about is the probability that her age lies in some interval=—say, between
16 years, and 16 years plus one day. If the interval is sufficiently short, this probability
is proportional to the length of the interval. For example, the chance that her age is
between 16 and 16 plus two days is presumably twice the probability that it is between
16 and 16 plus one day. (Unless, I suppose, there was some extraordinary baby boom
16 years ago, on exactly those days—in which case we have chosen an interval too
long for the rule to apply. If the baby boom lasted six hours, we’ll take intervals of a
second or less, to be on the safe side. Technically, we’re talking about infinitesimal
intervals.) Thus

{ probability that individual (chosen at random)

lies between x and (x 4 dx) } =p)dx. [1.14]

The proportionality factor, p(x), is often loosely called “the probability of getting

x,” but this is sloppy language; a better term is probability density. The probability
that x lies between a and b (a finite interval) is given by the integral of p(x):

b
Pab=/ o(x)dx, [1.15]

and the rules we deduced for discrete distributions translate in the obvious way:

+00
/ px)dx =1, [1.16]
Joc
{x) =/ xp(x)dx, [1.17]
+o0
o= [ fwpeds, [1.18]

o? = ((Ax)Y) = (x?) — (x)*. [1.19]
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xProblem 1.1 For the distribution of ages in the example in Section 1.3,

(2) Compute (%) and (/).

(b) Determine A; for each j, and use Equation 1.11 to compute the standard devi-
ation.

(€) Use your results in (a) and (b) to check Equation 1.12.

Problem 1.2 Consider the first 25 digits in the decimal expansion of 7 (3, 1, 4, 1,
5,9,...).

(@) If you selected one number at random from this set, what are the probabilities
of getting each of the 10 digits?

(b) What is the most probable digit? What is the median digit? What is the average
value?

(c) Find the standard deviation for this distribution.

Problem 1.3 The needle on a broken car speedometer is free to swing, and bounces
perfectly off the pins at either end, so that if you give it a flick it is equally likely to
come to rest at any angle between 0 and 7.

(a) What is the probability density, p(8)? [p(8) d6 is the probability that the needle
will come to rest between 6 and (8 + d6).] Graph p(9) as a function of 8, from
—n/2to 37 /2. (Of course, part of this interval is excluded, so p is zero there.)
Make sure that the total probability is 1.

(b) Compute (8), (#*), and o for this distribution.

(c) Compute {sin8), (cos8), and {cos’ 6).

Problem 1.4 We consider the same device as the previous problem, but this time
we are interested in the x-coordinate of the needle point—that is, the “shadow”, or
“projection”, of the needle on the horizontal line.

(a) What is the probability density p(x)? [o(x) dx is the probability that the pro-
jection lies between x and (x 4 dx).] Graph p(x) as a function of x, from —2r
to +2r, where 7 is the length of the needle. Make sure the total probability is 1.
[Hint: You know (from Problem 1.3) the probability that 8 is in a given range;
the question is, what interval dx corresponds to the interval d67]

(b) Compute (x), (x?), and o for this distribution. Explain how you could have
obtained these results from part (¢) of Problem 1.3.




Sec. 1.4: Normalization 11

xxProblem 1.5 A needle of length [ is dropped at random onto a sheet of paper ruled
with parallel lines a distance / apart. What is the probability that the needle will cross
a line? [Hint: Refer to Problem 1.4.]

xProblem 1.6 Consider the Gaussian distribution
p(x) = AeT
where A4, a, and A are constants. {Look up any integrals you need.)

(@) Use Equation 1.16 to determine 4.
(b) Find (x), (x?),and o.
(c) Sketch the graph of p(x).

1.4 NORMALIZATION

We return now to the statistical interpretation of the wave function (Equation 1.3),
which says that |W (x, 1)|? is the probability density for finding the particle at point x,
at time 7. It follows (Equation 1.16) that the integral of |W|? must be 1 (the particle’s
got to be somewhere):

+00
f W (x,1)]*dx = 1. [1.20]

oo

Without this, the statistical interpretation would be nonsense.

However, this requirement should disturb you: After all, the wave function is
supposed to be determined by the Schrédinger equation—we can’t impose an extrane-
ous condition on ¥ without checking that the two are consistent. A glance at Equation
1.1 reveals that if W(x, ¢} is a solution, so too is AW (x, t), where 4 is any (complex)
constant. What we must do, then, is pick this undetermined multiplicative factor so as
to ensure that Equation 1.20 is satisfied. This process is called normalizing the wave
function. For some solutions to the Schrodinger equation, the integral is infinite; in
that case no multiplicative factor is going to make it 1. The same goes for the trivial
solution ¥ = 0. Such non-normalizable solutions cannot represent particles, and
must be rejected. Physically realizable states correspond to the “square-integrable”
solutions to Schrodinger’s equation.®

8Evidently W(x, t) must go to zero faster than 1/,/]x], as |x| — oo. Incidentally, normalization
only fixes the modulus of A; the phase remains undetermined. However, as we shall see, the latter carries
no physical significance anyway.
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But wait a minute! Suppose I have normalized the wave function at time ¢ = 0.
How do I know that it will stay normalized, as time goes on and W evolves? (You can’t
keep renormalizing the wave function, for then 4 becomes a function of ¢, and you
no longer have a solution to the Schrodinger equation.) Fortunately, the Schrédinger
equation has the property that it automatically preserves the normalization of the wave
function—without this crucial feature the Schrodinger equation would be incompat-
ible with the statistical interpretation, and the whole theory would crumble. So we’d
better pause for a careful proof of this point:

+00

dt J o

+00

|\Il(x,t)|2dx=/ ;;I\I/(x,t)lzdx. [1.21]

[Note that the integral is a function only of ¢, so I use a total derivative (d/dt) in the
first term, but the integrand is a function of x as well as ¢, so it’s a partial derivative
(9/9t) in the second one.] By the product rule,

d d v gw*
— |V = — (V) = ¥ — v 1.22
3t| | az( ) ot + ot [1.22]
Now the Schriodinger equation says that
oV in PPV i
— =————-=VV¥ 1.23
9t 2max?2 n [1.23]
and hence also (taking the complex conjugate of Equation 1.23)
v h PWr
= +rw, [1.24]

3t  2m x| h

SO

a ih v 9w a [ in AV )
— W= (W — —— V)= — [~ (¥ — — —W¥])|.[125
8tl | 2m ( 9x? dx? ) dx I:Zm ( dx dx ):I 1231

The integral (Equation 1.21) can now be evaluated explicitly:

o0 ih v A +00
had Wi, P dy = — (vl 1y ‘ . 1.26
dt J_o Wix, D dx 2m ( ax ax ) —00 [1.26]

But W(x, r) must go to zero as x goes to (%) infinity—otherwise the wave function
would not be normalizable. It follows that

+00

- |W(x,H)*dx =0, [1.27]

and hence that the integral on the left is constant (independent of time); if W is
normalized at ¢t = O, it stays normalized for all future time. QED
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Problem 1.7 Attime ¢t = 0 a particle is represented by the wave function

Az/a, ifo0<z<a,
U(z,0)=q A(b—2x)/(b—a), ifa<az<h,
0, otherwise,

where A, a, and b are constants.

(@) Normalize W (that is, find A in terms of @ and b).
(b) Sketch ¥(z,0) as a function of z.
(C) Where is the particle most likely to be found, at £ = (?

(d) What is the probability of finding the particle to the left of a? Check your result
in the limiting cases b = @ and b = 2a.

(e) What is the expectation value of ©?

xProblem 1.8 Consider the wave function
U(zx,t) = Ae~Mzlg=iwt

where A, A, and w are positive real constants. [We’ll see in Chapter 2 what potential
(V') actually produces such a wave function.]

(a) Normalize .
(b) Determine the expectation values of = and z2.

(c) Find the standard deviation of z. Sketch the graph of |¥|?, as a function of z,
and mark the points ({(z) + o) and ({x) — o) to illustrate the sense in which ¢
represents the “spread” in z. What is the probability that the particle would be
found outside this range?

Problem 1.9 Let P,,(¢) be the probability of finding the particle in the range
(a <z < b), at time 1.

(@) Show that
dP, ab

dt

= J(a,t) — J(b,%)

where

ih ov* o
Jz, )= — [P —Pr— .
(%) 2m < ox ox )
What are the units of J(z,¢)? [J is called the probability current, because
it tells you the rate at which probability is “flowing” past the point . If P,;(t)

is increasing, then more probability is flowing into the region at one end than
flows out at the other.]
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(b) Find the probability current for the wave function in the previous problem. (This
is not a very pithy example, I’'m afraid; we’ll encounter some more substantial
ones in due course.)

xxProblem 1.10 Suppose you wanted to describe an unstable particle that sponta-

neously disintegrates with a “lifetime” . In that case the total probability of finding
the particle somewhere should not be constant, but should decrease at (say) an expo-
nential rate:

+oo

P@) = / W(x,)*dx =e'/".
-0

A crude way of achieving this result is as follows. In Equation 1.24 we tacitly assumed
that V' (the potential energy) is real. That is certainly reasonable, but it leads to the
conservation of probability enshrined in Equation 1.27. What if we assign to ¥ an
imaginary part:

V=V,—Iil,

where V) is the true potential energy and I' is a positive real constant?

(a) Show that (in place of Equation 1.27) we now get
dP 2r

dr —

(b) Solve for P(¢), and find the lifetime of the particle in terms of I".

1.5 MOMENTUM

For a particle in state W, the expectation value of x is

+00

(x) =f x|W(x, )| dx. [1.28]

oo

What exactly does this mean? It emphatically does not mean that if you measure the
position of one particle over and over again, | x|W|?dx is the average of the results
you’ll get. On the contrary, the first measurement (whose outcome is indeterminate)
will collapse the wave function to a spike at the value actually obtained, and the
subsequent measurements (if they’re performed quickly) will simply repeat that same
result. Rather, (x) is the average of measurements performed on particles all in the
state W, which means that either you must find some way of returning the particle
to its original state after each measurement, or else you prepare a whole ensemble of
particles, each in the same state W, and measure the positions of all of them: (x) is the
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average of these results. [I like to picture a row of bottles on a shelf, each containing
a particle in the state W (relative to the center of the bottle). A graduate student with
a ruler is assigned to each bottle, and at a signal they all measure the positions of
their respective particles. We then construct a histogram of the results, which should
match |W|2, and compute the average, which should agree with (x). (Of course, since
we’re only using a finite sample, we can’t expect perfect agreement, but the more
bottles we use, the closer we ought to come.)] In short, the expectation value is the
average of repeated measurements on an ensemble of identically prepared systems,
not the average of repeated measurements on one and the same system.

Now, as time goes on, {x) will change (because of the time dependence of W),
and we might be interested in knowing how fast it moves. Referring to Equations
1.25 and 1.28, we see that’

d{x) a 2 ih a oA A
— = —|W = — —_— W — 'Y . 1.29
dt /xBIl " dx 2m x8x dax ax dx [ ]
This expression can be simplified using integration by parts'®:
d(x) in W owr
—_ = yr— — W | dx. 1.30
dt 2m ( ox dx ) ¥ [1.30]

[T used the fact that dx/dx = 1, and threw away the boundary term, on the ground

that W goes to zero at (+) infinity.}] Performing another integration by parts on the
second term, we conclude that

d{x) ih oW

Frai v ™ dx. [1.31]

What are we to make of this result? Note that we’re talking about the “velocity”

of the expectation value of x, which is not the same thing as the velocity of the particle.

Nothing we have seen so far would enable us to calculate the velocity of a particle

it’s not even clear what velocity means in quantum mechanics. If the particle doesn’t

have a determinate position (prior to measurement), neither does it have a well-defined

velocity. All we could reasonably ask for is the probability of getting a particular

value. We’ll see in Chapter 3 how to construct the probability density for velocity,

9To keep things from getting too cluttered, I suppress the limits of integration when they are +o0.
10The product rule says that

af
e

b b
dg df b
—dx = - — .
f,, fodx f ——gdx+ fg],

Under the integral sign, then, you can peel a derivative off one factor in a product and slap it onto the other
one—it’ll cost you a minus sign, and you’ll pick up a boundary term.

9 e = 18
E(fg)—fdx+

from which it follows that



16

Chap. 1 The Wave Function

given W; for our present purposes it will suffice to postulate that the expectation value
of the velocity is equal to the time derivative of the expectation value of position:
d{x)
= —. 1.32
) P [1.32]

Equation 1.31 tells us, then, how to calculate (v) directly from W.

Actually, it is customary to work with momentum (p = mv), rather than ve-
locity:

LA [ (Y
(p)=m—-= = 171](\1/ ax) dx. [1.33]

Let me write the expressions for (x) and (p) in a more suggestive way:

{x) =/\I/*(x)\lldx, [1.34]
X
(p) =/\y (?E)Mx' [1.35]

We say that the operator'' x “represents” position, and the operator (/:)(9/0x)
“represents” momentum, in quantum mechanics; to calculate expectation values, we
“sandwich” the appropriate operator between W* and W, and integrate.

That’s cute, but what about other dynamical variables? The fact is, all such
quantities can be written in terms of position and momentum. Kinetic energy, for
example, is

and angular momentum is
L=rxmv=rxp

(the latter, of course, does not occur for motion in one dimension). To calculate the
expectation value of such a quantity, we simply replace every p by (h/i)(3/9x),
insert the resulting operator between W* and W, and integrate:

h 0
(O(x, p)) =/‘V*Q(x,—.—)\lldx. [1.36]
I 0x

11 An operator is an instruction to do something to the function that follows. The position operator
tells you to multiply by x; the momentum operator tells you to differentiate withrespect to x (and multiply
the result by —i#). In this book all operators will be derivatives (d /dt, d? /dt?, 82 /dxdy,etc.) or multipliers
(2,1, x2, etc.) or combinations of these.
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For example,

(T)—_h2 w*azwd [1.37]
T 2m axz ’

Equation 1.36 is a recipe for computing the expectation value of any dynamical
quantity for a particle in state V; it subsumes Equations 1.34 and 1.35 as special
cases. I have tried in this section to make Equation 1.36 seem plausible, given Born’s
statistical interpretation, but the truth is that this equation represents such a radically
new way of doing business (as compared with classical mechanics) that it’s a good
idea to get some practice using it before we come back (in Chapter 3) and put it on
a firmer theoretical foundation. In the meantime, if you prefer to think of it as an
axiom, that’s fine with me.

Problem 1.11 Why can’t you do integration by parts directly on the middle ex-
pression in Equation 1.29—pull the time derivative over onto x, note that dx /3¢ = 0,
and conclude that d{x)/dt = 0?

xProblem 1.12 Calculate d{p)/dt. Answer:

dp) _,
—= =) [1.38]

(This is known as Ehrenfest’s theorem; it tells us that expectation values obey
Newton’s second law.)

Problem 1.13 Suppose you add a constant ¥ to the potential energy (by “constant”
I mean independent of x as well as ¢). In classical mechanics this doesn’t change
anything, but what about quantum mechanics? Show that the wave function picks
up a time-dependent phase factor: exp(—i Vot /h). What effect does this have on the
expectation value of a dynamical variable?

1.6 THE UNCERTAINTY PRINCIPLE

Imagine that you’re holding one end of a very long rope, and you generate a wave by
shaking it up and down rhythmically (Figure 1.6). If someone asked you, ‘“Precisely
where is that wave?” you’d probably think he was a little bit nutty: The wave isn’t
precisely anywhere—it’s spread out over 50 feet or so. On the other hand, if he asked
you what its wavelength is, you could give him a reasonable answer: It looks like
about 6 feet. By contrast, if you gave the rope a sudden jerk (Figure 1.7), you'd get a
relatively narrow bump traveling down the line. This time the first question (Where
precisely is the wave?) is a sensible one, and the second (What is its wavelength?)
seems nutty—itisn’t even vaguely periodic, so how can you assign a wavelength to it?
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—

N, VY v A\ \/ —
(feet)

Figure 1.6: A wave with a (fairly) well-defined wavelength but an ill-defined
position.

Of course, you can draw intermediate cases, in which the wave is fairly well localized
and the wavelength is fairly well defined, but there is an inescapable trade-off here:
The more precise a wave’s position is, the less precise is its wavelength, and vice
versa.l> A theorem in Fourier analysis makes all this rigorous, but for the moment 1
am only concerned with the qualitative argument.

This applies, of course, to any wave phenomenon, and hence in particular to
the quantum mechanical wave function. Now the wavelength of W is related to the
momentum of the particle by the de Broglie formula':

h 2mh [1.39]
P=5= '
Thus a spread in wavelength corresponds to a spread in momentum, and our general
observation now says that the more precisely determined a particle’s position is, the
less precisely its momentum is determined. Quantitatively,

[1.40]

where oy is the standard deviation in x, and o), is the standard deviation in p. This
is Heisenberg’s famous uncertainty principle. (We’ll prove it in Chapter 3, but I
wanted to mention it here so you can test it out on the examples in Chapter 2.)

R —
A : : J\ : : :
/7 10 20 30 40 50
x(feet)

Figure 1.7: A wave with a (fairly) well-defined position but an ill-defined wave-
length.

12Thar’s why a piccolo player must be right on pitch, whereas a double-bass player can afford to
wear garden gloves. For the piccolo, a sixty-fourth note contains many full cycles, and the frequency (we’re
working in the time domain now, instead of space) is well defined, whereas for the bass, at a much lower
register, the sixty-fourth note contains only a few cycles, and all you hear is a general sort of “oomph,”
with no very clear pitch.

131°11 prove this in due course. Many authors take the de Broglie formula as an axiom, from
which they then deduce the association of momentum with the operator (/7)(3/3x). Although this isa
conceptually cleaner approach, it involves diverting mathematical complications that I would rather save
for later.
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Please understand what the uncertainty principle means: Like position mea-
surements, momentum measurements yield precise answers—the “spread” here refers
to the fact that measurements on identical systems do not yield consistent results. You
can, if you want, prepare a system such that repeated position measurements will be
very close together (by making W a localized “spike”), but you will pay a price: Mo-
mentum measurements on this state will be widely scattered. Or you can prepare a
system with a reproducible momentum (by making ¥ a long sinusoidal wave), but in
that case position measurements will be widely scattered. And, of course, if you’re in
a really bad mood you can prepare a system in which neither position nor momentum
is well defined: Equation 1.40 is an inequality, and there’s no limit on how big o, and
o, can be—just make W some long wiggly line with lots of bumps and potholes and
no periodic structure.

xProblem 1.14 A particle of mass m is in the state
\IJ(X t) — Ae_a[(mxz/h)-Ht],
where A4 and a are positive real constants.

(@) Find 4.

(b) For what potential energy function ¥ (x) does W satisfy the Schrodinger equa-
tion?

(c) Calculate the expectation values of x, x2, p, and p?.
P p 14

(d) Find o, and o,. Is their product consistent with the uncertainty principle?




CHAPTER 2

THE TIME-INDEPENDENT
SCHRODINGER EQUATION

2.1 STATIONARY STATES

In Chapter 1 we talked a lot about the wave function and how you use it to calculate
various quantities of interest. The time has come to stop procrastinating and confront
what is, logically, the prior question: How do you get W (x, ¢) in the first place—how
do you go about solving the Schrddinger equation? I shall assume for all of this
chapter (and most of this book) that the potential,' V', is independent of t. In that case
the Schrodinger equation can be solved by the method of separation of variables
(the physicist’s first line of attack on any partial differential equation): We look for
solutions that are simple products,

V(x, 1) =¥(x) f(), [2.1]

where V¥ (lowercase) is a function of x alone, and f is a function of ¢ alone. On its
face, this is an absurd restriction, and we cannot hope to get more than a tiny subset
of all solutions in this way. But hang on, because the solutions we do obtain turn out
to be of great interest. Moreover, as is typically the case with separation of variables,
we will be able at the end to patch together the separable solutions in such a way as
to construct the most general solution.

Ut is tiresome to keep saying “potential energy function,” so most people just call ¥ the “potential”,
even though this invites occasional confusion with electric potential, which is actually potential energy
per unit charge.
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For separable solutions we have

v df PV &y

at T dt’ axr  dx?
(ordinary derivatives, now), and the Schrédinger equation (Equation 1.1) reads
f n? d*y
hw 2m dx? VYL

Or, dividing through by ¥ /-

2 2

1 df = l l d_v/ [2.2]
f dt 2m ¥ dx?

Now the left side is a function of ¢ alone, and the right side is a function of x alone.?
The only way this can possibly be true is if both sides are in fact constant—otherwise,
by varying ¢, I could change the left side without touching the right side, and the two
would no longer be equal. (That’s a subtle but crucial argument, so if it’s new to you,
be sure to pause and think it through.) For reasons that will appear in a moment, we
shall call the separation constant £. Then

ldf
fdt =E,
or
df iE
CA 23
dt h /. 23]
and
R 1 d*y vk
2m ¢ dx? + ’
or
h2 dzl//
———— + VY =Ey. 2.
o dez TVY =EY [24]

Separation of variables has turned a partial differential equation into two ordi-
nary differential equations (Equations 2.3 and 2.4). The first of these is easy to solve
(just multiply through by dt and integrate); the general solution is C exp(—i Et /%),
but we might as well absorb the constant C into v (since the quantity of interest is
the product ¥ f). Then

f(@t) =e B/, [2.5]

The second (Equation 2.4) is called the time-independent Schridinger equation;
we can go no further with it until the potential ¥ (x) is specified.

2Note that this would not be true if ¥ were a function of ¢ as well as x.



22

Chap. 2 The Time-Independent Schrédinger Equation

The rest of this chapter will be devoted to solving the time-independent Schro-
dinger equation, for a variety of simple potentials. But before we get to that I would
like to consider further the question: What'’s so great about separable solutions? After
all, most solutions to the (time-dependent) Schrédinger equation do not take the form
¥ (x) f(2). I offer three answers—two of them physical and one mathematical:

1. They are stationary states. Although the wave function itself,

W(x, 1) = Y(x)e E/R, [2.6]

does (obviously) depend on ¢, the probability density
W, )7 = W0 = yretF iy e 50 =y (o) [2.7]

does not—the time dependence cancels out.* The same thing happens in calculating
the expectation value of any dynamical variable; Equation 1.36 reduces to

hod
(0, p)) = / w0, Ly ax. 2.8]
i dx

Every expectation value is constant in time; we might as well drop the factor f(z)
altogether, and simply use v in place of V. (Indeed, it is common to refer to v
as “the wave function”, but this is sloppy language that can be dangerous, and it is
important to remember that the true wave function always carries that exponential
time-dependent factor.) In particular, (x) is constant, and hence (Equation 1.33)
{p) = 0. Nothing ever happens in a stationary state.

2. They are states of definite total energy. In classical mechanics, the total
energy (kinetic plus potential) is called the Hamiltonian:

2
Hx,pp =2 1+ v w. [2.9]
2m
The corresponding Hamiltonian operator, obtained by the canonical substitution p —

(h/i)(8/9x), is therefore”
SR
A== 4V (). (2.10]

Thus the time-independent Schrédinger equation (Equation 2.4) can be written

Hy = Evy, [2.11]

3For normalizable solutions, £ must be real (see Problem 2.1a).

4Whenever confusion might arise, I’ll put a “hat” (*) on the operator to distinguish it from the
dynamical variable it represents.
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and the expectation value of the total energy is

(H) =/1//*1§h//dx = E/|1//|2dx =E. [2.12]

(Note that the normalization of W entails the normalization of {.) Moreover,
By = H(HYy) = H(EY) = E(HY) = E*y,
and hence
(H?) = /x//*ﬁ%/f dx = E2/ Iy |2dx = E2.
So the standard deviation in H is given by
o} = (H* — (HY? = E*— E*=0. [2.13]

But remember, if o = 0, then every member of the sample must share the same value
(the distribution has zero spread). Conclusion: A separable solution has the property
that every measurement of the total energy is certain to return the value E. (That’s
why I chose that letter for the separation constant.)

3. The general solution is a linear combination of separable solutions. As
we’re about to discover, the time-independent Schrédinger equation (Equation 2.4)
yields an infinite collection of solutions (y1(x), ¥ (x), ¥3(x), ...), each with its
associated value of the separation constant (E|, E,, E3, ...); thus there is a different
wave function for each allowed energy:

Wi(x,t) = Yy (x)e B Wy(x, 1) = Yo (x)e B

Now (as you can easily check for yourself) the (time-dependent) Schrodinger equation
(Equation 1.1) has the property that any linear combination® of solutions is itself a
solution. Once we have found the separable solutions, then, we can immediately
construct a much more general solution, of the form

[o 8]

Vi, 1) = cyn(x)e B, [2.14]

n=1

It so happens that every solution to the (time-dependent) Schrodinger equation can be
written in this form—it is simply a matter of finding the right constants (¢;, ¢, ...)
so as to fit the initial conditions for the problem at hand. You’ll see in the following
sections how all this works out in practice, and in Chapter 3 we’ll put it into more
elegant language, but the main point is this: Once you’ve solved the time-independent

3 A linear combination of the functions fj(z), f2(2), ... is an expression of the form

S@Q=afid)+eh@)+---,

where ¢y, ¢z, . .. are any (complex) constants.
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Schrodinger equation, you're essentially done; getting from there to the general so-
lution of the time-dependent Schrddinger equation is simple and straightforward.

xProblem 2.1 Prove the following theorems:

(a) For normalizable solutions, the separation constant £ must be real. Hint: Write
E (in Equation 2.6) as E + i’ (with Eo and I real), and show that if Equation
1.20is to hold for all ¢, I" must be zero.

(b) Y can always be taken to be real (unlike ¥, which is necessarily complex).
Note: This doesn’t mean that every solution to the time-independent Schrodinger
equation is real; what it says is that if you’ve got one that is nof, it can always be
expressed as a linear combination of solutions (with the same energy) that are.
So in Equation 2.14 you might as well stick to ’s that are real. Hint: If  (x)
satisfies the time-independent Schrédinger equation for a given £, so too does
its complex conjugate, and hence also the real linear combinations (¢ + ¥*)
and i(yy — ¥™).

(c) If ¥V (x) is an even function [i.e., ¥ (—x) = V(x)], then ¥ (x) can always be
taken to be either even or odd. Hint: If v (x) satisfies the time-independent
Schrodinger equation for a given E, so too does ¥ (—x), and hence also the
even and odd linear combinations ¥ (x) £ ¥ (—x).

sProblem 2.2 Show that £ must exceed the minimum value of ¥ (x) for every
normalizable solution to the time-independent Schrédinger equation. What is the
classical analog to this statement? Hint: Rewrite Equation 2.4 in the form

>y 2m
o h—?_[V(x) — ElY;
if E < Viin, then ¥ and its second derivative always have the same sign—argue that
such a function cannot be normalized.

2.2 THE INFINITE SQUARE WELL

Suppose
0, if0<x<a,

00, otherwise [2.15]

Vix) = {
(Figure 2.1). A particle in this potential is completely free, except at the two ends
(x = 0 and x = a), where an infinite force prevents it from escaping. A classical
model would be a cart on a frictionless horizontal air track, with perfectly elastic
bumpers—it just keeps bouncing back and forth forever. (This potential is awfully
artificial, but I urge you to treat it with respect. Despite its simplicity—or rather,
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orbital angular momentum L and its conjugate variable ¢, the polar angle, where ¢ is periodic

in time. Thatis, J = § pdg is given in polar coordinates by fozn Ldg. In this case (1.86)
becomes

2n
/ Ldp =nh. (1.92)
0

For spherically symmetric potentials—as it is the case here where the electron experiences the
proton’s Coulomb potential—the angular momentum L is a constant of the motion. Hence
(1.92) shows that angular momentum can change only in integral units of %:

2 h
L/ dp =nh = L =n— =nh, (1.93)
0 2w
which is identical with the Bohr quantization condition (1.63). This calculation also shows
that the Bohr quantization is equivalent to the quantization of action. As stated above (1.78),
the Bohr quantization condition (1.63) has the following physical meaning: while orbiting the
nucleus, the electron moves only in well specified orbits, orbits with circumferences equal to
integral multiples of the de Broglie wavelength.
Note that the Wilson—Sommerfeld quantization rule (1.86) does not tell us how to calculate
the energy levels of non-periodic systems; it applies only to systems which are periodic. On a
historical note, the quantization rules of Planck and Bohr have dominated quantum physics from
1900 to 1925; the quantum physics of this period is known as the “old quantum theory.” The
success of these quantization rules, as measured by the striking agreement of their results with
experiment, gave irrefutable evidence for the quantization hypothesis of all material systems
and constituted a triumph of the “old quantum theory.” In spite of their quantitative success,
these quantization conditions suffer from a serious inconsistency: they do not originate from a
theory, they were postulated rather arbitrarily.

1.8 Wave Packets

At issue here is how to describe a particle within the context of quantum mechanics. As quan-
tum particles jointly display particle and wave features, we need to look for a mathematical
scheme that can embody them simultaneously.

In classical physics, a particle is well localized in space, for its position and velocity can
be calculated simultaneously to arbitrary precision. As for quantum mechanics, it describes
a material particle by a wave function corresponding to the matter wave associated with the
particle (de Broglie’s conjecture). Wave functions, however, depend on the whole space; hence
they cannot be localized. If the wave function is made to vanish everywhere except in the
neighborhood of the particle or the neighborhood of the “classical trajectory,” it can then be
used to describe the dynamics of the particle. That is, a particle which is localized within a
certain region of space can be described by a matter wave whose amplitude is large in that
region and zero outside it. This matter wave must then be localized around the region of space
within which the particle is confined.

A localized wave function is called a wave packet. A wave packet therefore consists of a
group of waves of slightly different wavelengths, with phases and amplitudes so chosen that
they interfere constructively over a small region of space and destructively elsewhere. Not only
are wave packets useful in the description of “isolated” particles that are confined to a certain
spatial region, they also play a key role in understanding the connection between quantum
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mechanics and classical mechanics. The wave packet concept therefore represents a unifying
mathematical tool that can cope with and embody nature’s particle-like behavior and also its
wave-like behavior.

1.8.1 Localized Wave Packets

Localized wave packets can be constructed by superposing, in the same region of space, waves
of slightly different wavelengths, but with phases and amplitudes chosen to make the super-
position constructive in the desired region and destructive outside it. Mathematically, we can
carry out this superposition by means of Fourier transforms. For simplicity, we are going to
consider a one-dimensional wave packet; this packet is intended to describe a “classical” parti-
cle confined to a one-dimensional region, for instance, a particle moving along the x-axis. We
can construct the packet w (x, ¢) by superposing plane waves (propagating along the x-axis) of
different frequencies (or wavelengths):

! e i (kx—oot
w(x, 1) :E/— ¢ (kye' F=oD g (1.94)

¢ (k) is the amplitude of the wave packet.

In what follows we want to look at the form of the packet at a given time; we will deal
with the time evolution of wave packets later. Choosing this time to be ¢ = 0 and abbreviating
w(x, 0) by wo(x), we can reduce (1.94) to

1 +00 )
po(x) = N p (ke dk, (1.95)
where ¢ (k) is the Fourier transform of yq(x),
1 0 .
P k) = E/_m wo(x)e " dx. (1.96)

The relations (1.95) and (1.96) show that ¢ (k) determines w((x) and vice versa. The packet
(1.95), whose form is determined by the x-dependence of wq(x), does indeed have the required
property of localization: |wg(x)| peaks at x = 0 and vanishes far away from x = 0. On the
one hand, as x — 0 we have ¢/** — 1; hence the waves of different frequencies interfere
constructively (i.e., the various k-integrations in (1.95) add constructively). On the other hand,
far away from x = 0 (i.e., |x| >> 0) the phase ¢/** goes through many periods leading to violent
oscillations, thereby yielding destructive interference (i.e., the various k-integrations in (1.95)
add up to zero). This implies, in the language of Born’s probabilistic interpretation, that the
particle has a greater probability of being found near x = 0 and a scant chance of being found
far away from x = 0. The same comments apply to the amplitude ¢ (k) as well: ¢ (k) peaks at
k = 0 and vanishes far away. Figure 1.13 displays a typical wave packet that has the required
localization properties we have just discussed.

In summary, the particle is represented not by a single de Broglie wave of well-defined
frequency and wavelength, but by a wave packet that is obtained by adding a large number of
waves of different frequencies.

The physical interpretation of the wave packet is obvious: wo(x) is the wave function or
probability amplitude for finding the particle at position x; hence |yo(x)|? gives the probability
density for finding the particle at x, and P(x) dx = |wo(x)|>dx gives the probability of finding
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lwo(x)|? | (k)|

A A

|
Ax I Ak

>

I

I

I
X l - k
0 0 ko
Figure 1.13 Two localized wave packets: wo(x) = 2/ a2)1/4e_x2/“2eik°x and ¢ (k) =
(a?/27)/ 4 p=a? (k=ko)*/ 4: they peak at x = 0 and k = ko, respectively, and vanish far away.

the particle between x and x +dx. What about the physical interpretation of ¢ (k)? From (1.95)
and (1.96) it follows that

“+00 +0oo
/_ o o) P = /_ b (k) Pk (197)

then if y (x) is normalized so is ¢ (k), and vice versa. Thus, the function ¢ (k) can be interpreted
most naturally, like o (x), as a probability amplitude for measuring a wave vector k for a parti-
cle in the state ¢ (k). Moreover, while |¢ (k) 1? represents the probability density for measuring &
as the particle’s wave vector, the quantity P (k) dk = |¢(k)|>dk gives the probability of finding
the particle’s wave vector between k and k + dk.

We can extract information about the particle’s motion by simply expressing its correspond-
ing matter wave in terms of the particle’s energy, E, and momentum, p. Using k = p/#,
dk = dp/h, E = ho and redefining ¢(p) = ¢ (k)//B, we can rewrite (1.94) to (1.96) as
follows:

1 too
w(x, 1) W d(p)e! P —EDIMgp, (1.98)
—0Q
1 ‘oo
wo(x) = \/ﬁ ¢(p)€lpx/hdp, (1.99)
—0Q
- 1 +o00 » 5
#(p) = —27rh/ wo(x)e P Mdx, (1.100)
% —00

where E (p) is the total energy of the particle described by the wave packet  (x, t) and ¢ (p) is
the momentum amplitude of the packet.

In what follows we are going to illustrate the basic ideas of wave packets on a simple,
instructive example: the Gaussian and square wave packets.

Example 1.8 (Gaussian and square wave packets)

(a) Find y (x, 0) for a Gaussian wave packet ¢ (k) = A exp [—a®(k — ko)* /4], where 4 is
a normalization factor to be found. Calculate the probability of finding the particle in the region
—a/2 <x <a/2.
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ikox
(b) Find ¢ (k) for a square wave packet yo(x) = H Ae", x| < a,

0, x| > a.
Find the factor A4 so that y (x) is normalized.
Solution
(a) The normalization factor 4 is easy to obtain:
+o0 +00 a2
1:/ | (k)| >dk = |A|2/ exp ——(k—ko)z] dk, (1.101)
oo oo 2

which, by using a change of variable z = k — ko and using the integral fjof e~ 2z =

V27 Ja, leads at once to A = /a//2m = [a®/(27)]'/*. Now, the wave packet corresponding
to

2\ 174 2
¢(k)=(a) exp[—%(k—ko)z} (1.102)

27
is
1/4

()_L +oo¢(k) ikxdk_L(i)
O = e O T

To carry out the integration, we need simply to rearrange the exponent’s argument as follows:

oo 2 (k—ko)? /A+ik.
/ e~ @ =k /A+ikx gp —(1.103)

—00

2 -T2 2
S k= ko) 4 ikx = — | Lk —ko) = Z| =L 4 ikox. (1.104)
4 2 a a?
The introduction of a new variable y = a(k — ko9)/2 — ix/a yields dk = 2dy/a, and when
combined with (1.103) and (1.104), this leads to

1/4
1 a? +0 2/ 2 (2
(= —x%/a jikox ,=y* [ Z g
wo(x) = (27[) /_oo e ere (a y)

1 2 174 2k oo 2
= — (= —x?/a’ gikox > dy. 1.105
) e [ (1109

. 1,2 . .
Since [T eV dy = 7, this expression becomes
—o v

2 \'/4 2,2
wo(x) = (_2) o™X/ glhox | (1.106)
Ta

where ¢'%0* is the phase of g (x); wo(x) is an oscillating wave with wave number ko modulated
by a Gaussian envelope centered at the origin. We will see later that the phase factor e%0* has
real physical significance. The wave function wo(x) is complex, as necessitated by quantum
mechanics. Note that yo(x), like ¢ (k), is normalized. Moreover, equations (1.102) and (1.106)
show that the Fourier transform of a Gaussian wave packet is also a Gaussian wave packet.

The probability of finding the particle in the region —a/2 < x < a/2 can be obtained at
once from (1.106):

+a/2 2 +a/2 2,2 1 o, 2
P =/ lyo(x)1*dx = ,/—/ e/ gy = —/ e Pdz ~ 2, (1.107)
2 4 ma J_qp V2r S 3

—a —



42 CHAPTER 1. ORIGINS OF QUANTUM PHYSICS

where we have used the change of variable z = 2x /a.
(b) The normalization of o (x) is straightforward:

“+o00 a . . a

1 =/ lwo(x)Pdx = |A]> | e hovelkovgy — 1412 | dx = 2al4); (1.108)
—0o0 —a —a

hence A = 1/+/2a. The Fourier transform of o (x) is

1 /a ko ik g _ 1 sin[(k— ko)a]'

2J/ma JrTa k — ko
(1.109)

po(x)e " dx =

1 00
=7 L.

1.8.2 'Wave Packets and the Uncertainty Relations

We want to show here that the width of a wave packet wo(x) and the width of its amplitude
¢ (k) are not independent; they are correlated by a reciprocal relationship. As it turns out, the
reciprocal relationship between the widths in the x and & spaces has a direct connection to
Heisenberg’s uncertainty relation.

For simplicity, let us illustrate the main ideas on the Gaussian wave packet treated in the
previous example (see (1.102) and (1.106)):

1/4

2 1/4 2,2 ik a2 / 2k e 2 4
wo(x) = (_2) e X/ gikox | P (k) = (2_) e~ (k=ko)"/4, (1.110)
Ta T

As displayed in Figure 1.13, |wo(x)|* and |¢ (k)|* are centered at x = 0 and k = ko, respec-
tively. It is convenient to define the half-widths Ax and Ak as corresponding to the half-maxima
of | 1,1/0(x)|2 and |¢(k)|2. In this way, when x varies from 0 to £Ax and & from kg to ko £ Ak,
the functions |wo(x)|? and |¢ (k)|* drop to e~1/2:

2 2
y&EAn OF _ p W2 ADE _ 1o (L111)
ly (0, 0)] | (ko)

These equations, combined with (1.110), lead to e728x% /0% — o=1/2 gpd o=@’ AR/2 — /2,

respectively, or to

1
Ax=2  Ak=-; (1.112)
2 a
hence .
Axdk= 5. (1.113)
Since Ak = Ap/hi we have
7
AxAp = 5 (1.114)

This relation shows that if the packet’s width is narrow in x-space, its width in momentum
space must be very broad, and vice versa.

A comparison of (1.114) with Heisenberg’s uncertainty relations (1.57) reveals that the
Gaussian wave packet yields an equality, not an inequality relation. In fact, equation (1.114) is
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the lowest limit of Heisenberg’s inequality. As a result, the Gaussian wave packet is called the
minimum uncertainty wave packet. All other wave packets yield higher values for the product
of the x and p uncertainties: Ax Ap > #/2; for an illustration see Problem 1.11. In conclusion,
the value of the uncertainties product Ax Ap varies with the choice of y, but the lowest bound,
7i/2, is provided by a Gaussian wave function. We have now seen how the wave packet concept
offers a heuristic way of deriving Heisenberg’s uncertainty relations; a more rigorous derivation
is given in Chapter 2.

1.8.3 Motion of Wave Packets

How do wave packets evolve in time? The answer is important, for it gives an idea not only
about the motion of a quantum particle in space but also about the connection between classical
and quantum mechanics. Besides studying how wave packets propagate in space, we will also
examine the conditions under which packets may or may not spread.

At issue here is, knowing the initial wave packet yo(x) or the amplitude ¢ (k), how do we
find y (x, ) atany later time #? This issue reduces to calculating the integral [ ¢ (k)e! kx=o) g
in (1.94). To calculate this integral, we need to specify the angular frequency w and the ampli-
tude ¢ (k). We will see that the spreading or nonspreading of the packet is dictated by the form
of the function w (k).

1.8.3.1 Propagation of a Wave Packet without Distortion

The simplest form of the angular frequency w is when it is proportional to the wave number k;
this case corresponds to a nondispersive propagation. Since the constant of proportionality has
the dimension of a velocity!#, which we denote by vg (i.e., @ = vok), the wave packet (1.94)
becomes

1 +00 T
t//(x,t):E/_ ¢ (ke =0l g, (1.115)

This relation has the same structure as (1.95), which suggests that v (x, ¢) is identical with
wo(x — vol):
w(x, 1) = wolx —vot); (1.116)

the form of the wave packet at time ¢ is identical with the initial form. Therefore, when w is
proportional to &, so that w = vok, the wave packet travels to the right with constant velocity
vo without distortion.

However, since we are interested in wave packets that describe particles, we need to con-
sider the more general case of dispersive media which transmit harmonic waves of different
frequencies at different velocities. This means that  is a function of k: @ = w(k). The form
of w (k) is determined by the requirement that the wave packet y (x, ¢) describes the particle.
Assuming that the amplitude ¢ (k) peaks at k = ko, then ¢p(k) = g(k — ko) is appreciably
different from zero only in a narrow range Ak = k — kg, and we can Taylor expand w (k) about
ko:

B o do®) 1. 5 d*w(k)
o) = wlk) + (k—ko) oK k:k0+2(k ko) — k:k0+
= (ko) + (k — ko)og + (k — ko)?oc + - - - (1.117)

l4Eor propagation of light in a vacuum this constant is equal to c, the speed of light.
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Figure 1.14 The function Re y (x, t) of the wave packet (1.118), represented here by the solid
curve contained in the dashed-curve envelope, propagates with the group velocity v, along the
x axis; the individual waves (not drawn here), which add up to make the solid curve, move with
different phase velocities v ).

_ dok _ 1 dPok)
where vg = =7 ko anda = 5 —3

k=ky
Now, to determine  (x, t) we need simp(l)y to substitute (1.117) into (1.94) with ¢ (k) =

g(k — ko). This leads to

+
(//(x, t) = %eiko(x—vpht)/ OOg(k _ ko)ei(k—ko)(x—l)gt)e—i(k—ko)zat-{—“-dk (1.118)
T -

[e.¢]

where!?

_do(k) k)
Vg = ak Uph = T’

(1.119)

vpn and v, are respectively the phase velocity and the group velocity. The phase velocity
denotes the velocity of propagation for the phase of a single harmonic wave, e —vp1?) " and
the group velocity represents the velocity of motion for the group of waves that make up the
packet. One should not confuse the phase velocity and the group velocity; in general they are
different. Only when w is proportional to £ will they be equal, as can be inferred from (1.119).

Group and phase velocities
Let us take a short detour to explain the meanings of v,; and vg. As mentioned above, when
we superimpose many waves of different amplitudes and frequencies, we can obtain a wave
packet or pulse which travels at the group velocity vy; the individual waves that constitute the
packet, however, move with different speeds; each wave moves with its own phase velocity
vpp. Figure 1.14 gives a qualitative illustration: the group velocity represents the velocity with
which the wave packet propagates as a whole, where the individual waves (located inside the
packet’s envelope) that add up to make the packet move with different phase velocities. As
shown in Figure 1.14, the wave packet has an appreciable magnitude only over a small region
and falls rapidly outside this region.

The difference between the group velocity and the phase velocity can be understood quan-
titatively by deriving a relationship between them. A differentiation of w = kv (see (1.119))
with respect to k yields dw/dk = vy, +k(dvpy/dk), and since k = 27 /A, we have dv,;, /dk =

30 these equations we have omitted k( since they are valid for any choice of k.
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(dvpp/dA)(dA/dk) = —(27r/k2)(dvph/d/1) or k(dvp/dk) = —A(dvpp/dA); combining these
relations, we obtain

do dv,p dvpp
_do _ ook _ L0k 1.120
Ve = g T T T A (1.120)
which we can also write as
dvph
Vg =Vpp + p , (1.121)
14 p dp

since k(dvp,/dk) = (p/h)(dvpr/dp)(dp/dk) = p(dv,/dp) because k = p/h. Equations
(1.120) and (1.121) show that the group velocity may be larger or smaller than the phase veloc-
ity; it may also be equal to the phase velocity depending on the medium. If the phase velocity
does not depend on the wavelength—this occurs in nondispersive media—the group and phase
velocities are equal, since dv,;/dA = 0. But if v, depends on the wavelength—this occurs in
dispersive media—then dv ), /d 2 # 0; hence the group velocity may be smaller or larger than
the phase velocity. An example of a nondispersive medium is an inextensible string; we would
expect vg = vp;. Water waves offer a typical dispersive medium; in Problem 1.13 we show
that for deepwater waves we have v, = %u pn and for surface waves we have v, = %v ph’ See
(1.212) and (1.214).

Consider the case of a particle traveling in a constant potential V'; its total energy is
E(p) = p?/(2m)+ V. Since the corpuscular features (energy and momentum) of a particle are
connected to its wave characteristics (wave frequency and number) by the relations £ = fiw
and p = Ak, we can rewrite (1.119) as follows:

’ _dE(®) A E(p)
8 dp 4 P p ’

(1.122)

which, when combined with E (p) = % + V, yield

d (p* P L (P’ p .V
= — —_— V — e N e _— V = I 1.123
vs dp (Zm + ) m Uparticle Oph p \2m + 2m + p ( )

The group velocity of the wave packet is thus equal to the classical velocity of the particle,
Vg = Uparticle- This suggests we should view the “center” of the wave packet as traveling like
a classical particle that obeys the laws of classical mechanics: the center would then follow
the “classical trajectory” of the particle. We now see how the wave packet concept offers a
clear connection between the classical description of a particle and its quantum mechanical
description. In the case of a free particle, an insertion of V' = 0 into (1.123) yields

o=l o=t L, (1.124)

£ m’ PR om — 278

This shows that, while the group velocity of the wave packet corresponding to a free particle
is equal to the particle’s velocity, p/m, the phase velocity is half the group velocity. The
expression v, = %vg is meaningless, for it states that the wave function travels at half the
speed of the particle it is intended to represent. This is unphysical indeed. The phase velocity
has in general no meaningful physical significance.
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Time-evolution of the packet
Having taken a short detour to discuss the phase and group velocities, let us now return to our
main task of calculating the packet y (x, ¢) as listed in (1.118). For this, we need to decide on
where to terminate the expansion (1.117) or the exponent in the integrand of (1.118). We are
going to consider two separate cases corresponding to whether we terminate the exponent in
(1.118) at the linear term, (kK — ko)vgt, or at the quadratic term, (k — ko)*at. These two cases
are respectively known as the linear approximation and the quadratic approximation.

In the linear approximation, which is justified when g(k — kq) is narrow enough to neglect
the quadratic k% term, (k — ko)?at < 1, the wave packet (1.118) becomes

1 ko (x— oo i (k—k —vgt
w(x, 1) = etkotx=vpnt) gk — ko)e! KR —veh) g (1.125)
2w -

o0

This relation can be rewritten as
w(x, 1) = Ty (x — pot)e kol =0 (1.126)

where yy is the initial wave packet (see (1.95))

1 +oo . .
ol =gt = —= [ gl)e OO0 gy (1.127)
—00
the new variable ¢ stands for ¢ = k — ko. Equation (1.126) leads to

ly (e, )P = |wolx —gt)| (1.128)

Equation (1.126) represents a wave packet whose amplitude is modulated. As depicted in Fig-
ure 1.14, the modulating wave, y(x — vgt), propagates to the right with the group velocity vg;
the modulated wave, /%0 —0p) represents a pure harmonic wave of constant wave number kg
that also travels to the right with the phase velocity v . That is, (1.126) and (1.128) represent
a wave packet whose peak travels as a whole with the velocity vg, while the individual wave
propagates inside the envelope with the velocity v ;. The group velocity, which gives the ve-
locity of the packet’s peak, clearly represents the velocity of the particle, since the chance of
finding the particle around the packet’s peak is much higher than finding it in any other region
of space; the wave packet is highly localized in the neighborhood of the particle’s position and
vanishes elsewhere. It is therefore the group velocity, not the phase velocity, that is equal to the
velocity of the particle represented by the packet. This suggests that the motion of a material
particle can be described well by wave packets. By establishing a correspondence between
the particle’s velocity and the velocity of the wave packet’s peak, we see that the wave packet
concept jointly embodies the particle aspect and the wave aspect of material particles.

Now, what about the size of the wave packet in the linear approximation? Is it affected
by the particle’s propagation? Clearly not. This can be inferred immediately from (1.126):
wo(x —vgt) represents, mathematically speaking, a curve that travels to the right with a velocity
vg without deformation. This means that if the packet is initially Gaussian, it will remain
Gaussian as it propagates in space without any change in its size.

To summarize, we have shown that, in the linear approximation, the wave packet propagates
undistorted and undergoes a uniform translational motion. Next we are going to study the
conditions under which the packet experiences deformation.



1.8. WAVE PACKETS 47

1.8.3.2 Propagation of a Wave Packet with Distortion

Let us now include the quadratic k> term, (k — ko)?at, in the integrand’s exponent of (1.118)
and drop the higher terms. This leads to

w(x, 1) = PG £(x 1), (1.129)

where f(x, t), which represents the envelope of the packet, is given by

flx,0) = g(q)eldC—vet) gmid’at g (1.130)

1 +oo
kY4 2 /—oo
with ¢ = k — ko. Were it not for the quadratic g2 correction, ig2at, the wave packet would
move uniformly without any change of shape, since similarly to (1.116), f(x, ¢) would be given
by /(¥ 1) = pox — vgt).

To show how a affects the width of the packet, let us consider the Gaussian packet (1.102)
whose amplitude is given by ¢ (k) = (a*/27)"/* exp [—a*(k — ko)? /4] and whose initial width
is Axg = a/2 and Ak = h/a. Substituting ¢ (k) into (1.129), we obtain

1 /a2\'4 o b [F° ) )
y(x,t) = — | — e o\ =Uph / ex |:i x—vt—(——i—iat) i|d.
y(x, 1) \/2—7[(27[) o q(x —vgh) — | 5 q° |dq
(1.131)
Evaluating the integral (the calculations are detailed in the following example, see Eq. (1.145)),

we can show that the packet’s density distribution is given by

R S BT, 132
Varax@o U | 20ax0F | (152

where Ax(¢) is the width of the packet at time #:

a 1602 a?t?
Ax(t) = =,/ 1 2=A 1+ ——-. 1.133
x(t) 2‘/ + e x0,/ 1 4 (Bxo)? ( )

We see that the packet’s width, which was initially given by Axg = a/2, has grown by a factor

1 4+ a2t2/(Axp)* after time ¢. Hence the wave packet is spreading; the spreading is due

to the inclusion of the quadratic q* term, ig*at. Should we drop this term, the packet’s width
Ax(t) would then remain constant, equal to Axg.

The density distribution (1.132) displays two results: (1) the center of the packet moves

with the group velocity; (2) the packet’s width increases linearly with time. From (1.133) we

see that the packet begins to spread appreciably only when a?#% /(Ax¢)* & 1 or t & (Ax)?/a.

In fact, if 1 <« (Axo)*/a the packet’s spread will be negligible, whereas if ¢ > (A%ﬁ the

packet’s spread will be significant.

To be able to make concrete statements about the growth of the packet, as displayed in
(1.133), we need to specify a; this reduces to determining the function w(k), since a =
% ZT‘Z" b For this, let us invoke an example that yields itself to explicit calculation. In

=Ko
fact, the example we are going to consider—a free particle with a Gaussian amplitude—allows
the calculations to be performed exactly; hence there is no need to expand w (k).

ly (x, )|* =
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Example 1.9 (Free particle with a Gaussian wave packet)
Determine how the wave packet corresponding to a free particle, with an initial Gaussian packet,
spreads in time.

Solution
The issue here is to find out how the wave packet corresponding to a free particle with ¢ (k) =
(a2/27r)1/4e‘”2(k‘k0)2/4 (see (1.110)) spreads in time.

First, we need to find the form of the wave packet, w(x,?). Substituting the amplitude
o (k) = (a?/2m)Y/ 4¢=a(k=k0)*/4 into the Fourier integral (1.94), we obtain

1 2\ /4 100 2
v = —— (;’—ﬂ) /_OO exp [—%(k — ko)* + i (kx — a)t)i| dk. (1.134)

Since w(k) = %k*/(2m) (the dispersion relation for a free particle), and using a change of
variables ¢ = k — ko, we can write the exponent in the integrand of (1.134) as a perfect square
for g:

a? hk? a? ht hkot
—— =k +ilbkx——t)=—(—+i— ) ¢?>+i([x——
7 k= Ho) +’(x Zm) (4+12m)q +’( m)q

hkot hkot
=—aq2—l—i(x——0)q+iko(x——0)
m 2m
i hkot\ 1> 1 hikot \
=—a|lqg——x——— ——x-—
2a m 4o m

fikot
+,-k0( _ Dikot ) (1.135)
2m
where we have used the relation — ag? +iyqg = — a g — iy/(20c)]2 — y?/(4a), with y =
x — hkot/m and
a® ht
=—+i—. 1.136
=Tt (1.136)

Substituting (1.135) into (1.134) we obtain
.y = L a’ " hkot 1 hkot\*
w(x, = 7\ exp | iko | x — — = ) fexp | =~ | X —
+oo ' fikot \ 12
x/ exp{—a[q—L(x——O)} ]dq. (1.137)
o 2a m

Combined with the integral'® [*% exp[— a (¢ — iy/(20))*|dg = /7 /a, (1.137) leads to

2\ /4 2
wix,t) = % (g—n) exp |:iko (x — %)] exp [—% (x - ?) :| . (1.138)

1(’Ifﬂ and ¢ are two complex numbers and if Re f > 0, we have fj_oos e_ﬂ(q+5)2 dq = /7 /B.

1/4
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Since « is a complex number (see (1.136)), we can write it in terms of its modulus and phase

12
2 2 2,2
a 2ht a 4h“t 0
a:Z(l_'_lW):?(l-i_W) éev, (1.139)
where 6 = tan™! [27¢/(ma?)]; hence
—1/4

1 2 4h%1? ”

_— _Z - —i6/2

ﬁ_a(1+m2a4) emi0/2, (1.140)

Substituting (1.136) and (1.140) into (1.138), we have

—1/4
2 \'/4 45212 o — hkot /m)?
w(x, 1) = (m) (1 + o102 giko (x—hkot /2m) exp _(x ot/m)

m2a* a? 4+ 2ikt/m
(1.141)
Since ‘e‘yz/(azﬁ"m/"’) eV} /@ =2iht/m) =y /(@ +2iht/m) where y = x — hkot/m, and
since y2/(a® — 2ikt/m) + y*/(a® + 2ikit)m) = 2a*y?*/(a* + 4h%t* /m?), we have

2612)/2
—exp(——22 ), 1.142
exp( e —— /m2) (1.142)

2

2

2
a’ 4 2ikt/m

2 44242 1z
ly (x, )] ”_az(HW)
[2 1 2 fikot \ 2
ma? y () exp{_[ay(t)]2 (x— m ) }’ (149

where y (1) = \/1 + 45212 /(m2a*).

We see that both the wave packet (1.141) and the probability density (1.143) remain Gaussian
as time evolves. This can be traced to the fact that the x-dependence of the phase, /%%, of g (x)
as displayed in (1.110) is linear. If the x-dependence of the phase were other than linear, say
quadratic, the form of the wave packet would not remain Gaussian. So the phase factor e%0*,
which was present in g (x), allows us to account for the motion of the particle.

hence

2
. (x — hkot/m)?
i | = T Kot/ m)”
P a’ + 2ikt/m

Since the group velocity of a free particle is vy = dw/dk = % (%) ‘k = fiky/m, we can
0

rewrite (1.141) as follows'”:

2
O t) = 02 ka0t /) g [_%] , (1.144)
V27 Ax (1)
2 (x = Ug’)z
- expl-— ) 14
v V2 Ax(0) eXp< 2[Ax(t)]2}’ (1149

171t is interesting to note that the harmonic wave etko(x—vgt/2) propagates with a phase velocity which is zalf the
group velocity; as shown in (1.124), this is a property of free particles.
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2
ly (x, 1)
A
V2/ma?
1 .
V27 Axoa/14(t /)2 . :
...... r= OH Ug
PEuN : t=1
/\ -
: <y J LA : - X
—0gh —0gl 0 Vgl Vgl

Figure 1.15 Time evolution of |y (x, #)|?: the peak of the packet, which is centered at x =
vgt, moves with the speed vy from left to right. The height of the packet, represented here
by the dotted envelope, is modulated by the function 1/(+/27 Ax(¢)), which goes to zero at

t = oo and is equal to /2/wa? at t = 0. The width of the packet Ax(¢) = Axoy/1 + (¢/7)2

increases linearly with time.
a a 4112
Ax(t)==y() = —=,/1 —_— 1.146
X0 =570 =51+ (1.146)

represents the width of the wave packet at time ¢. Equations (1.144) and (1.145) describe a
Gaussian wave packet that is centered at x = vg¢ whose peak travels with the group speed vy =
hko/m and whose width Ax(z) increases linearly with time. So, during time 7, the packet’s
center has moved from x = 0 to x = v, and its width has expanded from Axp = a/2 to

where!8

Ax(t) = Axo\/ 1 + 45212 /(m2a*). The wave packet therefore undergoes a distortion; although

it remains Gaussian, its width broadens linearly with time whereas its height, 1/(v/27 Ax(¢)),
decreases with time. As depicted in Figure 1.15, the wave packet, which had a very broad width
and a very small amplitude at # — —oo, becomes narrower and narrower and its amplitude
larger and larger as time increases towards ¢ = 0; at ¢t = 0 the packet is very localized, its width
and amplitude being given by Axg = a/2 and /2/ma?, respectively. Then, as time increases
(t > 0), the width of the packet becomes broader and broader, and its amplitude becomes
smaller and smaller.

In the rest of this section we are going to comment on several features that are relevant not
only to the Gaussian packet considered above but also to more general wave packets. First, let
us begin by estimating the time at which the wave packet starts to spread out appreciably. The
packet, which is initially narrow, begins to grow out noticeably only when the second term,
2ht /(ma®), under the square root sign of (1.146) is of order unity. For convenience, let us write

18We can derive (1.146) also from (1.111): a combination of the half-width |y (£Ax, t)l2 /1w (0, 0)|2 =e 12
with (1.143) yields e=2[8x/a7 OF — o=1/2 which in turn leads to (1.146).
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2
Ax(t) = Axo, |1 + (;) , (1.147)

2m(Axg)?
T = —
h

represents a time constant that characterizes the rate of the packet’s spreading. Now we can
estimate the order of magnitude of 7; it is instructive to evaluate it for microscopic particles
as well as for macroscopic particles. For instance, ¢ for an electron whose position is defined
to within 10719 m is given by!® 7 ~ 1.7 x 107'® s; on the other hand, the time constant
for a macroscopic particle of mass say 1 g whose position is defined to within 1 mm is of the
order?® of 7 ~ 2x 10% s (for an illustration see Problems 1.15 and 1.16). This crude calculation
suggests that the wave packets of microscopic systems very quickly undergo significant growth;
as for the packets of macroscopic systems, they begin to grow out noticeably only after the
system has been in motion for an absurdly long time, a time of the order of, if not much higher
than, the age of the Universe itself, which is about 4.7 x 1017 s. Having estimated the times
at which the packet’s spread becomes appreciable, let us now shed some light on the size of
the spread. From (1.147) we see that when ¢ >> 7 the packet’s spreading is significant and,
conversely, when ¢ << 7 the spread is negligible. As the cases ¢ > 7 and ¢ < 7 correspond
to microscopic and macroscopic systems, respectively, we infer that the packet’s dispersion is
significant for microphysical systems and negligible for macroscopic systems. In the case of
macroscopic systems, the spread is there but it is too small to detect. For an illustration see
Problem 1.15 where we show that the width of a 100 g object increases by an absurdly small
factor of about 10727 after traveling a distance of 100 m, but the width of a 25 eV electron
increases by a factor of 10? after traveling the same distance (in a time of 3.3 x 107> s). Such
an immense dispersion in such a short time is indeed hard to visualize classically; this motion
cannot be explained by classical physics.

So the wave packets of propagating, microscopic particles are prone to spreading out very
significantly in a short time. This spatial spreading seems to generate a conceptual problem:
the spreading is incompatible with our expectation that the packet should remain highly local-
ized at all times. After all, the wave packet is supposed to represent the particle and, as such,
it is expected to travel without dispersion. For instance, the charge of an electron does not
spread out while moving in space; the charge should remain localized inside the corresponding
wave packet. In fact, whenever microscopic particles (electrons, neutrons, protons, etc.) are
observed, they are always confined to small, finite regions of space; they never spread out as
suggested by equation (1.146). How do we explain this apparent contradiction? The problem
here has to do with the proper interpretation of the situation: we must modify the classical
concepts pertaining to the meaning of the position of a particle. The wave function (1.141)
cannot be identified with a material particle. The quantity |y (x, 7)|>dx represents the proba-
bility (Born’s interpretation) of finding the particle described by the packet v (x, ¢) at time ¢ in
the spatial region located between x and x + dx. The material particle does not disperse (or
fuzz out); yet its position cannot be known exactly. The spreading of the matter wave, which is
accompanied by a shrinkage of its height, as indicated in Figure 1.15, corresponds to a decrease

(1.146) in the form

where
(1.148)

191¢ Axg = 10710 m and since the rest mass energy of an electron is mc? = 0.5 MeV and using fic =~ 197 x
10~15 MeV m, we have t = 2mcz(Ax0)2/((hc)c) ~1.7x 107165,
208ince # = 1.05 x 10734 J s we have 7 = 2 x 0.001 kg x (0.001 m)2/(1.05 x 10734 J s) ~2 x 10% s.
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of the probability density |y (x, 7)|> and implies in no way a growth in the size of the particle.
So the wave packet gives only the probability that the particle it represents will be found at a
given position. No matter how broad the packet becomes, we can show that its norm is always
conserved, for it does not depend on time. In fact, as can be inferred from (1.143), the norm of
the packet is equal to one:

4o 21 [ 20— hkot/m)? \/7 \/?
2 _ -
[ wor d"—\/;y | exp< T @’ ] e

(1.149)
since fj;o e=**’dx = /xJa. This is expected, since the probability of finding the particle
somewhere along the x-axis must be equal to one. The important issue here is that the norm
of the packet is time independent and that its spread does not imply that the material particle
becomes bloated during its motion, but simply implies a redistribution of the probability density.
So, in spite of the significant spread of the packets of microscopic particles, the norms of these
packets are always conserved—normalized to unity.

Besides, we should note that the example considered here is an idealized case, for we are
dealing with a free particle. If the particle is subject to a potential, as in the general case, its
wave packet will not spread as dramatically as that of a free particle. In fact, a varying potential
can cause the wave packet to become narrow. This is indeed what happens when a measurement
is performed on a microscopic system; the interaction of the system with the measuring device
makes the packet very narrow, as will be seen in Chapter 3.

Let us now study how the spreading of the wave packet affects the uncertainties product
Ax(t)Ap(t). First, we should point out that the average momentum of the packet 7k and its
uncertainty Ak do not change in time. This can be easily inferred as follows. Rewriting (1.94)
in the form

+o00 +o00

1 ‘ .
w(x, 1) = = é(k, 0)e! F¥ =N g = = bk, 1)e'* dk, (1.150)
hY% —00 v —00
we have A
Pk, 1) = e Dk, 0), (1.151)
where ¢ (k, 0) = (a2/27r)1/4e_“2(k_k0)2/4; hence
|k, P = | (k, 0)I. (1.152)

This suggests that the widths of ¢ (k, t) and ¢ (k, 0) are equal; hence Ak remains constant and
so must the momentum dispersion Ap (this is expected because the momentum of a free particle
is a constant of the motion). Since the width of ¢ (k, 0) is given by Ak = 1/a (see (1.112)), we
have

A
Ap =hAk = —. (1.153)
a
Multiplying this relation by (1.146), we have
h 4n?
Ax()Ap = =1 + ——12, (1.154)
2 m2a*

which shows that Ax(¢)Ap > h/2 is satisfied at all times. Notably, when ¢t = 0 we obtain
the lower bound limit AxgAp = #/2; this is the uncertainty relation for a stationary Gaussian
packet (see (1.114)). As |¢] increases, however, we obtain an inequality, Ax(¢#)Ap > Fi/2.
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oxc = —ht/(ma) oxc = hit/(ma)

t

>
o

Figure 1.16 Time evolutions of the packet’s width Ax(¢) = Axo\/ 1 + (0xi(t)/ Axo)? (dotted
curve) and of the classical dispersion dx;(¢t) = +#t/(ma) (solid lines). For large values of |¢],
Ax(t) approaches dx;(¢) and att = 0, Ax(0) = Axp = a/2.

Having shown that the width of the packet does not disperse in momentum space, let us now
study the dispersion of the packet’s width in x-space. Since Axg = a/2 we can write (1.146)

as
a 4522 Sxa () \?
Ax(t) = =,/ 1 + —— = Axo |1+ [ ——=) , 1.155
x(1) =51+ 53 X0 +( Are ) (1.155)

where the dispersion factor dx.;(¢)/ Axg is given by

Oxe(t 2h h
ralt) _ 2k, _ . (1.156)
Axo ma? 2mAx§

As shown in Figure 1.16, when |¢] is large (i.e., t = $00), we have Ax(t) — dx.(¢) with

Oxe(t) = iﬁ = :I:gt = +Avt, (1.157)
ma m

where Av = /i/(ma) represents the dispersion in velocity. This means that if a particle starts
initially (# = 0) at x = 0 with a velocity dispersion equal to Ao, then Av will remain constant
but the dispersion of the particle’s position will increase linearly with time: dx.;(¢) = %l|t|/(ma)
(Figure 1.16). We see from (1.155) that if ox.;(¢)/Axp < 1, the spreading of the wave packet
is negligible, but if dx.; (t)/ Axo > 1, the wave packet will spread out without bound.

We should highlight at this level the importance of the classical limit of (1.154): in the limit
i — 0, the product Ax(¢) Ap goes to zero. This means that the x and p uncertainties become
negligible; that is, in the classical limit, the wave packet will propagate without spreading. In
this case the center of the wave packet moves like a free particle that obeys the laws of classical
mechanics. The spread of wave packets is thus a purely quantum effect. So when i — 0 all
quantum effects, the spread of the packet, disappear.

We may conclude this study of wave packets by highlighting their importance:

e They provide a linkage with the Heisenberg uncertainty principle.
e They embody and unify the particle and wave features of matter waves.
e They provide a linkage between wave intensities and probabilities.

e They provide a connection between classical and quantum mechanics.
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1.9 Concluding Remarks

Despite its striking success in predicting the hydrogen’s energy levels and transition rates, the
Bohr model suffers from a number of limitations:

e It works only for hydrogen and hydrogen-like ions such as Hetand Li**.

e It provides no explanation for the origin of its various assumptions. For instance, it gives
no theoretical justification for the quantization condition (1.63) nor does it explain why
stationary states radiate no energy.

e It fails to explain why, instead of moving continuously from one energy level to another,
the electrons jump from one level to the other.

The model therefore requires considerable extension to account for the electronic properties
and spectra of a wide range of atoms. Even in its present limited form, Bohr’s model represents
a bold and major departure from classical physics: classical physics offers no justification for
the existence of discrete energy states in a system such as a hydrogen atom and no justification
for the quantization of the angular momentum.

In its present form, the model not only suffers from incompleteness but also lacks the ingre-
dients of a consistent theory. It was built upon a series of ad hoc, piecemeal assumptions. These
assumptions were not derived from the first principles of a more general theory, but postulated
rather arbitrarily.

The formulation of the theory of quantum mechanics was largely precipitated by the need
to find a theoretical foundation for Bohr’s ideas as well as to explain, from first principles, a
wide variety of other microphysical phenomena such as the puzzling processes discussed in
this chapter. It is indeed surprising that a single theory, quantum mechanics, is powerful and
rich enough to explain accurately a wide variety of phenomena taking place at the molecular,
atomic, and subatomic levels.

In this chapter we have dealt with the most important experimental facts which confirmed
the failure of classical physics and subsequently led to the birth of quantum mechanics. In the
rest of this text we will focus on the formalism of quantum mechanics and on its application to
various microphysical processes. To prepare for this task, we need first to study the mathemat-
ical tools necessary for understanding the formalism of quantum mechanics; this is taken up in
Chapter 2.

1.10 Solved Problems

Numerical calculations in quantum physics can be made simpler by using the following units.
First, it is convenient to express energies in units of electronvolt ( €V): one eV is defined as
the energy acquired by an electron passing through a potential difference of one Volt. The
electronvolt unit can be expressed in terms of joules and vice versa: 1 eV = (1.6 x 1071 C) x
(1V)=1.6x10"12Jand 1 J = 0.625 x 10! eV.

It is also convenient to express the masses of subatomic particles, such as the electron,
proton, and neutron, in terms of their rest mass energies: mec? = 0.511 MeV, m pcz =
938.27 MeV, and m,c? = 939.56 MeV.

In addition, the quantities 7ic = 197.33 MeV fm = 197.33 x 10~15 MeV m or hc =

1242.37 x 10710 ¢V m are sometimes more convenient to use than # = 1.05 x 10734 J s.
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Additionally, instead of 1/(47&p) = 8.9 x 10° N m?> C~2, one should sometimes use the fine
structure constant o = e?/[(4meo)hic] = 1/137.

Problem 1.1
A 45 kW broadcasting antenna emits radio waves at a frequency of 4 MHz.

(a) How many photons are emitted per second?

(b) Is the quantum nature of the electromagnetic radiation important in analyzing the radia-
tion emitted from this antenna?

Solution
(a) The electromagnetic energy emitted by the antenna in one second is £ = 45000 J.
Thus, the number of photons emitted in one second is

E 4500017

=— = =1.7 x 10°". 1.158
Ty T 6.63x 1021 s x 4 x 106 Hz % (1.158)

(b) Since the antenna emits a huge number of photons every second, 1.7 x 103!, the quantum
nature of this radiation is unimportant. As a result, this radiation can be treated fairly accurately
by the classical theory of electromagnetism.

Problem 1.2
Consider a mass—spring system where a 4 kg mass is attached to a massless spring of constant
k = 196 Nm™!; the system is set to oscillate on a frictionless, horizontal table. The mass is
pulled 25 cm away from the equilibrium position and then released.

(a) Use classical mechanics to find the total energy and frequency of oscillations of the
system.

(b) Treating the oscillator with quantum theory, find the energy spacing between two con-
secutive energy levels and the total number of quanta involved. Are the quantum effects impor-
tant in this system?

Solution
(a) According to classical mechanics, the frequency and the total energy of oscillations are
given by

1 [k 1 [19 1 196
v=—/—=—/— =1.11Hz E = —kA®> = —=—(0.25% =6.125J. (1.159)
27 Vm 2z 4 2 2

(b) The energy spacing between two consecutive energy levels is given by
AE =hv = (6.63 x 1073*J s) x (1.11 Hz) = 7.4 x 1073*J (1.160)

and the total number of quanta is given by

E 6.125]

— — _ 33

We see that the energy of one quantum, 7.4 x 1073* J, is completely negligible compared to
the total energy 6.125 J, and that the number of quanta is very large. As a result, the energy
levels of the oscillator can be viewed as continuous, for it is not feasible classically to measure
the spacings between them. Although the quantum effects are present in the system, they are
beyond human detection. So quantum effects are negligible for macroscopic systems.
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Problem 1.3
When light of a given wavelength is incident on a metallic surface, the stopping potential for
the photoelectrons is 3.2 V. If a second light source whose wavelength is double that of the first
is used, the stopping potential drops to 0.8 V. From these data, calculate

(a) the wavelength of the first radiation and

(b) the work function and the cutoff frequency of the metal.

Solution
(a) Using (1.23) and since the wavelength of the second radiation is double that of the first
one, A = 211, we can write

he W

Vsy = —/———, (1.162)
el e
hc w he w
Vs, = ———= - —. 1.163
2 el e 2el| e ( )
To obtain 41 we have only to subtract (1.163) from (1.162):
hc 1 he
Ve = Ve =— (1 —=) = . 1.164
TR T e ( 2) 2el (1.164)
The wavelength is thus given by
he 6.6x 10734J s x 3 x 103ms~!

v =26x%x10""m. (1.165)

T 2e(Vy —Vyy) 2x1.6x1009Cx (3.2V—08V)

(b) To obtain the work function, we simply need to multiply (1.163) by 2 and subtract the
result from (1.162), Vs, — 2V, = W/e, which leads to

W=e(Vs —2Vs) =1.6eV=16x1.6x10"1 =256 x 1071 J. (1.166)
The cutoff frequency is

W 256x107197]

=~ _39x10"Hz 1.167
T 66x10-47 s % z (1.167)

VvV =

Problem 1.4

(a) Estimate the energy of the electrons that we need to use in an electron microscope to
resolve a separation of 0.27 nm.

(b) In a scattering of 2 eV protons from a crystal, the fifth maximum of the intensity is
observed at an angle of 30°. Estimate the crystal’s planar separation.

Solution
(a) Since the electron’s momentum is p = 2z /i /4, its kinetic energy is given by
_ p? . 2m2h?
T 2me meA?’

(1.168)

Since m.c? = 0.511 MeV, fic = 197.33 x 10715 MeV m, and 1 = 0.27 x 10~ m, we have

_ 2x%(he)*  27%(197.33 x 10715 MeV m)?
T (mec®)A2 T (0.511 MeV)(0.27 x 10=9 m)2

—20.6eV. (1.169)
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(b) Using Bragg’s relation (1.46), 1 = (2d/n) sin ¢, where d is the crystal’s planar separa-
tion, we can infer the proton’s kinetic energy from (1.168):

p2 2ﬂ2h2 n2n,2h2
E = — — s , (1.170)
2m,  mpi*  2mpd?sin 2¢
which leads to 5 5
nmw nrhc (1.171)

d=— = .
(in @)y2mpE (sin @) /2m 2 E
Since n = 5 (the fifth maximum), ¢ = 30°, £ =2 eV, and mpc2 = 938.27 MeV, we have

B 5w x 197.33 x 1071° MeV m
(sin 30°)4/2 x 938.27 MeV x 2 x 10-6 MeV

= 0.101 nm. (1.172)

Problem 1.5
A photon of energy 3 keV collides elastically with an electron initially at rest. If the photon
emerges at an angle of 60°, calculate

(a) the kinetic energy of the recoiling electron and

(b) the angle at which the electron recoils.

Solution
(a) From energy conservation, we have

hv 4+ mec? = ' + (Ke + mec?), (1.173)

where Av and v’ are the energies of the initial and scattered photons, respectively, m.c? is the
rest mass energy of the initial electron, (K, 4+ m.c?) is the total energy of the recoiling electron,
and K, is its recoil kinetic energy. The expression for K, can immediately be inferred from
(1.173):

1 1 he M — A AL
Kezh(v—v/)zhc (I—?) 27 o Z(hU)T, (1174)
where the wave shift A4 is given by (1.36):
h 2rh
AL = V—-i= (1 —cos 0) = nzc(l—cosé))
mec mec
27 x 197.33 x 10715 MeV
- X x €Y 1~ cos 60°)
0.511 MeV
= 0.0012 nm. (1.175)

Since the wavelength of the incident photon is 4 = 2z fic/(hv), we have 1 = 27 x 197.33 x
10715 MeV m/(0.003 MeV) = 0.414 nm; the wavelength of the scattered photon is given by

) =+ Al =04152nm. (1.176)

Now, substituting the numerical values of A’ and A4 into (1.174), we obtain the kinetic energy
of the recoiling electron
0.0012 nm

AL
Ke = (hU)T = (3 keV) X m = 8.671 V. (1177)
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(b) To obtain the angle at which the electron recoils, we need simply to use the conservation
of the total momentum along the x — and y— axes:

P = pecos ¢+ p'cos 0, 0 = pesin ¢ — p’sin 0. (1.178)
These can be rewritten as
pecos ¢ = p— p’cos 6, pesin ¢ = p’sin 0, (1.179)

where p and p’ are the momenta of the initial and final photons, p, is the momentum of the
recoiling electron, and 6 and ¢ are the angles at which the photon and electron scatter, respec-
tively (Figure 1.4). Taking (1.179) and dividing the second equation by the first, we obtain

sin 6 sin 0

t = = ,
ang p/p' —cos@  A'/A—cos b

(1.180)

where we have used the momentum expressions of the incident photon p = &/1 and of the
scattered photon p’ = h/A’. Since 4 = 0.414 nm and A’ = 0.4152 nm, the angle at which the
electron recoils is given by

in 0 in 60°
$=tan"' [ ——" ) = tan~! a —59.86°.  (1.181)
A'JA —cos 6 0.4152/0.414 — cos 60°

Problem 1.6
Show that the maximum kinetic energy transferred to a proton when hit by a photon of energy
hvis K, =hv/[1+ mpcz/(Zhv)], where m , is the mass of the proton.

Solution
Using (1.35), we have

1 1

—=-+ 5 (1 —cos 0), (1.182)

v Vo ompe
which leads to

, hv

hv (1.183)

" 1+ (hw/mpc®)(1 —cos )
Since the kinetic energy transferred to the proton is given by K, = hv — hv’, we obtain

_ hv . hv
1+ (hv/mpc?)(1 —cos @) 1+ mpyc?/[hv(1l — cos 0)]

Ky=hv (1.184)
Clearly, the maximum kinetic energy of the proton corresponds to the case where the photon

scatters backwards (0 = ),
hv

Ky=—"¢-+/¥+Z7-—.
P L+ mpe?/(2hv)

(1.185)

Problem 1.7
Consider a photon that scatters from an electron at rest. If the Compton wavelength shift is
observed to be triple the wavelength of the incident photon and if the photon scatters at 60°,
calculate

(a) the wavelength of the incident photon,

(b) the energy of the recoiling electron, and

(c) the angle at which the electron scatters.
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Solution
(a) In the case where the photons scatter at & = 60° and since A4 = 34, the wave shift
relation (1.36) yields
h

3= (1 — cos 60°), (1.186)
meC
which in turn leads to
h h 3.14 x 197.33 x 10”15 MeV
- L R R s Cl _404x107%m (1.187)
6mec  3mec? 3 x 0.511 MeV

(b) The energy of the recoiling electron can be obtained from the conservation of energy:

= 2.3 MeV.
(1.188)

11 3he  3mhe 3 x3.14 % 19733 x 1071 MeV m
K, = hc = = =

2T 4 T 24 2 x4.04x10-3m

In deriving this relation, we have used the fact that ' = 1 + A1 = 44.
(c) Since 1’ = 4/ the angle ¢ at which the electron recoils can be inferred from (1.181)

_ sin 0 _ sin 60° o
¢ = tan ! (m) = tan~! (m) = 13.9°. (1.189)

Problem 1.8
In a double-slit experiment with a source of monoenergetic electrons, detectors are placed along
a vertical screen parallel to the y-axis to monitor the diffraction pattern of the electrons emitted
from the two slits. When only one slit is open, the amplitude of the electrons detected on the
screen is w1 (v, 1) = Aje='®=®0/ /1 + y2_ and when only the other is open the amplitude is
wr(v, 1) = Ape Wy tmy—on ;) /1 4 2 where A1 and A, are normalization constants that need
to be found. Calculate the intensity detected on the screen when

(a) both slits are open and a light source is used to determine which of the slits the electron
went through and

(b) both slits are open and no light source is used.
Plot the intensity registered on the screen as a function of y for cases (a) and (b).

Solution
Using the integral fj;o dy/(1 + y?) = m, we can obtain the normalization constants at once:

A1 = Ay = 1//T; hence y and y; become w1 (v, 1) = e 6=/ [x (T 12), ya(y, 1) =
e—i(ky+7ry—cot)/ /77:(1 +y2).

(a) When we use a light source to observe the electrons as they exit from the two slits on
their way to the vertical screen, the total intensity recorded on the screen will be determined by
a simple addition of the probability densities (or of the separate intensities):

1) =y OF + lya (. )1 = (1.190)

r(1+y?)’

As depicted in Figure 1.17a, the shape of the total intensity displays no interference pattern.
Intruding on the electrons with the light source, we distort their motion.
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Figure 1.17 Shape of the total intensity generated in a double slit experiment when both slits
are open and (a) a light source is used to observe the electrons’ motion, /(y) = 2/z (1 + y?),
and no interference is registered; (b) no light source is used, / (y) = 4/[z (14+y*)] cos>(zy/2),
and an interference pattern occurs.

(b) When no light source is used to observe the electrons, the motion will not be distorted
and the total intensity will be determined by an addition of the amplitudes, not the intensities:

1 T . _ 2
10) = 100+ y2000F = s [ Brmen  emitbrmrmen
_ 1 iy —iry
= iy (+em) (™)
4 2 (T
= — =y). 1.191
z(1+,2) % (2y) (1.191)

The shape of this intensity does display an interference pattern which, as shown in Figure 1.17b,
results from an oscillating function, cos?(z y/2), modulated by 4/[z (1 + y?)].

Problem 1.9

Consider a head-on collision between an a-particle and a lead nucleus. Neglecting the recoil
of the lead nucleus, calculate the distance of closest approach of a 9.0 MeV a-particle to the
nucleus.

Solution

In this head-on collision the distance of closest approach 7 can be obtained from the conserva-
tion of energy E; = E s, where E; is the initial energy of the system, a-particle plus the lead
nucleus, when the particle and the nucleus are far from each other and thus feel no electrostatic
potential between them. Assuming the lead nucleus to be at rest, E; is simply the energy of the
a-particle: E; =9.0 MeV =9 x 10° x 1.6 x 10717 J.

As for E y, it represents the energy of the system when the a-particle is at its closest distance
from the nucleus. At this position, the a-particle is at rest and hence has no kinetic energy.
The only energy the system has is the electrostatic potential energy between the a-particle
and the lead nucleus, which has a positive charge of 82e. Neglecting the recoil of the lead
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nucleus and since the charge of the a-particle is positive and equal to 2e, we have £y =
(2e)(82e)/(4megro). The energy conservation E; = E r or (2e)(82e)/(4mweorg) = E; leads at

once to 2 82
ro = QaB2) _ ;) 6 x 10-14 m, (1.192)
dreoE;

where we used the values e = 1.6 x 107!° C and 1 /(47w eg) = 8.9 x 10° N m? C2.

Problem 1.10
Considering that a quintuply ionized carbon ion, C>*, behaves like a hydrogen atom, calculate
(a) the radius r,, and energy E, for a given state n and compare them with the corresponding
expressions for hydrogen,
(b) the ionization energy of C>+ when it is in its first excited state and compare it with the
corresponding value for hydrogen, and
(c) the wavelength corresponding to the transition from state n = 3 to state n = 1; compare
it with the corresponding value for hydrogen.

Solution
(a) The C°* ion is generated by removing five electrons from the carbon atom. To find the
expressions for 7, and E,. for the C>* ion (which has 6 protons), we need simply to insert
Z = 6 into (1.76): 6%
a
Fne = €0n2, Enc = _n_2
where we have dropped the term m./M, since it is too small compared to one. Clearly, these
expressions are related to their hydrogen counterparts by

: (1.193)

36R
Fne = %Onz - r”?” Ene = == =36E,,. (1.194)

(b) The ionization energy is the one needed to remove the only remaining electron of the
C>* ion. When the C>* ion is in its first excited state, the ionization energy is
36R

Eye = —== =9 x 13.6eV =~1224eV, (1.195)

which is equal to 36 times the energy needed to ionize the hydrogen atom in its first excited
state: E»,, = —3.4 eV (note that we have taken n = 2 to correspond to the first excited state;
as a result, the cases » = 1 and n = 3 will correspond to the ground and second excited states,
respectively).

(c) The wavelength corresponding to the transition from state # = 3 to state n = 1 can be
inferred from the relation hc/A = E3. — E1. which, when combined with E1. = —489.6 eV
and £3. = —54.4 eV, leads to

he 2nhe 27197.33 x 107 eV m

/’{ = = —
Es. — Ei. Es. —Ei, —54.4 eV 4+ 489.6 eV

=2.85nm. (1.196)

Problem 1.11

(a) Find the Fourier transform for ¢ (k) = Aa—IkD), Ik < a,

0, k] > a.
where a is a positive parameter and A4 is a normalization factor to be found.

(b) Calculate the uncertainties Ax and Ap and check whether they satisfy the uncertainty
principle.
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wo(x) = (4/x%) sin?(ax/2)

2
a
¢ (k) = /3/(24%) (a ~ IK])
A
V3/Qad)
k >
—a 0 a &0 A

Figure 1.18 The shape of the function ¢ (k) and its Fourier transform g (x).

Solution
(a) The normalization factor 4 can be found at once:

_
Il

+00 0 a
/ lp(k)12dk = |A)> | (a +k)*dk + |A|2/ (a — k)?>dk
0

- a - a
= 2|A|2/ (a—k)zdk=2|A|2/ (a2—2ak+k2) dk
0 0
2 3
- %|A|2, (1.197)

which yields 4 = /3/(2a3). The shape of ¢ (k) = +/3/(2a3) (a — |k|) is displayed in Fig-
ure 1.18.
Now, the Fourier transform of ¢ (k) is

1 too

_ ikx
yo(x) = N ¢(k)e"™ dk

1 3 0 , a :
- |2 k lkxdk —k lkxdk
=\ 203 |:/_a(a+ )e +/O (a—k)e :|

_ L /i /0 keik"dk—/a keikxdk+a/a e ar |
V2 2a3 —a 0 a

(1.198)
Using the integrations
0 ik a . 1 ,
/ ke¥dk = Lemior 4 (1 - e_’”x) , (1.199)
—a ix X
a i a - 1 .
/ ke¥dk = et 4 = (emx - 1) , (1.200)
0 ix x
/“ gk = i (eiax _ e—iax) _ M, (1.201)
—a ix x
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and after some straightforward calculations, we end up with

wo(x) = iz sin 2 (ﬂ) . (1.202)
X 2

As shown in Figure 1.18, this wave packet is localized: it peaks at x = 0 and decreases gradu-

ally as x increases. We can verify that the maximum of w(x) occurs at x = 0; writing yo(x)

as a®(ax /2)~2 sin’(ax/2) and since lim,_,¢ sin (bx)/(bx) — 1, we obtain y((0) = a>.

(b) Figure 1.18a is quite suggestive in defining the half-width of ¢(k): Ak = a (hence
the momentum uncertainty is Ap = #a). By defining the width as Ak = a, we know with
full certainty that the particle is located between —a < k < a; according to Figure 1.18a, the
probability of finding the particle outside this interval is zero, for ¢ (k) vanishes when |k| > a.

Now, let us find the width Ax of wo(x). Since sin(az/2a) = 1, yo(r/a) = 4a*/x?, and
that yo(0) = a2, we can obtain from (1.202) that yo (7 /a) = 4a®/n? = 4/7x%y(0), or

wom/a) _ 4 (1.203)

wo(0) 2

This suggests that Ax = 7 /a: when x = £Ax = 4 /a the wave packet yo(x) drops to 4/ 2
from its maximum value yo(0) = @?. In sum, we have Ax = 7 /a and Ak = a; hence

AxAk = (1.204)

or
AxAp =rh, (1.205)

since Ak = Ap/Ah. In addition to satisfying Heisenberg’s uncertainty principle (1.57), this
relation shows that the product Ax Ap is higher than %/2: AxAp > #/2. The wave packet
(1.202) therefore offers a clear illustration of the general statement outlined above; namely, only
Gaussian wave packets yield the lowest limit to Heisenberg’s uncertainty principle Ax Ap =
7i/2 (see (1.114)). All other wave packets, such as (1.202), yield higher values for the product
Ax Ap.

Problem 1.12
Calculate the group and phase velocities for the wave packet corresponding to a relativistic
particle.

Solution
Recall that the energy and momentum of a relativistic particle are given by

moc moov

E=mc*= ———, p=mp=—--—,
V1 —0v%/c? V1 —0v%/c?

where my is the rest mass of the particle and c is the speed of light in a vacuum. Squaring and
adding the expressions of £ and p, we obtain £ = p*c? + m%c“; hence

E = ¢,/ p* + m}c2. (1.207)

(1.206)
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Using this relation along with p* + m%c2 = m%cz/(l —0%/c?) and (1.122), we can show that
the group velocity is given as follows:

dE d c
ug=5=%(c,/p2+m%c2)=ﬁ=o. (1.208)
\J PT+me

The group velocity is thus equal to the speed of the particle, vy = v.
The phase velocity can be found from (1.122) and (1.207): v = E/p = ¢,/ 1 + m}c?/ p?

which, when combined with p = mov//1 — v2/c2, leads to /1 + m§c?/p? = ¢/v; hence

E
=_— = 1 = 1.209
Oph P c + S » ( )

This shows that the phase velocity of the wave corresponding to a relativistic particle with
mqo # 0 is larger than the speed of light, v,;, = c?/v > c. This is indeed unphysical. The
result v, > c seems to violate the special theory of relativity, which states that the speed
of material particles cannot exceed c. In fact, this principle is not violated because v, does
not represent the velocity of the particle; the velocity of the particle is represented by the group
velocity (1.208). As a result, the phase speed of a relativistic particle has no meaningful physical
significance.
Finally, the product of the group and phase velocities is equal to ¢?, i.e., Vglph = 2.

Problem 1.13

The angular frequency of the surface waves in a liquid is given in terms of the wave number &
by w = \/gk + Tk3/p, where g is the acceleration due to gravity, p is the density of the liquid,
and T is the surface tension (which gives an upward force on an element of the surface liquid).
Find the phase and group velocities for the limiting cases when the surface waves have: (a) very
large wavelengths and (b) very small wavelengths.

Solution
The phase velocity can be found at once from (1.119):

g gl 2T

W T
L _ fally N A T il 1.210
Uph k \/k + P 2T + pi’ ( )

where we have used the fact that k = 2z /4, 1 being the wavelength of the surface waves.
(a) If A is very large, we can neglect the second term in (1.210); hence

gl g
— &2 _ /& 1.211
Uph b & ( )

In this approximation the phase velocity does not depend on the nature of the liquid, since it
depends on no parameter pertaining to the liquid such as its density or surface tension. This
case corresponds, for instance, to deepwater waves, called gravity waves.



1.10. SOLVED PROBLEMS 65

To obtain the group velocity, let us differentiate (1.211) with respect to k: dv,,/dk =
—(1/2k)\/g/k = —vpp/2k. A substitution of this relation into (1.120) shows that the group
velocity is half the phase velocity:

do dv pp 1 1 1 /g
Ug:E:l)ph +kW:DPh—§Uph:EUph:§ E (1212)
The longer the wavelength, the faster the group velocity. This explains why a strong, steady
wind will produce waves of longer wavelength than those produced by a swift wind.
(b) If 4 is very small, the second term in (1.210) becomes the dominant one. So, retaining

only the second term, we have
2z T T
= |[— = |—k, 1.213
Uph Py P ( )

which leads to dvp,/dk = /Tk/p/2k = vpp/2k. Inserting this expression into (1.120), we
obtain the group velocity
dvpj 1 3
Vg = Uph +kW=Uph+§l)ph:EUph; (1214)
hence the smaller the wavelength, the faster the group velocity. These are called ripple waves;
they occur, for instance, when a container is subject to vibrations of high frequency and small
amplitude or when a gentle wind blows on the surface of a fluid.

Problem 1.14

This problem is designed to illustrate the superposition principle and the concepts of modulated
and modulating functions in a wave packet. Consider two wave functions y(y, t) = 5y cos 7t
and y(v,t) = —5ycos 9¢, where y and ¢ are in meters and seconds, respectively. Show that
their superposition generates a wave packet. Plot it and identify the modulated and modulating
functions.

Solution
Using the relation cos (o £ ) = cos a cos B F sin a sin 8, we can write the superposition of
w1(y, t) and w2 (y, t) as follows:

v, t) = wvi(y,t)+ wa(y,t) =5ycos 7t — 5y cos 9t
= Sy (cos 8¢ cos t + sin 8¢ sin ¢) — 5y (cos 8¢ cos ¢ — sin 8¢ sin 1)
= 10y sin ¢ sin 8¢. (1.215)

The periods of 10y sin ¢ and sin(8¢) are given by 2z and 27 /8, respectively. Since the period of
10y sin ¢ is larger than that of sin 8¢, 10y sin # must be the modulating function and sin 8¢ the
modulated function. As depicted in Figure 1.19, we see that sin 8¢ is modulated by 10y sin ¢.

Problem 1.15

(a) Calculate the final size of the wave packet representing a free particle after traveling a
distance of 100 m for the following four cases where the particle is

(i) a 25 eV electron whose wave packet has an initial width of 107¢ m,
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oe— 10psint ...,
< sin(87)

VUV

Figure 1.19 Shape of the wave packet y(y,) = 10y sin ¢ sin 8¢. The function sin 8¢, the
solid curve, is modulated by 10y sin ¢, the dashed curve.

(i) a 25 eV electron whose wave packet has an initial width of 1078 m,

(iii) a 100 MeV electron whose wave packet has an initial width of 1 mm, and
(iv) a 100 g object of size 1 cm moving at a speed of 50 ms™.

(b) Estimate the times required for the wave packets of the electron in (i) and the object in

(iv) to spread to 10 mm and 10 cm, respectively. Discuss the results obtained.

Solution
(a) If the initial width of the wave packet of the particle is Axg, the width at time ¢ is given
by

ox

2
Ax(t) = Axo /1 + (—) , (1.216)
Axg

where the dispersion factor is given by

ox 2nt hit . hit (1.217)
Axo  ma®*  2m(a/2)?  2m (Ax)? -

(1) For the 25 eV electron, which is clearly not relativistic, the time to travel the L = 100 m
distance is given by t = L/v = L/mc?/2E/c, since E = %mv2 = %mc2(vz/cz) orov =
c/2E /(mc?). We can therefore write the dispersion factor as

ox fi A L |mc? ficL mc?
o St = ey R R iy (1.218)
Axo  2mAxg 2mAxj ¢\ 2E 2mc2AxO 2E

The numerics of this expression can be made easy by using the following quantities: zic =
197 x 10715 MeV m, the rest mass energy of an electron is mc? = 0.5 MeV, Axg = 107% m,
E =25eV =25 x 107% MeV, and L = 100 m. Inserting these quantities into (1.218), we
obtain

ox 197 x 10715 MeV m x 100 m 0.5 MeV

Z ~ ~2x10%; (1.219)
Axg 2 x 0.5 MeV x 1012 m?2 2 x 25 x 1076 MeV

the time it takes the electron to travel the 100 m distance is given, as shown above, by

L [mc? 100 m \/ 0.5 MeV

t== =33x%x107s. (1.220)
2 x 25 x 1076 MeV

cV2E ~ 3x10°ms!
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Using ¢ = 3.3 x 107> s and substituting (1.219) into (1.216), we obtain
Ax(t=33x1078)=10"mxv14+4x10°~2x 107> m =2 mm. (1.221)

The width of the wave packet representing the electron has increased from an initial value of
107® mto 2 x 1073 m, i.e., by a factor of about 103. The spread of the electron’s wave packet
is thus quite large.

(i1) The calculation needed here is identical to that of part (i), except the value of Axg is
now 1078 m instead of 10~ m. This leads to dx/Axg =~ 2 x 107 and hence the width is
Ax(t) = 20 cm; the width has therefore increased by a factor of about 107. This calculation is
intended to show that the narrower the initial wave packet, the larger the final spread. In fact,
starting in part (i) with an initial width of 10~ m, the final width has increased to 2 x 1073 m
by a factor of about 103; but in part (ii) we started with an initial width of 108 m, and the final
width has increased to 20 cm by a factor of about 107 .

(iii) The motion of a 100 MeV electron is relativistic; hence to good approximation, its
speed is equal to the speed of light, v =~ ¢. Therefore the time it takes the electron to travel a
distance of L = 100 mis ¢ ~ L/c = 3.3 x 107 s. The dispersion factor for this electron can
be obtained from (1.217) where Axg = 1073 m:

ox hL hel 197 x 10715 MeV m x 100 m s
— = = ~ ~2x 1070, (1.222)
Axo  2mcAx}  2mc?Ax} 2 x 0.5MeV x 1076 m?

The increase in the width of the wave packet is relatively small:

Ax(t=33x10""5) =10 mx V144 x 10710~ 1073 m = Ax. (1.223)

So the width did not increase appreciably. We can conclude from this calculation that, when
the motion of a microscopic particle is relativistic, the width of the corresponding wave packet
increases by a relatively small amount.

(iv) In the case of a macroscopic object of mass m = 0.1 kg, the time to travel the distance
L =100mist = L/v = 100 m/50 ms~! = 2's. Since the size of the system is about
Axg=1cm = 0.0l mand & = 1.05 x 10734 J s, the dispersion factor for the object can be
obtained from (1.217):

ox ht 1.05x 1073 T sx2s 2
— = ~ ~107%, (1.224)
Axg  2mAx}  2x0.1kgx 107%m?

Since dx/Axg = 1072° « 1, the increase in the width of the wave packet is utterly unde-
tectable:

Ax(25) =102 m x v/ 14 10758 =~ 1072 m = Ax,. (1.225)
(b) Using (1.216) and (1.217) we obtain the expression for the time ¢ in which the wave

packet spreads to Ax (¢):

2
f=1 (Ax(’)) —1, (1.226)
Axp

where 7 represents a time constant 7 = 2m(Axo)? /% (see (1.148)). The time constant for the
electron of part (i) is given by
2mc*(Axo)? 2 x 0.5MeV x 10712 m?
T = ~

~ =1.7x 1078, 1.227
2 197 x 10-15 MeV m x 3 x 10°ms—! s (1.227)
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and the time constant for the object of part (iv) is given by

2m(Axg)?> 2 x0.1kgx 107% m?
T = ~
h 1.05 x 10734 T s

Note that the time constant, while very small for a microscopic particle, is exceedingly large
for macroscopic objects.

On the one hand, a substitution of the time constant (1.227) into (1.226) yields the time
required for the electron’s packet to spread to 10 mm:

2\ 2
t=17x10"%s, (%) —1~17x107%s. (1.229)

On the other hand, a substitution of (1.228) into (1.226) gives the time required for the object

to spread to 10 cm:
10-1\?
r=19x10"s (F) —1~19x%x10%s. (1.230)

The result (1.229) shows that the size of the electron’s wave packet grows in a matter of 1.7 x
107% s from 107% m to 1072 m, a very large spread in a very short time. As for (1.230), it
shows that the object has to be constantly in motion for about 1.9 x 103 s for its wave packet
to grow from 1 cm to 10 cm, a small spread for such an absurdly large time; this time is absurd
because it is much larger than the age of the Universe, which is about 4.7 x 10'7 s. We see that
the spread of macroscopic objects becomes appreciable only if the motion lasts for a long, long
time. However, the spread of microscopic objects is fast and large.
We can summarize these ideas in three points:

=19x%x10%s. (1.228)

e The width of the wave packet of a nonrelativistic, microscopic particle increases substan-
tially and quickly. The narrower the wave packet at the start, the further and the quicker
it will spread.

e When the particle is microscopic and relativistic, the width corresponding to its wave
packet does not increase appreciably.

e For a nonrelativistic, macroscopic particle, the width of its corresponding wave packet
remains practically constant. The spread becomes appreciable only after absurdly long
times, times that are larger than the lifetime of the Universe itself!

Problem 1.16

A neutron is confined in space to 10~1% m. Calculate the time its packet will take to spread to
(a) four times its original size,
(b) a size equal to the Earth’s diameter, and
(c) a size equal to the distance between the Earth and the Moon.

Solution
Since the rest mass energy of a neutron is equal to m,c? = 939.6 MeV, we can infer the time
constant for the neutron from (1.227):

2mpc?(Axg)? 2 % 939.6 MeV x (10714 m)?
T = ~

~ =32x10"2's.  (1.231
2 197 x 10-15 MeV m x 3 x 105 ms—! s (1.230)
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Inserting this value in (1.226) we obtain the time it takes for the neutron’s packet to grow from
an initial width Axg to a final size Ax (¢):

2 2
f=1 (Ax(’)) —1=32x10"2s (Ax—(”) —1 (1.232)

Axo Axg

The calculation of ¢ reduces to simple substitutions.
(a) Substituting Ax(#) = 4Axp into (1.232), we obtain the time needed for the neutron’s
packet to expand to four times its original size:

t=32x10"21s/16 - 1=12x 10725, (1.233)

(b) The neutron’s packet will expand from an initial size of 10~ m to 12.7 x 10° m (the
diameter of the Earth) in a time of

6 2
1=32x1072 s\/(%) —1=4ls, (1.234)
m

(¢) The time needed for the neutron’s packet to spread from 10™1% m to 3.84 x 10% m (the
distance between the Earth and the Moon) is

8 2
N C ) REEEEN 0.2%9
m

The calculations carried out in this problem show that the spread of the packets of micro-
scopic particles is significant and occurs very fast: the size of the packet for an earthly neutron
can expand to reach the Moon in a mere 12.3 s! Such an immense expansion in such a short
time is indeed hard to visualize classically. One should not confuse the packet’s expansion with
a growth in the size of the system. As mentioned above, the spread of the wave packet does
not mean that the material particle becomes bloated. It simply implies a redistribution of the
probability density. In spite of the significant spread of the wave packet, the packet’s norm is
always conserved; as shown in (1.149) it is equal to 1.

Problem 1.17
Use the uncertainty principle to estimate: (a) the ground state radius of the hydrogen atom and
(b) the ground state energy of the hydrogen atom.

Solution

(a) According to the uncertainty principle, the electron’s momentum and the radius of its
orbit are related by rp ~ #; hence p ~ % /r. To find the ground state radius, we simply need to
minimize the electron—proton energy

2 2 2 2
p e i e
E(r) = — = — 1.236
") 2m, Amegr 2m.r?  A4megr ( )
with respect to 7:
dE n? 2
0=22 ¢ (1.237)

= = 3T 0
dr mery  4meor;
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This leads to the Bohr radius

4 eoh2
ro = 5

— 0.053 nm. (1.238)

mee
(b) Inserting (1.238) into (1.236), we obtain the Bohr energy:

2

h2 &2 me e?
E = - =" = —13.6¢V. 1.239
0= 2 " e on? (3r) ) (-2

The results obtained for ¢ and E (rg), as shown in (1.238) and (1.239), are indeed impressively
accurate given the crudeness of the approximation.

Problem 1.18
Consider the bound state of two quarks having the same mass m and interacting via a potential
energy V (r) = kr where k is a constant.

(a) Using the Bohr model, find the speed, the radius, and the energy of the system in the
case of circular orbits. Determine also the angular frequency of the radiation generated by a
transition of the system from energy state n to energy state m.

(b) Obtain numerical values for the speed, the radius, and the energy for the case of the
ground state, n = 1, by taking a quark mass of mc? = 2 GeV and k = 0.5 GeV fm ™.

Solution
(a) Consider the two quarks to move circularly, much like the electron and proton in a
hydrogen atom; then we can write the force between them as

vl dV(r)

— = k 1.240
r . , ( )

where u = m/2 is the reduced mass and V() is the potential. From the Bohr quantization
condition of the orbital angular momentum, we have

L = por = nh. (1.241)

Multiplying (1.240) by (1.241), we end up with u?v® = nhik, which yields the (quantized)
speed of the relative motion for the two-quark system:

A\ 1/3
Oy = (_2) n'/3. (1.242)
U
The radius can be obtained from (1.241), r, = nfi/(uvy); using (1.242), this leads to
22 1/3
p = (—k) n?/3. (1.243)
u

We can obtain the total energy of the relative motion by adding the kinetic and potential

energies:
1/3
1 3 [ 1n*k?
E, = 5“0’3 + kry = E(T) n2/3 (1.244)
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In deriving this relation, we have used the relations for v,, and r,, as given by (1.242) by (1.243),
respectively.
The angular frequency of the radiation generated by a transition from # to m is given by

En—En 3 (K\"
Opm = % =3 (E) (n2/3 _ m2/3) . (1.245)

(b) Inserting n = 1, fic ~ 0.197 GeV fm, puc* = mc?/2 =1 GeV, and k = 0.5 GeV fm™!
into (1.242) to (1.244), we have

hick \'/3 0.197 GeV fm x 0.5 GeV fm~!
v =—>5 ~
)2 (1 GeV)?

where c is the speed of light and

1/3
) ¢ = 0.46c, (1.246)

(he)\'? (0.197 GeV fm)?
ry = =~
! 1 GeV x 0.5 GeV fm-!

1/3
) = 0.427 fm, (1.247)

3 i 2k2 1/3
E1=—((C) ) ~

((0.197 GeV fm)2(0.5 GeV fm~1)?2
2\ wuc?

1/3
=0.32 GeV. (1.248)
1 GeV

1.11 Exercises

Exercise 1.1
Consider a metal that is being welded.
(a) How hot is the metal when it radiates most strongly at 490 nm?
(b) Assuming that it radiates like a blackbody, calculate the intensity of its radiation.

Exercise 1.2
Consider a star, a light bulb, and a slab of ice; their respective temperatures are 8500 K, 850K,
and 273.15K.

(a) Estimate the wavelength at which their radiated energies peak.

(b) Estimate the intensities of their radiation.

Exercise 1.3

Consider a 75 W light bulb and an 850 W microwave oven. If the wavelengths of the radiation
they emit are 500 nm and 150 mm, respectively, estimate the number of photons they emit per
second. Are the quantum effects important in them?

Exercise 1.4

Assuming that a given star radiates like a blackbody, estimate
(a) the temperature at its surface and
(b) the wavelength of its strongest radiation,

when it emits a total intensity of 575 MW m™2.



Chapter 2

Mathematical Tools of Quantum
Mechanics

2.1 Introduction

We deal here with the mathematical machinery needed to study quantum mechanics. Although
this chapter is mathematical in scope, no attempt is made to be mathematically complete or
rigorous. We limit ourselves to those practical issues that are relevant to the formalism of
quantum mechanics.

The Schrodinger equation is one of the cornerstones of the theory of quantum mechan-
ics; it has the structure of a linear equation. The formalism of quantum mechanics deals with
operators that are linear and wave functions that belong to an abstract Hilbert space. The math-
ematical properties and structure of Hilbert spaces are essential for a proper understanding of
the formalism of quantum mechanics. For this, we are going to review briefly the properties of
Hilbert spaces and those of linear operators. We will then consider Dirac’s bra-ket notation.

Quantum mechanics was formulated in two different ways by Schrodinger and Heisenberg.
Schrodinger’s wave mechanics and Heisenberg’s matrix mechanics are the representations of
the general formalism of quantum mechanics in continuous and discrete basis systems, respec-
tively. For this, we will also examine the mathematics involved in representing kets, bras,
bra-kets, and operators in discrete and continuous bases.

2.2 The Hilbert Space and Wave Functions

2.2.1 The Linear Vector Space

A linear vector space consists of two sets of elements and two algebraic rules:
e aset of vectors v, ¢, y, ...and asetof scalarsa, b, c, ...
e a rule for vector addition and a rule for scalar multiplication.

(a) Addition rule
The addition rule has the properties and structure of an abelian group:

79
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If w and ¢ are vectors (elements) of a space, their sum, y + ¢, is also a vector of the
same space.

Commutativity: w + ¢ = ¢ + .

Associativity: (y + @)+ x = v + (¢ + x).

e Existence of a zero or neutral vector: for each vector y, there must exist a zero vector
Osuchthat: O4+yw=w+ O =y.

e Existence of a symmetric or inverse vector: each vector y must have a symmetric vector
(—y)suchthat y + (—y) =(—y)+y =0.

(b) Multiplication rule
The multiplication of vectors by scalars (scalars can be real or complex numbers) has these
properties:

e The product of a scalar with a vector gives another vector. In general, if y and ¢ are two
vectors of the space, any linear combination ay + b¢ is also a vector of the space, a and
b being scalars.

e Distributivity with respect to addition:
ay +¢) =ay +ag, (@a+by =ay +by, 2.1
e Associativity with respect to multiplication of scalars:
a(by) = (ab)y 2.2)
e For each element y there must exist a unitary scalar / and a zero scalar "o" such that

ly=yl=y and oy =yo=o. (2.3)

2.2.2 The Hilbert Space

A Hilbert space H consists of a set of vectors v, ¢, y, ... and a set of scalars a, b, c, . .. which
satisfy the following four properties:

(a) H is a linear space

The properties of a linear space were considered in the previous section.

(b) H has a defined scalar product that is strictly positive

The scalar product of an element y with another element ¢ is in general a complex
number, denoted by (w, ¢), where (v, ¢) = complex number. Note: Watch out for the
order! Since the scalar product is a complex number, the quantity (i, ¢) is generally not
equal to (¢, v): (v, ) = w*¢ while (¢, w) = ¢*w. The scalar product satisfies the
following properties:

e The scalar product of y with ¢ is equal to the complex conjugate of the scalar
product of ¢ with y:

(v, ¢) = (¢, )" 24



2.2. THE HILBERT SPACE AND WAVE FUNCTIONS 81

e The scalar product of ¢ with y is linear with respect to the second factor if y =

ayy + byo:

(P, ayr +by2) = alp, y1) + b(, y2), 25)
and antilinear with respect to the first factor if ¢ = a¢; + bes:

(agr + bga, y) = a* (1, ) + b*(¢2, ). (2.6)

e The scalar product of a vector y with itself is a positive real number:

(v, v) =l y II>> 0, (2.7)

where the equality holds only for y = O.

(c) 'H is separable

There exists a Cauchy sequence y, € H (n = 1, 2, ...) such that for every y of H and
& > 0, there exists at least one y,, of the sequence for which

'y —wall < e (2.8)

(d) 'H is complete

Every Cauchy sequence y, € H converges to an element of H . That is, for any y,, the
relation

lim || wy, — wm =0, (2.9)

n,m— 00

defines a unique limit y of H such that

Tim |y =y [|= 0. (2.10)

Remark

We should note that in a scalar product (¢, v), the second factor, y, belongs to the Hilbert
space H, while the first factor, ¢, belongs to its dual Hilbert space H;. The distinction between
‘H and H, is due to the fact that, as mentioned above, the scalar product is not commutative:
(¢, w) # (v, p); the order matters! From linear algebra, we know that every vector space can
be associated with a dual vector space.

2.2.3 Dimension and Basis of a Vector Space

A set of N nonzero vectors ¢1, ¢2, ..., ¢n is said to be linearly independent if and only if the
solution of the equation
N
> aigi =0 (2.11)
i=1
isa; = ay = --- = ay = 0. But if there exists a set of scalars, which are not all zero, so that

one of the vectors (say ¢,) can be expressed as a linear combination of the others,

n—1 N
b= D aii+ D aidi, 2.12)
i=1

i=n+1
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the set {¢;} is said to be linearly dependent.

Dimension: The dimension of a vector space is given by the maximum number of linearly
independent vectors the space can have. For instance, if the maximum number of linearly inde-
pendent vectors a space has is N (i.e., ¢1, ¢, ..., ¢n), this space is said to be N-dimensional.
In this N-dimensional vector space, any vector ¥ can be expanded as a linear combination:

N
v=> aipi. (2.13)
i=1

Basis: The basis of a vector space consists of a set of the maximum possible number of linearly
independent vectors belonging to that space. This set of vectors, @1, ¢, .. ., Py, to be denoted
in short by {¢;}, is called the basis of the vector space, while the vectors ¢1, ¢o, ..., Py are
called the base vectors. Although the set of these linearly independent vectors is arbitrary,
it is convenient to choose them orthonormal; that is, their scalar products satisfy the relation
(¢i, ¢j) = J;; (we may recall that §;; = 1 whenever i = j and zero otherwise). The basis is
said to be orthonormal if it consists of a set of orthonormal vectors. Moreover, the basis is said
to be complete if it spans the entire space; that is, there is no need to introduce any additional
base vector. The expansion coefficients a; in (2.13) are called the components of the vector w
in the basis. Each component is given by the scalar product of y with the corresponding base
vector, a; = (¢, ¥).

Examples of linear vector spaces
Let us give two examples of linear spaces that are Hilbert spaces: one having a finite (discrete)
set of base vectors, the other an infinite (continuous) basis.

e The first one is the three-dimensional Euclidean vector space; the basis of this space
consists of three linearly independent vectors, usually denoted by z ], k. _Any vector of
the Euclidean space can be written in terms of the base vectors as 4 = ayi +an ] + a3k
where ai, ap, and a3 are the components of A in the basis; each component can be
determined by taking the scalar product of A with the corresponding base vector: a; =
i A a=j- A and a3 = k- A. Note that the scalar product in the Euclidean space is real
and hence symmetric. The norm in this space is the usual length of vectors || A I= 4
Note also that whegeve£a1l + az] + agk = 0 we have a; = ap = a3 = 0 and that none
of the unit vectors 7, ]’, k can be expressed as a linear combination of the other two.

e The second example is the space of the entire complex functions y (x); the dimension of
this space is infinite for it has an infinite number of linearly independent basis vectors.

Example 2.1
Check whether the following sets of functions are linearly independent or dependent on the real
X-axis.

(a) f(x) =4, g(x) = x%, h(x) = &

(b) f(x) = x, g(x) = x%, h(x) = x°

(©) f(x) = x, g(x) = 5x, h(x) = x*

(d) f(x) =2+x2, g(x) =3 —x +4x3, h(x) = 2x + 3x% — 8x3

Solution
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(a) The first set is clearly linearly independent since a; f'(x) + axg(x) + azh(x) = 4a; +
ar)x? + aze* = 0 implies that a; = a; = a3z = 0 for any value of x.

(b) The functions f(x) = x, g(x) = x2, h(x) = x> are also linearly independent since
aix + axx? +azx3 =0 implies that a; = a; = a3 = 0 no matter what the value of x. For
instance, taking x = —1, 1, 3, the following system of three equations

—a1+ay —az3 =0, ar+ay+a3; =0, 3a1 +9a; +27a3 =0 (2.14)

yieldsa; = a3 = a3 =0.

(c) The functions f(x) = x, g(x) = 5x, h(x) = x? are not linearly independent, since
gx)=5f(x)+0 x h(x).

(d) The functions f(x) = 2 +x2, g(x) = 3 —x + 4x3, h(x) = 2x + 3x% — 8 are not
linearly independent since A (x) = 3 f(x) — 2g(x).

Example 2.2
Are the following sets of vectors (in the three-dimensional Euclidean space) linearly indepen-
dent or dependent?

(@) 4=, 00),§f( 0,-2,0),C = (0,0, —1)

(b) 4 = (6,-9,0), B = (-2,3,0)

©A4=23-1),8=(012),C=(00,-5

() A =(1.-2.3). B = (—4.1.7).C = (0,10, 11), and D = (14, 3, —4)
Solution

(a) The three vectors A= (3,0,0), B = 0, =2,0), C = (0,0, —1) are linearly indepen-
dent, since B B R R R R
alA+aB+a3C=0= 3aji —2a2j —azk =0 (2.15)

leads to
3a; =0, —2ay =0, —a3 =0, (2.16)
which yields a; = ay =a3 =0. .
(b) The vectors 4 = (6, =9, 0), B = (=2, 3, 0) are linearly dependent, since the solution
to
aA+amB=0 = (6a1 —2a)i + (—9a; +3az)j =0 2.17)

isa; = az/3. The ﬁrst vector 1S equal to —3 times the second one: 4 = —3B.
(¢) The vectors A= 2,3,-1), B = 0,1,2), C = (0,0, —5) are linearly independent,
since

a1A+ay B+ a3C =0 = 2a1i + Ba; +a2)j + (—a1 +2a3 —Sa3)k =0  (2.18)

leads to
2a;1 =0, 3a1 +ap; =0, —ay1 + 2a; — S5a3 = 0. (2.19)

The only solution of this system is ar=a =a3 = 0 .
(d) The vectors A= 1,-2,3), B= (=4,1,7), C = (0,10, 11), and D = (14, 3, —4) are
not linearly independent, because D can be expressed in terms of the other vectors:

D=24-3B+C. (2.20)
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2.2.4 Square-Integrable Functions: Wave Functions

In the case of function spaces, a “vector” element is given by a complex function and the scalar
product by integrals. That is, the scalar product of two functions y (x) and ¢ (x) is given by

(v. ) = / v (1) () dx. (2.21)

If this integral diverges, the scalar product does not exist. As a result, if we want the function
space to possess a scalar product, we must select only those functions for which (v, ¢) is finite.
In particular, a function y (x) is said to be square integrable if the scalar product of y with
itself,

(v, )= / ly () dx, (2.22)

18 finite.

It is easy to verify that the space of square-integrable functions possesses the properties of
a Hilbert space. For instance, any linear combination of square-integrable functions is also a
square-integrable function and (2.21) satisfies all the properties of the scalar product of a Hilbert
space.

Note that the dimension of the Hilbert space of square-integrable functions is infinite, since
each wave function can be expanded in terms of an infinite number of linearly independent
functions. The dimension of a space is given by the maximum number of linearly independent
basis vectors required to span that space.

A good example of square-integrable functions is the wave function of quantum mechanics,
w(7,t). We have seen in Chapter 1 that, according to Born’s probabilistic interpretation of
w(r, 1), the quantity | w (7, 1) |> d°r represents the probability of finding, at time ¢, the particle
in a volume d>r, centered around the point 7. The probability of finding the particle somewhere
in space must then be equal to 1:

400 400 ~+00
/ | w(,0) |> dr :/ dx/ dy/ |y, 0) P dz=1; (2.23)
—00 —00 —00

hence the wave functions of quantum mechanics are square-integrable. Wave functions sat-
isfying (2.23) are said to be normalized or square-integrable. As wave mechanics deals with
square-integrable functions, any wave function which is not square-integrable has no physical
meaning in quantum mechanics.

2.3 Dirac Notation

The physical state of a system is represented in quantum mechanics by elements of a Hilbert
space; these elements are called state vectors. We can represent the state vectors in different
bases by means of function expansions. This is analogous to specifying an ordinary (Euclid-
ean) vector by its components in various coordinate systems. For instance, we can represent
equivalently a vector by its components in a Cartesian coordinate system, in a spherical coor-
dinate system, or in a cylindrical coordinate system. The meaning of a vector is, of course,
independent of the coordinate system chosen to represent its components. Similarly, the state
of a microscopic system has a meaning independent of the basis in which it is expanded.

To free state vectors from coordinate meaning, Dirac introduced what was to become an in-
valuable notation in quantum mechanics; it allows one to manipulate the formalism of quantum
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mechanics with ease and clarity. He introduced the concepts of kets, bras, and bra-kets, which
will be explained below.

Kets: elements of a vector space
Dirac denoted the state vector y by the symbol | ), which he called a ket vector, or simply a
ket. Kets belong to the Hilbert (vector) space H, or, in short, to the ket-space.

Bras: elements of a dual space

As mentioned above, we know from linear algebra that a dual space can be associated with
every vector space. Dirac denoted the elements of a dual space by the symbol (|, which he
called a bra vector, or simply a bra; for instance, the element (y | represents a bra. Note: For
every ket | w) there exists a unique bra (y | and vice versa. Again, while kets belong to the
Hilbert space H, the corresponding bras belong to its dual (Hilbert) space H.

Bra-ket: Dirac notation for the scalar product
Dirac denoted the scalar (inner) product by the symbol (| ), which he called a a bra-ket. For
instance, the scalar product (¢, ) is denoted by the bra-ket (¢ | w):

(@, w) — (Ply). (2.24)
Note: When a ket (or bra) is multiplied by a complex number, we also get a ket (or bra).

Remark: In wave mechanics we deal with wave functions (7, ¢), but in the more general
formalism of quantum mechanics we deal with abstract kets | w). Wave functions, like kets,
are elements of a Hilbert space. We should note that, like a wave function, a ket represents the
system completely, and hence knowing | y) means knowing all its amplitudes in all possible
representations. As mentioned above, kets are independent of any particular representation.
There is no reason to single out a particular representation basis such as the representation in
the position space. Of course, if we want to know the probability of finding the particle at some
position in space, we need to work out the formalism within the coordinate representation. The
state vector of this particle at time ¢ will be given by the spatial wave function (7, ¢ | y) =
w (7, t). In the coordinate representation, the scalar product (¢ | ) is given by

@1 )= / 8 G, w0y dPr. (2.25)

Similarly, if we are considering the three-dimensional momentum of a particle, the ket | y) will
have to be expressed in momentum space. In this case the state of the particle will be described
by a wave function y (p, ), where p is the momentum of the particle.

Properties of kets, bras, and bra-kets

e Every ket has a corresponding bra

To every ket | w), there corresponds a unique bra (y | and vice versa:
ly) <«— (y]. (2.26)
There is a one-to-one correspondence between bras and kets:
aly)+ble) «— a(y|+b%el, (2.27)
where a and b are complex numbers. The following is a common notation:

lay) =ay), (ay |=a*(y|. (2.28)
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e Properties of the scalar product

In quantum mechanics, since the scalar product is a complex number, the ordering matters
a lot. We must be careful to distinguish a scalar product from its complex conjugate;
(w | ¢) is not the same thing as (¢ | w):

Ply) =y lg). (2.29)
This property becomes clearer if we apply it to (2.21):
(@1 y) = (/¢*<7, Dy (F, r)d3r) =/w*(7, DG 0 dr = (y | $). (230)

When | w) and | ¢) are real, we would have (v | ¢) = (¢ | w). Let us list some
additional properties of the scalar product:

(v laryr +a2w2) = ai{y | y1)+ax(y | va), (2.31)
(a1 +axp | w) = af{p1 | y)+ asid2 | v), (2.32)
(a1 + aapp | bryr +baya) = aybilgr | yi) + ayba(dr | w2)

+a3bi(g | w1) + azbaldn | w2).
(2.33)

The norm is real and positive

For any state vector | y) of the Hilbert space H, the norm (y | ) is real and positive;
(w | v) is equal to zero only for the case where | ) = O, where O is the zero vector.
If the state | w) is normalized then (yw | y) = 1.

Schwarz inequality

For any two states | w) and | ¢) of the Hilbert space, we can show that

Ky | &) < (wy)g|d). (2.34)

If | w) and | ¢) are linearly dependent (i.e., proportional: | w) = a | ¢), where a is a
scalar), this relation becomes an equality. The Schwarz inequality (2.34) is analogous to
the following relation of the real Euclidean space

=

|4-BP <|APIBP. (2.35)
Triangle inequality

Vi +oly+é) < Jylw) + V@) (2.36)

If | v) and | ¢) are linearly dependent, | w) = a | ¢), and if the proportionality scalar o
is real and positive, the triangle inequality becomes an equality. The counterpart of this
inequality in Euclidean space is given by |4 + B| < |4| + |B|.

Orthogonal states

Two kets, | ) and | ¢), are said to be orthogonal if they have a vanishing scalar product:

(v 1¢) =0. (2.37)
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e Orthonormal states

Two kets, | w) and | ¢), are said to be orthonormal if they are orthogonal and if each one
of them has a unit norm:

(w1¢) =0, (wly) =1, (@) =1 (2.38)

e Forbidden quantities

If | w) and | ¢) belong to the same vector (Hilbert) space, products of the type | v) | ¢)
and (y | (¢ | are forbidden. They are nonsensical, since | y) | ¢) and (y | (¢ | are
neither kets nor bras (an explicit illustration of this will be carried out in the example
below and later on when we discuss the representation in a discrete basis). If | ) and
| ¢) belong, however, to different vector spaces (e.g., | w) belongs to a spin space and
| ¢) to an orbital angular momentum space), then the product | ) | ¢), written as
| ) ® | ¢), represents a tensor product of | w) and | ¢). Only in these typical cases are
such products meaningful.

Example 2.3

(Note: We will see later in this chapter that kets are represented by column matrices and bras
by row matrices; this example is offered earlier than it should because we need to show some
concrete illustrations of the formalism.) Consider the following two kets:

—3i 2
ly)=1{ 2+i |, | ¢) = —i
4 2 —3i

(a) Find the bra (¢ |.
(b) Evaluate the scalar product (¢ | v).
(c) Examine why the products | y) | ¢) and (¢ | (v | do not make sense.

Solution
(a) As will be explained later when we introduce the Hermitian adjoint of kets and bras, we
want to mention that the bra (¢ | can be obtained by simply taking the complex conjugate of
the transpose of the ket | ¢):
@l=@2 1 243i). (2.39)

(b) The scalar product (¢ | w) can be calculated as follows:

-3i
Plw) = @ i 243i)| 2+i
4
= 2(=3i)+i(2+i)+42+3i)
= 7+8i. (2.40)

(c) First, the product | w) | ¢) cannot be performed because, from linear algebra, the
product of two column matrices cannot be performed. Similarly, since two row matrices cannot
be multiplied, the product (¢ | (y | is meaningless.
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Physical meaning of the scalar product

The scalar product can be interpreted in two ways. First, by analogy with the scalar product
of ordinary vectors in the Euclidean space, where A-B represents the projection of B on 4,

the product (¢ | w) also represents the projection of | y) onto | ¢). Second, in the case of
normalized states and according to Born’s probabilistic interpretation, the quantity (¢ | w)
represents the probability amplitude that the system’s state | ) will, after a measurement is
performed on the system, be found to be in another state | ¢).

Example 2.4 (Bra-ket algebra)
Consider the states | ) =3i | ¢1) — 7i | ¢a2) and | y) = — | ¢1) + 2i | ¢2), where | ¢1) and
| ¢2) are orthonormal.

(a) Calculate | w + x) and (y + x |.

(b) Calculate the scalar products (y | y) and () | w). Are they equal?

(c) Show that the states | w) and | y) satisfy the Schwarz inequality.

(d) Show that the states | y) and | y) satisfy the triangle inequality.

Solution
(a) The calculation of | ¥ + ) is straightforward:

lwy+x) = 1w+ 1x0)=0il¢1) = Til¢2)+ (= 1¢1) + 2i | $2))
(=143i) [ ¢1) — 5i | 2). (2.41)
This leads at once to the expression of (y + y |:
(w +x 1= (14301 | +(=5) (2 | = (=1 = 3i) {1 | +5i(¢2 | . (2.42)
(b) Since (p1 | 1) = (P2 | 2) = 1, (¢1 | ¢2) = (#2 | ¢1) = 0, and since the bras
corresponding to the kets | w) =3i | ¢1) —7i | ¢2) and | y) = — | ¢1) + 2i | ¢o) are given by
(w |= =3i{¢1 | +7i{¢ | and (x | = —(¢1 | —2i (¢ |, the scalar products are

wlx) = (=3il1 | +7i(da ) (= | d1) +2i | )
= (=30 (=1 | p1) + (7)) Q2i) {2 | p2)
= —14+43i, (2.43)
(xlwy) = (=1 |=2i{g2 ) Bi | 1) —7i | ¢2))
= (=D@Gi){¢1 | ¢1) + (=2i)(=Ti){¢2 | $2)
14— 3i. (2.44)

We see that (y | y) is equal to the complex conjugate of (y | y).
(c) Let us first calculate (v | w) and (y | x):

(w1 w) = (S3i{g1 | +T7id2 1) Bi | §1) = Ti | $2)) = (=30)(3i) + (7i)(=Ti) = 58, (2.45)

1 x)= (=1 | =2i(p2 ) (= | @1} +2i | ¢2)) = (=D)(=1) + (=2i)(2i)) =5.  (2.46)

Since (y | x) = —14 + 3i we have | (y | x) |>= 14%> 4+ 3% = 205. Combining the values of
| (w | x) 1% (v | w),and (y | x), we see that the Schwarz inequality (2.34) is satisfied:

205 < (38)5) == | (w | ) P < (v | w)x | x)- (2.47)
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(d) First, let us use (2.41) and (2.42) to calculate (v + y | v + x):

w+yxly+y) = [(=1=3i)¢1 | +5i(d2 [1[(=1+3i) | ¢1) — 5i | $2)]
= (=1 —=3i)(=1+3i) + (5i)(=50)
35. (2.48)

Since (y | ) =58 and (y | y) = 5, we infer that the triangle inequality (2.36) is satisfied:

V35 < VS8+Vs= Viwt+x v+ < Swlv)+Vxlx. (2.49)

Example 2.5

Consider two states |y1) = 2i|p1)+|¢2) —alp3) +4|p4) and |y2) = 3|p1) —i]|p2) +5|p3) —|pa),
where |¢1), |$2), |¢3), and |p4) are orthonormal kets, and where a is a constant. Find the value
of a so that |y) and |y;) are orthogonal.

Solution
For the states |y) and |w») to be orthogonal, the scalar product (y» | w1) must be zero. Using
the relation (y7 | = 3(p1| + i{¢2| + 5(¢3| — (Pal, we can easily find the scalar product

(w2 lw1) = Glod1l +i{pal + 5(d3] — (dal) Qilgr) + |¢2) — alps) + 4lpa))
= 7i—5a—4. (2.50)

Since (w2 | w1) = 7i — 5a —4 = 0, the value of a isa = (7i — 4)/5.

2.4 Operators

2.4.1 General Definitions

Definition of an operator: An operator! A is a mathematical rule that when applied to a ket
| w) transforms it into another ket | ') of the same space and when it acts on a bra (¢ |
transforms it into another bra (¢’ |:

Aly) =1y,  (B1d=1. (2.51)
A similar definition applies to wave functions:
Ay ) = v/, B4 = ¢'(. (2.52)

Examples of operators
Here are some of the operators that we will use in this text:

e Unity operator: it leaves any ket unchanged, 1] v)=|y).

e The gradient operator: Vy (7) = (0w (7)/0x)i + (0w (#)/3y)j + 0w (F)/0z)k.

I'The hat on 4 will be used throughout this text to distinguish an operator A froma complex number or a matrix A.



90 CHAPTER 2. MATHEMATICAL TOOLS OF QUANTUM MECHANICS

e The linear momentum operator: p w(r) =—ih Y w (7).
e The Laplacian operator: V2 (¥) = 62y () /6x% + 02w () /oy* + 62w (¥) /62>
e The parity operator: Py (F) = w (—F).

Products of operators
The product of two operators is generally not commutative:

AB + BA. (2.53)
The product of operators is, however, associative:
ABC = A(BC) = (4B)C. (2.54)
We may also write A" = A When the product AB operates on aket | y) (the order
of application is important), the operator B acts first on | ) and then A acts on the new ket
(B y)): .. .
AB | y) = A(B | y)). (2.55)
Similarly, when ABCD ) operates on a ket | ), D acts first, then C, then B, and then A.
When an operator A is sandwiched between a bra (¢ | and a ket | y), it yields in general
a complex number: (¢ | A | y) = complex number. The quantity (¢ | A | w) can also be a
purely real or a purely imaginary number. Note: In evaluating (¢ | 4 | y) it does not matter if

one first applies 4 to the ket and then takes the bra-ket or one first applies 4 to the bra and then
takes the bra-ket; thatis ((¢ | 4) | w) = (P | (4 | w)).

Linear operators

An operator A is said to be linear if it obeys the distributive law and, like all operators, it
commutes with constants. That is, an operator A is linear if, for any vectors | 1) and | y7) and
any complex numbers a; and a,, we have

Aar ly) + @ ly) =aid | yi) + wd | y), (2.56)

and
(yilar + (ya la)A=ai{y1 | A + ax(yz | A. (2.57)

Remarks

e The expectation or mean value (A 1) of an operator A with respect to a state | ) is defined
by
R A
Ay =4y (2.58)
(v lw)
e The quantity | ¢)(w | (i.e., the product of a ket with a bra) is a linear operator in Dirac’s
notation. To see this, when | ¢)(y | is applied to a ket | w’), we obtain another ket:

L)y v’y =(w v, (2.59)

since (y | ') is a complex number.

e Products of the type | z//)/I and 4 (v | (i.e., when an operator stands on the right of a ket
or on the left of a bra) are forbidden. They are not operators, or kets, or bras; they have
no mathematical or physical meanings (see equation (2.219) for an illustration).
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2.4.2 Hermitian Adjoint

The Hermitian adjoint or conjugate?, aT, of a complex number « is the complex conjugate of

this number: of = a*. The Hermitian adjoint, or simply the adjoint, /IT, of an operator Ais
defined by this relation:
t

(W A 1¢)=(p]4| )" (2.60)

Properties of the Hermitian conjugate rule
To obtain the Hermitian adjoint of any expression, we must cyclically reverse the order of the
factors and make three replacements:

e Replace constants by their complex conjugates: al =a*.

e Replace kets (bras) by the corresponding bras (kets): (| z//>)]L = (y | and ((y |)]L =| w).
e Replace operators by their adjoints.

Following these rules, we can write

aht = 4 (2.61)

@it = il (2.62)

At = aly, (2.63)
A+b+c+D)t = A1t et4hf, (2.64)
asepyt = pietstal, (2.65)
(ABCD | y)T = (v DIctBT AT, (2.66)

The Hermitian adjoint of the operator | w)(¢ | is given by

() DT =1 1. (2.67)
Operators act inside kets and bras, respectively, as follows:
|ady) =ad ]| y), v 1=a*ty | 4. (2.68)
Note also that (aﬁTy/ |=a*{y | (/I]L)Jr =a*(y | A. Hence, we can also write:
widlg =1y 19) = w1 dg). (2.69)
Hermitian and skew-Hermitian operators
An operator A is said to be Hermitian if it is equal to its adjoint fIT:
A=Al o widlg = widlw 2.70)

2The terms “adjoint” and “conjugate” are used indiscriminately.
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On the other hand, an operator B is said to be skew-Hermitian or anti-Hermitian if

Bl=—B o (y|Blg)=—(p|B|y)" @.71)

Remark
The Hermitian adjoint of an operator is not, in general, equal to its complex conjugate: A f #+

A

A .

Example 2.6
(a) Discuss the hermiticity of the operators (/I + /IT), i(/j + /IT), and i (4 — /IT).
A A A2 A A2 ~
(b) Find the Hermitian adjoint of f(4) = (14+i4+34 )1 —2i4—-94")/(5+74).
(c) Show that the expectation value of a Hermitian operator is real and that of an anti-
Hermitian operator is imaginary.

Solution
(a) The operator B=A4+ /iT is Hermitian regardless of whether or not A is Hermitian,
since
B+ dhi=i'+izs @72)

Similarly, the operator i(/i - /IT) is also Hermitian; but i(/j + /IT) is anti-Hermitian, since
A+ AN = —icd+ AN,

(b) Since the Hermitian adjoint of an operator function f' (ﬁ) is given by f t (/i) = f* (4 T),
we can write
A 2 A 2\ T A }2 At }2
(14+id+34)1—-2i4-94)) (1 +2id —941 )1 —id +341) 2.73)
5+74 54741 -

(c) From (2.70) we immediately infer that the expectation value of a Hermitian operator is
real, for it satisfies the following property:

(wldly) = (wldly* (2.74)

that is, if /iT = A then A A | w) isreal. Similarly, for an anti-Hermitian operator, Bf = —B,
we have . .
(w1 Bly)=—(yl|Bly), (2.75)

which means that (y | B | w) is a purely imaginary number.

2.4.3 Projection Operators
An operator Pissaidtobea projection operator if it is Hermitian and equal to its own square:

pt=p, P2=p (2.76)

The unit operator [isa simple example of a projection operator, since iT=17 , 1?=1.
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Properties of projection operators

e The product of two commuting projection operators, Py and P, is also a projection
operator, since

(P By = BIB] = By = PI Py and (PPy)? = PiyPr By = PRE2 = Pr oy,
(2.77)
e The sum of two projection operators is generally not a projection operator.
e Two projection operators are said to be orthogonal if their product is zero.

e For a sum of projection operators 131 + 132 + 133 + - - - to be a projection operator, it is
necessary and sufficient that these projection operators be mutually orthogonal (i.e., the
cross-product terms must vanish).

Example 2.7
Show that the operator | y)(y | is a projection operator only when | ) is normalized.

Solution
It is easy to ascertain that the operator | w)(y | is Hermitian, since (| y){y |)T =| w){y |. As
for the square of this operator, it is given by

Ay D=0y DAy D=1y | y)iy]. (2.78)

Thus, if | w) is normalized, we have (| w)(y |)2 =| w)(w |. In sum, if the state | y) is
normalized, the product of the ket | ) with the bra (y | is a projection operator.

2.4.4 Commutator Algebra

The commutator of two operators A and B, denoted by [/I , B ], is defined by

[A, Bl= AB — BA, (2.79)
and the anticommutator {/i , B } is defined by
{4, B} = AB + BA. (2.80)

Two operators are said to commute if their commutator is equal to zero and hence AB = BA.
Any operator commutes with itself:
[4, A]=0. (2.81)

Note that if two operators are Hermitian and their product is also Hermitian, these operators
commute:
= BA, (2.82)

A A

and since (fil?)Jf = AB wehave AB = BA.
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A

As an example, we may mention the commutators involving the x-position operator, X,

and the x-component of the momentum operator, P = —i h0/0x, as well as the y and the z
components
(X, P]=ihl, [V, P]=ihl, [Z, P.] =ihl, (2.83)

where 7 is the unit operator.

Properties of commutators
Using the commutator relation (2.79), we can establish the following properties:

e Antisymmetry: o A
[4, B]=—[B, 4] (2.84)

Linearity:

(A, B+C+D+--1=[4, B]+[A4, C1+[4, D]+ (2.85)

—_

e Hermitian conjugate of a commutator:
(4. By =(af, 4" (2.86)

e Distributivity:

[4, BCl=[A, BIC + B[4, C] (2.87)
[AB, C]= A[B, C1+[A4, C]B (2.88)
e Jacobi identity:
[4,[B, C11+[B, [C, Al +[C, [4, B]]=0 (2.89)
e By repeated applications of (2.87), we can show that
o n—1 A )
[4. B") =D B/[4, B)B"~/! (2.90)
j=0
AnoA nl An—j—=1_~r A Aj
(4", B1=>4""""[4, B4 (2.91)
j=0

e Operators commute with scalars: an operator A commutes with any scalar b:

[4, b]=0 (2.92)

Example 2.8
(a) Show that the commutator of two Hermitian operators is anti-Hermitian.
(b) Evaluate the commutator [4, [B, C]D].
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Solution A
(a) If 4 and B are Hermitian, we can write

L, Bt = (AB - BAy = 314" - ATBT = BA—- 4B = (4, By, (2.93)
that is, the commutator of 4 and B is anti-Hermitian: [/i E]T = —[/I , Z§].
(b) Using the distributivity relation (2.87), we have

A~ A A

[4, [B, C1D] = [B, Cl[4, D1+I[A, [B, C11D
B

2.4.5 Uncertainty Relation between Two Operators

An interesting application of the commutator algebra is to derive a general relation giving the
uncertainties product of two operators, Aand B. In particular, we want to give a formal deriva-
tion of Heisenberg’s uncertainty relations.

Let (A4) and (B) denote the expectation values of two Hermitian operators A and B with
respect to a normalized state vector | y): (A) = v | A | w)and (B) = (y | B | w).
Introducing the operators AA and AB,

A

=4 — (4), AB =B — (B), (2.95)

A NG

A
we have (AA)2 = A° = 24(A) + (A)2 and (AB)2 = B2 — 2B(B) + (B)2, and hence
(w1 (A2 |y = (ADY) = ()= (A2 (MDY = (B)—(B)?,  (296)

A2 A2 ~ A
where (A7) = (y | A" | w) and (B?) = (y | B? | w). The uncertainties AA and AB are

defined by
= Ji(AaAR) = (4 — (42, AB =\/((A1§)2) =\/<z§2> —(B)2.| (297

Let us write the action of the operators (2.95) on any state | y) as follows:

10 =adiyy = (A= D) 1w 1) =281y = (B-B)1w. @99
The Schwarz inequality for the states | y) and | ¢) is given by
G INe o) = 1 1) (2.99)
Al Al

Since 4 and B are Hermitian, AA and A B must also be Hermitian: A4 = 4' — (/I) =
A - (A) —Adand ABT = B — (B) = AB. Thus, we can show the following three relations:

10 =Wl AD 1 y), @1e)=w | AB*y), (x|¢)=(y|AAAB|y).
(2.100)
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f

For instance, since adl = ad wehave (y | x)=(y | AA AA | w) = (y | (AA)? | y) =

( (A/I)z). Hence, the Schwarz inequality (2.99) becomes

~ ~ A A |2
(AAPN(ABY) = [(AdAB) (2.101)
Notice that the last term A A A B of this equation can be written as
PP P I~ 1 o~ & I~
AAAB = E[AA’ AB]+ E{AA’ AB} = E[A’ Bl1+ E{AA’ AB}, (2.102)

where we have used the fact that [A/i, Afr’] = [/I, 3’]. Since [/i, ﬁ’] is anti-Hermitian and
{Azi , Aé} is Hermitian and since the expectation value of a Hermitian operator is real and
that the expectation value of an anti-Hermitian operator is imaginary (see Example 2.6), the
expectation value (AAAB) of (2.102) becomes equal to the sum of a real part ({AA, AB)) /2
and an imaginary part ([/i, E])/Z; hence

noa 2 1 A a2 1 a2
‘(AAAB) - Z‘([A, B])‘ +Z‘({AA, AB})‘ . (2.103)
Since the last term is a positive real number, we can infer the following relation:
A~ A |2 1 A A |2
‘(AAAB)‘ > Z‘([A, B])‘ . (2.104)
Comparing equations (2.101) and (2.104), we conclude that
N2 2 Lios anl?
(aD@B? = |14 B[, (2.105)
which (by taking its square root) can be reduced to
1 A A
IVIVES (<[A, B])(. (2.106)

This uncertainty relation plays an important role in the formalism of quantum mechanics. Its
application to position and momentum operators leads to the Heisenberg uncertainty relations,
which represent one of the cornerstones of quantum mechanics; see the next example.

Example 2.9 (Heisenberg uncertainty relations)
Find the uncertainty relations between the components of the position and the momentum op-
erators.

Solution

By applying (2.106) to the x-components of thg position operator )A{ , and the momentum op-
erator P, we obtain AxAp, > % | ([X, Py]) |. Butsince [X, P,] = ihl, we have
Ax Ap, > h/2; the uncertainty relations for the y— and z— components follow immediately:

h h h
AxApy > > AyAp, > > AzAp,; > > (2.107)

These are the Heisenberg uncertainty relations.
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2.4.6 Functions of Operators

Let F(A) bea function of an operator A. If 4 is a linear operator, we can Taylor expand F(A)
in a power series of A4:

o
F(A) =Y a,4", (2.108)
n=0

where a,, is just an expansion coefficient. As an illustration of an operator function, consider
e?4, where a is a scalar which can be complex or real. We can expand it as follows:

3

o0 n 2
e“A:z%An:I+aA+%A2+% S (2.109)

Commutators involving function operators
If A commutes with another operator B, then B commutes with any operator function that
depends on A: A A

[4, B]=0 = [B, F(4)]=0; (2.110)

in particular, (/I) commutes with 4 and with any other function, G(/I), of 4:

[4, F(4)] =0, (4", F(A)] =0, [F(4), G(4)] = 0. (2.111)

Hermitian adjoint of function operators
The adjoint of F(A) is given by

T

(F(AT = Fr(dh). 2.112)

Note that if 4 is Hermitian, ¥ (/I) is not necessarily Hermitian; F (fi) will be Hermitian only if
F is a real function and A4 is Hermitian. An example is

iyt = eﬂ’ @y = gmidl (gadyt il 2.113)

where a is a complex number. So if A is Hermitian, an operator function which can be ex-
panded as F(4) = > 02, a,,An will be Hermitian only if the expansion coefficients a,, are real
numbers. But in general, ' (/i) is not Hermitian even if 4 is Hermitian, since

Al = ia;(/ﬁ)”. (2.114)

n=0

Relations involving function operators
Note that . A .
[4, B1#£0 = [B, F(D)]#0; (2.115)

in particular, e4e® #£ 415, Using (2.109) we can ascertain that

eAeB — (AtB A B2, (2.116)

A 7 A A A l A A A 1 A A A A
bt = B[4 B+ 5lA [, B+ 5[4, 4 (4 Bm+--. @)
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2.4.7 Inverse and Unitary Operators

L. . . ~—1 . A
Inverse of an operator: Assuming it exists® the inverse 4  of a linear operator A4 is defined

by the relation
Ali=a4it =1, 2.118)

where [ is the unit operator, the operator that leaves any state | ) unchanged.
Quotient of two operators: Dividing an operator A by another operator B (provided that the

inverse B~! exists) is equivalent to multiplying A by B~

4_ AB™! (2.119)
5= . .

A 1 . 7. .-
Z=4-=4B7" and =4=B7'4. (2.120)
B B B

In general, we have AB™! #+ B~1A4. For an illustration of these ideas, see Problem 2.12. We
may mention here the following properties about the inverse of operators:

aAn A A\—1 N ~ ~ ~ an\ —1 A\ 7
(ABCD) = D¢ B AT, (A”) :(A 1) . 2.121)

Unitary operators: A linear operator U is said to be unitary if its inverse U-is equal to its
adjoint ot
of = 0! or 00t =070 =1. (2.122)

The product of two unitary operators is also unitary, since
O @t =onatoh =owihiot =oot =1, (2.123)

or (U I7)T = (U I7)‘1. This result can be generalized to any number of operators; the product
of a number of unitary operators is also unitary, since

(ABED - YABCD-- T = AbeDe.ypietat il = dsedphetatal
_ Ap@echatat = agahal
= il =1, (2.124)

or (ABCD-- T = (ABED -1,

Example 2.10 (Unitary operator)
What conditions must the parameter ¢ and the operator G satisfy so that the operator U=e
is unitary?

ieG

3Not every operator has an inverse, just as in the case of matrices. The inverse of a matrix exists only when its
determinant is nonzero.
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Solution
Clearly, if ¢ is real and G is Hermitian, the operator e

[F(fi)]Jr = F* (AT), we see that

i2G would be unitary. Using the property

(eiEG)T — e—ieé — (eisé)—l’ (2125)

that is, ot =01,

2.4.8 Eigenvalues and Eigenvectors of an Operator

Having studied the properties of operators and states, we are now ready to discuss how to find
the eigenvalues and eigenvectors of an operator.

A state vector | ) is said to be an eigenvector (also called an eigenket or eigenstate) of an
operator A if the application of Ato | v) gives

Aly) =alw), (2.126)

where a is a complex number, called an eigenvalue of A. This equation is known as the eigen-
value equation, or eigenvalue problem, of the operator A. Tts solutions yield the eigenvalues
and eigenvectors of 4. In Section 2.5.3 we will see how to solve the eigenvalue problem in a
discrete basis.

A simple example is the eigenvalue problem for the unity operator I:

Iy)=|y). (2.127)
This means that all vectors are eigenvectors of I with one eigenvalue, 1. Note that
Aly)=aly) = A"|y) =a"|y) and F)|y)=F@)|y). (2128

For instance, we have

Aly)=aly) = 1|y)=|y). (2.129)

Example 2.11 (Eigenvalues of the inverse of an operator)
aml acl . -
Show that if A ~ exists, the eigenvalues of 4  are just the inverses of those of 4.

SolutioAn_ o
Since A A = I we have on the one hand

ael ~
4 Aly) =|w), (2.130)
and on the other hand
Al A Al A Al
4 Aly)=4 (Aly) =ad |y). (2.131)

Combining the previous two equations, we obtain

~A—1
ad |y) =|y), (2.132)
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hence )
4 |y = - | w). (2.133)

. . . A=l . R B
This means that | ) is also an eigenvector of A ~ with eigenvalue 1/a. Thatis, if A  exists,
then

~ A 1
Aly)=aly) = AlIV/):;IV/)- (2.134)

Some useful theorems pertaining to the eigenvalue problem

Theorem 2.1 For a Hermitian operator, all of its eigenvalues are real and the eigenvectors
corresponding to different eigenvalues are orthogonal.

If AT = /i, A | $n) = an | pn) = a, = real number, and (¢, | dn) = Imn-
(2.135)
Proof of Theorem 2.1
Note that . .
A ¢n> = an |¢n) - <¢m | 4| ¢n> = an(¢m |¢n)a (2-136)
and . .
n | AT =aipn | = (fu | AT 1) = (b | S0). (2.137)
Subtracting (2.137) from (2.136) and using the fact that A is Hermitian, 4 = AT, we have
(an = ap){pm | pn) = 0. (2.138)

Two cases must be considered separately:

e Case m = n: since (¢, | ¢,) > 0, we must have a, = aj;; hence the eigenvalues a,, must
be real.

e Case m # n: since in general a, # aj,, we must have (¢, | ¢,) = 0; thatis, | ¢,,) and
| ¢,,) must be orthogonal.

Theorem 2.2 The eigenstates of a Hermitian operator define a complete set of mutually or-
thonormal basis states. The operator is diagonal in this eigenbasis with its diagonal elements
equal to the eigenvalues. This basis set is unique if the operator has no degenerate eigenvalues
and not unique (in fact it is infinite) if there is any degeneracy.

Theorem 2.3 Iftwo Hermitian operators, A and B, commute and if A has no degenerate eigen-
value, then each eigenvector of A is also an eigenvector of B. In addition, we can construct a
common orthonormal basis that is made of the joint eigenvectors of A and B.

Proof of Theorem 2.3
Since A4 is Hermitian with no degenerate eigenvalue, to each eigenvalue of 4 there corresponds
only one eigenvector. Consider the equation

Aldn) = an | ). (2.139)
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Since A4 commutes with B we can write
BA\¢n) = AB | ¢a) or AB | ¢pn) = an(B | bn)); (2.140)

that is, (B | ¢n)) 1s an eigenvector of A with eigenvalue a,. But since this eigenvector is unique
(apart from an arbitrary phase constant), the ket | ¢,,) must also be an eigenvector of B:

Bl gn) = byl ). (2.141)

Since each eigenvector of A is also an eigenvector of B (and vice versa), both of these operators
must have a common basis. This basis is unique; it is made of the joint eigenvectors of A and
B. This theorem also holds for any number of mutually commuting Hermitian operators.

Now, if a, is a degenerate eigenvalue, we can only say that B | ¢») is an eigenvector of
A with eigenvalue a,; | ¢,) is not necessarily an eigenvector of B. If one of the operators is
degenerate, there exist an infinite number of orthonormal basis sets that are common to these
two operators; that is, the joint basis does exist and it is not unique.

Theorem 2.4 The eigenvalues of an anti-Hermitian operator are either purely imaginary or
equal to zero.

Theorem 2.5 The eigenvalues of a unitary operator are complex numbers of moduli equal to
one, the eigenvectors of a unitary operator that has no degenerate eigenvalues are mutually
orthogonal.

Proof of Theorem 2.5
Let | ¢,) and | ¢,,) be eigenvectors to the unitary operator U with eigenvalues @, and a,,,
respectively. We can write

(g | OO 1 ) = ajanlgn | ). (2.142)
Since UTU = T this equation can be rewritten as
(@pan — 1){dm | ¢n) =0, (2.143)
which in turn leads to the following two cases:
e Case n = m: since (¢, | ¢,) > Othena,a, =] a, |2= 1, and hence | a, |= 1.

e Case n # m: the only possibility for this case is that | ¢,,) and | ¢,) are orthogonal,
(¢m |¢n> = 0.

2.4.9 Infinitesimal and Finite Unitary Transformations

We want to study here how quantities such as kets, bras, operators, and scalars transform under
unitary transformations. A unitary transformation is the application of a unitary operator U to
one of these quantities.
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2.4.9.1 Unitary Transformations

Kets | w) and bras (y | transform as follows:

ly') = U |y,

(' 1= (y | OT.
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(2.144)

Let us now find out how operators transform under unitary transformations. Since the transform
of Al y) =I¢)isd | y') =|¢), wecanrewrite A | y') =| ¢ as AU | y) = U | ) =
UA | w) which, in turn, leads to AU =04 Multiplying both sides of AU=04 by Ut and

since 00T = UTU = f, we have

A =04i0t, i=0T10. (2.145)
The results reached in (2.144) and (2.145) may be summarized as follows:
)y =Uly), = w0, 4 =040, (2.146)
v =0T1y),  wli=w 10, 4=01i0 (2.147)
Properties of unitary transformations
e If an operator A is Hermitian, its transformed A is also Hermitian, since
it=@ioht =oilot —oaot = 7. (2.148)
e The eigenvalues of A and those of its transformed A~ are the same:
~ ~!
Alyn) = anlyn) = A | ‘/’;,) = ay | l;/,’,), (2.149)
since
A/ A A A A A A A A
Ay = QAN | ) = 0AOT) | y)
= Ud |y = a0 | yu)) =an | vy). (2.150)

e Commutators that are equal to (complex) numbers remain unchanged under unitary trans-
formations, since the transformation of [4, B] = a, where a is a complex number, is

given by
i B 7 A0T. UBOT TAOTYVOBUTY — (O BOTYWOTADT
[4,B1 = [UAU",UBU"1=UAUNYUBU" —(UBUNYUAU)
= U[4, l}]lﬁ = 0a0t =a00T =4
[4, B]. (2.151)
e We can also verify the following general relations:

A=pB+yC = A4 =pB +yC, (2.152)
A=aBCD = A =aBCD, (2.153)
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e Since the result (2.151) is valid for any complex number, we can state that complex
numbers, such as (y | 4 | x), remain unchanged under unitary transformations, since

Al ~ A A A A A~ A A A ~
WA L) = G 1OD@ AN | ) = (v 1 OTOYADTUY | x) =ty 1 A1 y).
o (2.154)
Taking A = I we see that scalar products of the type

Wixh =l (2.155)

are invariant under unitary transformations; notably, the norm of a state vector is con-
served:

W'y = (wly. (2.156)

=

e We can also verify that (U 10 T) = 04" U7 since

(mﬁ)” — (mzﬁ) (0A0T)...(Ufim):04(0T0)2<0T0)...<0T0)40T
- 04"0". (2.157)

e We can generalize the previous result to obtain the transformation of any operator func-
tion f(A4):
00T = f0A0T = 1), (2.158)
or more generally

A

Uf(A,B,C,-- 0T = p(0A0T, 0BOT,0C0T,.. )= r(4, B, C,--). (2.159)

A unitary transformation does not change the physics of a system; it merely transforms one
description of the system to another physically equivalent description.

In what follows we want to consider two types of unitary transformations: infinitesimal
transformations and finite transformations.

2.4.9.2 Infinitesimal Unitary Transformations

Consider an operator U which depends on an infinitesimally small real parameter ¢ and which
varies only slightly from the unity operator /:

U,(G) =1 +ieG, (2.160)

where G is called the generator of the infinitesimal transformation. Clearly, U, is a unitary
transformation only when the parameter ¢ is real and G is Hermitian, since

0,00 = (T +ieG)( —ieGYy = T4 ie(G - Gy =1, 2.161)

where we have neglected the quadratic terms in ¢.
The transformation of a state vector | y) is

ly') = U+ieG) | w) =l y)+3| ), (2.162)



104 CHAPTER 2. MATHEMATICAL TOOLS OF QUANTUM MECHANICS

where
Sly) = ieG | y). (2.163)

The transformation of an operator Ais given by

A =d +ieG)AU —ieG) ~ 4 +ie[G, A). (2.164)

If G commutes with A, the unitary transformation will leave A unchanged, A =4

[G,Al=0 — A =0{+ieG)Ad —ieG) = A. (2.165)

2.4.9.3 Finite Unitary Transformations

We can construct a finite unitary transformation from (2.160) by performing a succession of
infinitesimal transformations in steps of &; the application of a series of successive unitary
transformations is equivalent to the application of a single unitary transformation. Denoting
e = a/N, where N is an integer and a is a finite parameter, we can apply the same unitary
transformation N times; in the limit N — 400 we obtain

A I O A . o AN\N 6
Ua(G)legnoog(HzNG)=N2Tm(1+lﬁG) — ¢i90, (2.166)

where G is now the generator of the finite transformation and a is its parameter.
As shown in (2.125), U is unitary only when the parameter a is real and G is Hermitian,
since R R R
(eiaG)"' — e—iaG — (@iaG)_l. (2167)

. . . . . At ~
Using the commutation relation (2.117), we can write the transformation 4 of an operator 4
as follows:

. \2 . \3
%G je=1%G — J 4 ia[G, A] + (%) [G, G, A]] + % [G, 6, 16, A]]] n
(2.168)
If G commutes with A, the unitary transformation will leave A unchanged, A = 4:
[G, Al = 0= 4 = /%G je1vG — ] (2.169)

In Chapter 3, we will consider some important applications of infinitesimal unitary transfor-
mations to study time translations, space translations, space rotations, and conservation laws.

2.5 Representation in Discrete Bases
By analogy with the expansion of Euclidean space vectors in terms of the basis vectors, we need

to express any ket | y) of the Hilbert space in terms of a complete set of mutually orthonormal
base kets. State vectors are then represented by their components in this basis.
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2.5.1 Matrix Representation of Kets, Bras, and Operators

Consider a discrete, complete, and orthonormal basis which is made of an infinite* set of kets
| d1), | P20, | P3), ..., | dn) and denote it by {| ¢, )}. Note that the basis {| ¢,)} is discrete, yet
it has an infinite number of unit vectors. In the limit » — oo, the ordering index » of the unit
vectors | ¢,) is discrete or countable; that is, the sequence | ¢1), | ¢2), | ¢3), ... is countably
infinite. As an illustration, consider the special functions, such as the Hermite, Legendre, or
Laguerre polynomials, H,(x), P,(x), and L, (x). These polynomials are identified by a discrete
index n and by a continuous variable x; although » varies discretely, it can be infinite.

In Section 2.6, we will consider bases that have a continuous and infinite number of base
vectors; in these bases the index 7 increases continuously. Thus, each basis has a continuum of
base vectors.

In this section the notation {| ¢,)} will be used to abbreviate an infinitely countable set of
vectors (i.e., | ¢1), | ¢2), | @3), ...) of the Hilbert space H. The orthonormality condition of
the base kets is expressed by

(n | ém) = Onm, (2.170)
where d,,, is the Kronecker delta symbol defined by
1, n=m,

The completeness, or closure, relation for this basis is given by
x ~
DI gadign I =1, (2.172)
n=1

where 1 is the unit operator; when the unit operator acts on any ket, it leaves the ket unchanged.

2.5.1.1 Matrix Representation of Kets and Bras

Let us now examine how to represent the vector | w) within the context of the basis {| ¢,)}.
The completeness property of this basis enables us to expand any state vector | ) in terms of
the base kets | ¢, ):

ly) =11y = (Z|¢n><¢n |)| p) = D an | dn), (2.173)
n=1 n=1

where the coefficient a,,, which is equal to (¢, | w), represents the projection of | ) onto | ¢, );
ay is the component of | y) along the vector | ¢,). Recall that the coefficients a, are complex
numbers. So, within the basis {| ¢,)}, the ket | w) is represented by the set of its components,

ai, az, as, ... along | ¢1), | ¢2), | ¢3), ..., respectively. Hence | w) can be represented by a
column vector which has a countably infinite number of components:
(@1 | w) ai
(P2 | w) a
| y) — : =1 : |. (2.174)
an

(én | v}

4Kets are elements of the Hilbert space, and the dimension of a Hilbert space is infinite.
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The bra (y | can be represented by a row vector:

(wl— Wwlo) (wld2) - (wldn) )

Ut Ly)" (2 lw)™ e pn L) -0)
= (af a3 ---a, --). (2.175)
Using this representation, we see that a bra-ket (v | ¢) is a complex number equal to the matrix
product of the row matrix corresponding to the bra (y | with the column matrix corresponding
to the ket | ¢):
by
by

(wig=(aj a3 ar | o [=Dabu. (2.176)
by "

where b, = (¢n | ¢). We see that, within this representation, the matrices representing | )
and (y | are Hermitian adjoints of each other.

Remark

A ket |y) is normalized if (y | y) = >, la,|? = 1. If |yw) is not normalized and we want
to normalized it, we need simply to multiply it by a constant « so that (ay | ay) = |a|*(y |

w) = 1,and hence a = 1//Ty | y).

Example 2.12
Consider the following two kets:
Si 3
lyv)=1 2 |, l¢)=1 8i
—i —9i

(a) Find | w)* and (w |.
(b) Is | ) normalized? If not, normalize it.
(c) Are | w) and | ¢) orthogonal?

Solution
(a) The expressions of | w)* and (y | are given by

—5i
| w)* = 2 , (| = (=5 2 i), (2.177)

where we have used the fact that (y | is equal to the complex conjugate of the transpose of the
ket | w). Hence, we should reiterate the important fact that | w)* # (y |.
(b) The norm of | ) is given by

5i
wiyy==5i 2 O 2 | =(=5)Gi)+Q)Q) + ()(=i) = 30. (2.178)

—i
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Thus, | ) is not normalized. By multiplying it with 1/4/30, it becomes normalized:

5i
|>—1|>—1 2
AT AN

= (g =L (2.179)

(c) The kets | y) and | ¢) are not orthogonal since their scalar product is not zero:

3
wldy=(=5 2 | 8 |=(=5)3)+Q@)@®)+()=9)=9+i (2.180)
—9i

2.5.1.2 Matrix Representation of Operators

For each linear operator 4, we can write

A= Mi:( | $u) b |)A(Z | Bm) |)= D Awn | )b |, (2181
n=l1 m=1 nm

where A, is the nm matrix element of the operator A:

Aum = (pn | A| ). (2.182)

We see that the operator Ais represented, within the basis {| ¢,)}, by a square matrix 4 (4
without a hat designates a matrix), which has a countably infinite number of columns and a
countably infinite number of rows:

A A Az
Ay Axp Az

A=\ A3 A3 Ay - | (2.183)

For instance, the unit operator Iis represented by the unit matrix; when the unit matrix is
multiplied with another matrix, it leaves that unchanged:

1 0
0 1
I'=10 0

—_ o O

(2.184)

In summary, kets are represented by column vectors, bras by row vectors, and operators by
square matrices.
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2.5.1.3 Matrix Representation of Some Other Operators

(a) Hermitian adjoint operation

Let us now look at the matrix representation of the Hermitian adjoint operation of an operator.
First, recall that the transpose of a matrix 4, denoted by A7, is obtained by interchanging the
rows with the columns:

T
A A Az - A Axn Az
Ay Axp Ay - Ay Apn A3

T
(A" )um = Amn  or A3y Az Azz - = A1z Az Ass

(2.185)
Similarly, the transpose of a column matrix is a row matrix, and the transpose of a row matrix
is a column matrix:

al T ai
aj az
: =(a a - a ---) and (a1 a - ay ...)T=
Qn Qn
(2.186)
So a square matrix 4 is symmetric if it is equal to its transpose, 47 = 4. A skew-symmetric
matrix is a square matrix whose transpose equals the negative of the matrix, 47 = — 4.

The complex conjugate of a matrix is obtained by simply taking the complex conjugate of
all its elements: (4*),m = (Aum)*.

The matrix which represents the operator A f is obtained by taking the complex conjugate
of the matrix transpose of 4:

f f

AT =Ty or (AN =@ | A" | bw) = | A1 ¢0)* = Ay (2.187)
that is,
Ay A Az - f A7, A A3,
Ay Axp A - A, Ay Ay -
A1 Az Az - =\ 43 43 45 - |- (2.188)

If an operator A is Hermitian, its matrix satisfies this condition:

ATy =4 or A%, = Aum. (2.189)
The diagonal elements of a Hermitian matrix therefore must be real numbers. Note that a
Hermitian matrix must be square.

(b) Inverse and unitary operators
A matrix has an inverse only if it is square and its determinant is nonzero; a matrix that has
an inverse is called a nonsingular matrix and a matrix that has no inverse is called a singular
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. . . . A1 .
matrix. The elements An‘,; of the inverse matrix A~!, representing an operator 4 , are given
by the relation

1 cofactor of A, -1 _ B—T (2.190)

nm T determinant of 4 " determinant of 4’

where B is the matrix of cofactors (also called the minor); the cofactor of element 4,,, is equal
to (—1)™*" times the determinant of the submatrix obtained from 4 by removing the mth row
and the nth column. Note that when the matrix, representing an operator, has a determinant
equal to zero, this operator does not possess an inverse. Note that A~!4 = 4A4~! = I where /
is the unit matrix.

The inverse of a product of matrices is obtained as follows:

(4BC---POY" ' =7 'p7t...cB7I 47N, (2.191)
The inverse of the inverse of a matrix is equal to the matrix itself, (A_l)_1 = A.

A unitary operator Uis represented by a unitary matrix. A matrix U is said to be unitary if
its inverse is equal to its adjoint:

vl =ut o vlu=1, (2.192)

where [ is the unit matrix.

Example 2.13 (Inverse of a matrix)

2
Calculate the inverse of the matrix 4 = | 3 1 5 |]. Is this matrix unitary?
0 .

Solution

Since the determinant of 4 is det(4) = —4 + 16i, we have 4~' = BT /(=4 + 16i), where the
elements of the cofactor matrix B are given by B, = (—1)"*" times the determinant of the
submatrix obtained from A4 by removing the nth row and the mth column. In this way, we have

Az A

Bn = (=p'f! dss Ann = (1| _2‘=—2+5i, (2.193)
B = (-D'*? ji ji = (-1’ (3) _52 ‘=6, (2.194)
Bz = (-D'*3 j?: jz = (-1* (3) _11. = -3, (2.195)
By = (—1)3 _il. _02 ‘:21', By = (—1?* f) _02 ‘:—4, (2.196)
By = (1)’ (2) _ii =i, By = (=1)* ’1 (5)‘=5i, (2.197)
By = (=1 g 2‘:-10, By = (=1)° § i‘=2—3i, (2.198)
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and hence
-2+ 5i 6 —3i
B = 2i —4 2i . (2.199)
5i —-10 2-3;

Taking the transpose of B, we obtain

/2450 20 Si
1 14
A7t = pr_ T 6 -4 —10
—4+ 16 68 3 20 2-3i
L[ 2243 8-2 20-5i
= — | -6-24i a+160 10+40i |. (2.200)
B8\ _1243 8-2i —14-5i

Clearly, this matrix is not unitary since its inverse is not equal to its Hermitian adjoint:
A~V # 4T,

(c) Matrix representation of | y)(y |
It is now easy to see that the product | w)(y | is indeed an operator, since its representation
within {| ¢,)} is a square matrix:

aj aja} aa;, aa;
a .. @mal aa; axa; ---
Ly i=| o |@ a3 ai - )=| wa’ wd ad - | (2.201)

(d) Trace of an operator .
The trace Tr(A) of an operator A is given, within an orthonormal basis {| ¢, )}, by the expression

Tr(A) = D (G | A1 ) = D Aun; (2.202)

we will see later that the trace of an operator does not depend on the basis. The trace of a matrix
is equal to the sum of its diagonal elements:

Ay A A
Ayy Axp Ay -
Trl A3 A3 Ay - | =Ant+dnt At (2.203)

Properties of the trace
We can ascertain that

Tr(/IT) = (Tr(4))*, (2.204)
Tr(@A+ BB+ 7yC + ) = aTr(4) + BTe(B) + y Tr(C) + - - -, (2.205)

and the trace of a product of operators is invariant under the cyclic permutations of these oper-
ators:

Tr(ABCDE) = Te(EABCD) = Ti(DEABC) = Te(CDEAB) = - - - . (2.206)
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Example 2.14
(a) Show that Tr(/fé) = Tr(éﬁ).
(b) Show that the trace of a commutator is always zero.
(c) Hlustrate the results shown in (a) and (b) on the following matrices:

8—2i 4i 0 —i 2 1—i
A= 1 0 1—-i |, B = 6 1+ 3i
-8 i 6i 1 547 0
Solution
(a) Using the definition of the trace,
Tr(AB) =D (¢ | AB | $u), (2.207)

n

and inserting the unit operator between A and B we have

Tr(AB) = D (¢nl A(Z | Gm)(bm |)é | ) =D An | A | pm)ibm | B bn)

n nm

= > AynBun. (2.208)

On the other hand, since Tr(/IlA?) = {dn | AB | ¢n), we have

Tr(BA) D (w1 B D1 pudi |)fi | ) =D {hm | B 1) | A | pm)

m

= > BunAum. (2.209)

Comparing (2.208) and (2.209), we see that Tr(/Ilg’) = Tr(ff’/I).
(b) Since Tr(A4 B) = Tr(B A) we can infer at once that the trace of any commutator is always
Zero:
Tr([4, B]) = Tr(AB) — Tr(BA) = 0. (2.210)

(c) Let us verify that the traces of the products 4B and B A are equal. Since

-2+ 16i 12 —6—10i -8 5+i 8+ 4i
AB = 1—2i 14 + 2i 1—i , BA=| 49-35 -3+4+24 —16 ,

20i —-59+431i —-11+48i 13+ 5 4 12+ 2i
(2.211)
we have
—2 4 16i 12 —6 — 10i
Tr(AB) = Tr 1—-2i 14 +2i 1—1i =1+ 26i, (2.212)
20i —594+31i —11+4+8i
-8 541 8+ 4i
Tr(BA) =Tr| 49—35i —-3+424i —16 =1426i = Tr(4B). (2.213)
1345 4i 12 4 2i

This leads to Tr(4B) — Tr(BA) = (1 +26i) — (1 +26i) =0 or Tr([4, B]) =0.
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2.5.1.4 Matrix Representation of Several Other Quantities

(a) Matrix representation of | ¢) = A | v) L
The relation | ¢) = A | w) can be cast into the algebraic form / | ¢) = 1Al | ) or

(Z | Bn) (B |) | ¢) = (Z | Bn) (n |)A(Z | B ) (bm |) | ), (2214)

which in turn can be written as

an | $n) = Zam | @n){dn | A | $m) = ZamAnm | &n), (2.215)

where b, = (¢, | ¢), Apm = (Pn | A | dm), and ap, = (D | w). Itjs easy to see that (2.215)
yields b, = >, Aumam; hence the matrix representation of | ¢) = 4 | ) is given by

by A A Ao - ai
by Ay Axp Ay - as

by | = | A4n Axn Az .- a |- (2.216)

(b) Matrix representation of (| A | w)
As for (¢ | A | w) we have

pldly) = <¢|fﬁf|w>=<¢|(2|¢n><¢n|)fi(
n=1

= DA 1 dadln | A1 dndidm | w)

nm

o0

m=

| &m) (&m I) | y)
1

= ZbZAnmam~ (2217)
nm
This is a complex number; its matrix representation goes as follows:
An A Az - ai
An Axn Az - as

@1ALy)— 0 b5 b5 )| ay Ay Ay - || e |- @218

Remark

It is now easy to see explicitly why products of the type | w) | ¢), (v | (¢ |, AA<1// |, or | 1//)141
are forbidden. They cannot have matrix representations; they are nonsensical. For instance,
| v) | @) is represented by the product of two column matrices:

(@11 vy) (P11 )
| w) | ¢) — (P21 y) (P2 | &) . (2.219)

This product is clearly not possible to perform, for the product of two matrices is possible only
when the number of columns of the first is equal to the number of rows of the second; in (2.219)
the first matrix has one single column and the second an infinite number of rows.
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2.5.1.5 Properties of a Matrix 4
e Realif 4= A"or 4y, = 4,,

Imaginary if 4 = —A4" or A,y = —4;,,

Symmetric if 4 = AT or Apy = Apm

Antisymmetric if 4 = —A” or Ay = — Ay With Ay =0

Hermitian if 4 = AT or 4,,, = A*

nm

e Anti-Hermitian if 4 = —AT or Amn = =4},

Orthogonal if A7 = A7  or 44T =T or (AAT )y = Sun

o Unitary if AT = 4= or 44T = I or (44T)0n = Spn

Example 2.15 .
Consider a matrix A (which represents an operator A), aket| y), and a bra (¢ |:
5 3+2i 3i —1+i
A= —i 3i 8 |, lw = 3 . (pl=(6 —i 5).
1—i 1 4 24+ 3i

(a) Calculate the quantities 4 | ), (¢ | A, (¢ | A | v),and | w){¢ |.
(b) Find the complex conjugate, the transpose, and the Hermitian conjugate of 4, | ), and

(@1
(c) Calculate (¢ | w) and (y | ¢); are they equal? Comment on the differences between the
complex conjugate, Hermitian conjugate, and transpose of kets and bras.

Solution
(a) The calculations are straightforward:

5 342 3i —1+i =5+ 17
Aly)y=| =—i 3i 8 3 = 17+34i |, (2.220)
1—i 1 4 2+43i 11+ 14i
5 342 3i
pla=(6 —i 5)| —i 3i 8 | =(34-5 26+12i 20+10i ),
1—i 1 4
(2.221)
5 342 3i —14i
@laly)y=(6 —i 5) —i 3i 8 3 =59 + 155i, (2.222)
1—i 1 4 243i
—14i —64+6i 14+i —545i
| y)(p|= 3 (6 —i 5)= 18 —3i 15 . (2223)

24 3i 12418 3—-2i 10+ 15i
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(b) To obtain the complex conjugate of 4, | w), and (¢ |, we need simply to take the
complex conjugate of their elements:

5 3-2i =3i —1—i
A* = i -3 8 |, |w)r= 3 . pl'=(6 i 5).
1+ 1 4 2—-3i
(2.224)
For the transpose of 4, | ), and (¢ |, we simply interchange columns with rows:
5 —i 1—i 6
AT = 3421 3 1 T =(—1+i 3 243 ), (@I'=| —i
3i 8 4 5
(2.225)

The Hermitian conjugate can be obtained by taking the complex conjugates of the transpose
expressions calculated above: AT = (47)*, | y)T = (Iv)") =y, (¢ = (B 17)" =1 ¢):

5 i 1+ 6
At={3-2i =3i 1 |, wi=(-1-i 3 2=3i), |¢) =] i
—3i 8 4 5
(2.226)
(c) Using the kets and bras above, we can easily calculate the needed scalar products:
—1+i
@Ply)=(6 —i 5) 3 = 6(=14+i)+(=)(3)+50243i) =4+18i, (2.227)
243i
6
(W | @) = ( —1—-i 3 2-3i ) i | =6(—-1-0)4+G)B3)+5(2-3i) =4—18i. (2.228)
5

We see that (¢ | w) and (w | ¢) are not equal; they are complex conjugates of each other:

(W lg)=(ly) =4—18i (2.229)

Remark
We should underscore the importance of the differences between | y)*, | )T, and | z//)T. Most
notably, we should note (from equations (2.224)—(2.226)) that | y)* is a ket, while | w)” and

| (//)Jr are bras. Additionally, we should note that (¢ |* is a bra, while (¢ |7 and (¢ |Jr are kets.

2.5.2 Change of Bases and Unitary Transformations

In a Euclidean space, a vector A may be represented by its components in different coordinate
systems or in different bases. The transformation from one basis to the other is called a change
of basis. The components of 4 in a given basis can be expressed in terms of the components of
A in another basis by means of a transformation matrix.

Similarly, state vectors and operators of quantum mechanics may also be represented in
different bases. In this section we are going to study how to transform from one basis to
another. That is, knowing the components of kets, bras, and operators in a basis {| ¢,)}, how
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does one determine the corresponding components in a different basis {| ¢,,)}? Assuming that
{l ¢n)} and {| ¢;,)} are two different bases, we can expand each ket | ¢,) of the old basis in
terms of the new basis {| ¢,)} as follows:

| ) = (Z | 1) |) | ) = D Unn | 1) (2.230)

where
Unn = (P | dn)- (2.231)

The matrix U, providing the transformation from the old basis {| ¢,)} to the new basis {| ¢})},
is given by
(@11 d1) (@) 1) (&) | ¢3)
U=| & 1o1) (B51d2) (hr1¢s) |. (2.232)
(P51 d1) (B 1¢2) (P51 3)

Example 2.16 (Unitarity of the transformation matrix)
Let U be a transformation matrix which connects two complete and orthonormal bases {| ¢,,)}
and {| ¢;,)}. Show that U is unitary.

Solution
For this we need to prove that oot =1 , which reduces to showing that (¢, | oot | ¢n) =
Omn- This goes as follows:

G | OO 1 40) = (¢ | 0(2 | 1) |) OV g0 = D Ul (2233
! /

where Ui = (¢ | U | ¢1) and Uy = (¢ | OT | ¢w) = (hn | U | ¢1)*. According to
(2.231), Ui = (¢, | 1) and Uy, = (1 | #},); we can thus rewrite (2.233) as

D UntUsy =D | $)b1 | $3) = (1 | B3 = O (2.234)
!

i

Combining (2.233) and (2.234), we infer (¢, | UUT | ) = Spn, or OUT = 1.

2.5.2.1 Transformations of Kets, Bras, and Operators

The components (¢, | w) of a state vector | y) in a new basis {| ¢},)} can be expressed in terms
of the components (¢, | ) of | w) in an old basis {| ¢,)} as follows:

(B L v = (B | L1 y) = (g}, |(Z | Bn)(n |)| W) =D Unnlgn | w). (2.235)

This relation, along with its complex conjugate, can be generalized into

| Wnew) = U | Wota), (Wnew | = (Wota | 0T (2.236)
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Let us now examine how operators transform when we change from one basis to another. The
matrix elements 4, = (¢, | 4 | ¢,) of an operator 4 in the new basis can be expressed in
terms of the old matrix elements, 4;; = (¢; | 4 | ¢1), as follows:

A;nn = <¢;/71 | (Z | ¢I><¢] |)/,1\(Z | ¢1) (1 |) | ¢;,> = Z UnjAji ;1; (2.237)
J / jl

that is,
I‘Inew = 0/’1\01(10T or /Iold = U-I-/i\newfﬁ (2.238)

We may summarize the results of the change of basis in the following relations:

| Wneu)) = 0 | Wold); (Wneu) | = <l//old | UT, /inew = &A\old(\ﬂ-a (2239)

or

| V/old> = UT | Wnew): <l//old |= (V/new | 0; /iold = UTlinew[} (2240)

These relations are similar to the ones we derived when we studied unitary transformations; see
(2.146) and (2.147).

Example 2.17 .
Show that the operator U = ", | ¢,) (¢, | satisfies all the properties discussed above.

Solution
First, note that U is unitary:

TUT =" 10 1 1)@ 1= D 1) 1 = D | gy |= 1. (2.241)
nl n

nl

Second, the action of U on a ket of the old basis gives the corresponding ket from the new basis:

Ulgn) = D180 ba L dm) = D1 81)0wm =I ¢} (2242)

We can also verify that the action U7 on a ket of the new basis gives the corresponding ket from
the old basis:

TV 1) =D 18061 1) = D1 ¢1)0im =1 dm). (2.243)
1 l

How does a trace transform under unitary transformations? Using the cyclic property of the
trace, Tr(ABC) = Tr(CAB) = Tr(BC A), we can ascertain that

Te(4) = Te( UAUT) = (010 4) = Te(A), (2.244)
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Tr (| ¢n){hm 1) D i L )i | 1) = D (b | $1)(h1 | hn)

i i

= (¢m | (Z | 1) |) | $n) = (B | ¢n) =Omn,  (2.245)
!

Tr (I ) (Pn 1) = (B | G- (2.246)

Example 2.18 (The trace is base independent)
Show that the trace of an operator does not depend on the basis in which it is expressed.

Solution
Let us show that the trace of an operator A in a basis {| &n)} is equal to its trace in another basis
{l ¢,)}. First, the trace of 4 in the basis {| ¢,)} is given by

Tr(A) = D (pn | 41 40) (2.247)
and in {| )} by
Tr(d) =D (¢ | 41 4}). (2.248)

n

Starting from (2.247) and using the completeness of the other basis, {| ¢;,)}, we have

Tr(d) = Z<¢n|2|¢n>=Z<¢n|(2|¢:n><¢,; |)fi|¢n>
= D (Bl G | Al du). (2.249)

All we need to do now is simply to interchange the positions of the numbers (scalars) (¢, | ¢),)
and (¢, | 4| ¢n):

Tr(d) = > (4, | 4 (Z | Bn) (n |) [ d) = D (B | A1 ). (2.250)

m m

From (2.249) and (2.250) we see that

Tr(d) =D (a1 A1 d0) = D (B 1 A1 ). (2.251)

n n

2.5.3 Matrix Representation of the Eigenvalue Problem

At issue here is to work out the matrix representation of the eigenvalue problem (2.126) and
then solve it. That is, we want to find the eigenvalues a and the eigenvectors | ) of an operator
A such that

N

Aly) =aly), (2.252)
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where a is a complex number. Inserting the unit operator between Aand | w) and multiplying
by (¢ |, we can cast the eigenvalue equation in the form

(¢ | A(Z | Bn) (Bn |) | y) = algm | (Z | Bn) (Bn |) |y, (2.253)

or

D Amnln | w) = a D (Bu | ¥)oum, (2.254)

which can be rewritten as

D [ Amn — adun]pn | w) =0, (2.255)

n

with 4y = (b | A | ¢n)-

This equation represents an infinite, homogeneous system of equations for the coefficients
(én | w), since the basis {| ¢,)} is made of an infinite number of base kets. This system of
equations can have nonzero solutions only if its determinant vanishes:

det (Apn — adym) = 0. (2.256)

The problem that arises here is that this determinant corresponds to a matrix with an infinite
number of columns and rows. To solve (2.256) we need to truncate the basis {| ¢,)} and assume
that it contains only N terms, where N must be large enough to guarantee convergence. In this
case we can reduce (2.256) to the following Nth degree determinant:

Ay —a A1z A3 Ay
Ao Ap —a A3 Aon
43 An Az —a - Asn | . (2.257)
AN An> An3 -+ Ann—a

This is known as the secular or characteristic equation. The solutions of this equation yield

the N eigenvalues a1, a», a3, .. ., ay, since it is an Nth order equation in a. The set of these
N eigenvalues is called the spectrum of 4. Knowing the set of eigenvalues ay, az, a3, .. ., ay,
we can easily determine the corresponding set of eigenvectors | ¢1), | ¢2), ..., | ¢n). For

each eigenvalue a,, of A, we can obtain from the “secular” equation (2.257) the N components
@11 w), (2| w) (@3] ), ... (¢n | w) of the corresponding eigenvector | ¢ ).

If a number of different eigenvectors (two or more) have the same eigenvalue, this eigen-
value is said to be degenerate. The order of degeneracy is determined by the number of linearly
independent eigenvectors that have the same eigenvalue. For instance, if an eigenvalue has five
different eigenvectors, it is said to be fivefold degenerate.

In the case where the set of eigenvectors | ¢,) of A is complete and orthonormal, this set
can be used as a basis. In this basis the matrix representing the operator Ais diagonal,

a 0 0
0 ar 0 ..
A= 0 0 a ... | (2.258)
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the diagonal elements being the eigenvalues a, of A, since

(i | A1 pn) = an(m | $n) = @pun. (2.259)

Note that the trace and determinant of a matrix are given, respectively, by the sum and product
of the eigenvalues:

Tr(d) = D ap=ar+ar+as+-, (2.260)
n

det(4) = [Jan=aazas---. (2.261)
n

Properties of determinants
Let us mention several useful properties that pertain to determinants. The determinant of a
product of matrices is equal to the product of their determinants:

det(ABCD ---) = det(A) - det(B) - det(C) - det(D) - - -, (2.262)
det(4*) = (det (4))*, det(4T) = (det (4))*, (2.263)
det(47) = det (4), det (4) = 1T ), (2.264)

Some theorems pertaining to the eigenvalue problem
Here is a list of useful theorems (the proofs are left as exercises):

The eigenvalues of a symmetric matrix are real; the eigenvectors form an orthonormal
basis.

The eigenvalues of an antisymmetric matrix are purely imaginary or zero.

The eigenvalues of a Hermitian matrix are real; the eigenvectors form an orthonormal
basis.

The eigenvalues of a skew-Hermitian matrix are purely imaginary or zero.
The eigenvalues of a unitary matrix have absolute value equal to one.

If the eigenvalues of a square matrix are not degenerate (distinct), the corresponding
eigenvectors form a basis (i.e., they form a linearly independent set).

Example 2.19 (Eigenvalues and eigenvectors of a matrix)
Find the eigenvalues and the normalized eigenvectors of the matrix

7 0 0
A=1 0 1
0 i

-1
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Solution
To find the eigenvalues of 4, we simply need to solve the secular equation det(4 — al) = 0:
T—a 0 0
0=| 0 1-a —i |=(7-a [—(1 —a) —|—a)+i2] — (7 —a)(@® -2).
0 i —1—a
(2.265)

The eigenvalues of 4 are thus given by

a=7 a=+2, a3=-2. (2.266)

Let us now calculate the eigenvectors of 4. To find the eigenvector corresponding to the first
eigenvalue, a; = 7, we need to solve the matrix equation

7 0 0 X X Tx = Tx
0 1 —i vy =7y | = y—iz = Ty; (2.267)
0 i -1 z z iy—z = 7z

this yields x = 1 (because the eigenvector is normalized) and y = z = 0. So the eigenvector
corresponding to a; = 7 is given by the column matrix

1
la)) = [ 0 . (2.268)
0

This eigenvector is normalized since {a; | a;) = 1.
The eigenvector corresponding to the second eigenvalue, a» = +/2, can be obtained from
the matrix equation

70 0 x X 7-v2)x =0
0 1 —i y | =v2|y | = 0-V2)y—iz = 0; (2.269)
0 i -1 z z iy—(1++2)z = 0

this yields x = 0 and z = i (+/2 — 1)y. So the eigenvector corresponding to a» = ~/2 is given
by the column matrix

0
| a2) = Y (2.270)
iW2—-1)y
The value of the variable y can be obtained from the normalization condition of | a3):
0
l=(aala) = (0 y* —i(vV2=-1)") y =22-vV2) Iy .
i(vV2 -1y
(2.271)

Taking only the positive value of y (a similar calculation can be performed easily if one is

interested in the negative value of y), we have y = 1/4/2(2 — +/2); hence the eigenvector
(2.270) becomes

0
1

| a2) = 20-v2) |- (2.272)
i(v/2-1)
22-v2)
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Following the same procedure that led to (2.272), we can show that the third eigenvector is
given by
0
| a3) = ; (2.273)

¥
—i(14++/2)y

its normalization leads to y = 1/,/2(2 + +/2) (we have considered only the positive value of
y); hence

0
1
| az) = 20+v2) |- (2.274)
(1442
2024++/2)

2.6 Representation in Continuous Bases

In this section we are going to consider the representation of state vectors, bras, and operators
in continuous bases. After presenting the general formalism, we will consider two important
applications: representations in the position and momentum spaces.

In the previous section we saw that the representations of kets, bras, and operators in a
discrete basis are given by discrete matrices. We will show here that these quantities are repre-
sented in a continuous basis by continuous matrices, that is, by noncountable infinite matrices.

2.6.1 General Treatment

The orthonormality condition of the base kets of the continuous basis | yz) is expressed not by
the usual discrete Kronecker delta as in (2.170) but by Dirac’s continuous delta function:

e | ) = (k" — k), (2.275)
where k and &’ are continuous parameters and where d(k’ — k) is the Dirac delta function (see

Appendix A), which is defined by

1 [t
S(x) = — / e*dk. (2.276)
21 J_

As for the completeness condition of this continuous basis, it is not given by a discrete sum as
in (2.172), but by an integral over the continuous variable

+00 R
/ dk | e 1= 1. (2.277)

—0oQ

where 7 is the unit operator.
Every state vector | w) can be expanded in terms of the complete set of basis kets | yx):

) =1y = (/ dk | 1) I)|w> =/ dkb() | )e  2278)

—00 —00
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where b(;), which is equal to (% | w), represents the projection of | w) on | yx).
The norm of the discrete base kets is finite ({(¢,, | ¢,) = 1), but the norm of the continuous
base kets is infinite; a combination of (2.275) and (2.276) leads to

1 [reo

(xk | xx) = 0(0) = 2—/ dk — oo (2.279)
T J-co

This implies that the kets | yj) are not square integrable and hence are not elements of the

Hilbert space; recall that the space spanned by square-integrable functions is a Hilbert space.

Despite the divergence of the norm of | y), the set | yx) does constitute a valid basis of vectors

that span the Hilbert space, since for any state vector | ), the scalar product (yx | v) is finite.

The Dirac delta function

Before dealing with the representation of kets, bras, and operators, let us make a short detour
to list some of the most important properties of the Dirac delta function (for a more detailed
presentation, see Appendix A):

5(x)=0, for x#0, (2.280)
/ ’ F()8(x — x0) dx = [ Of (x0) iflsejvhzr’e“) <b, (2.281)

/ Sf(x )dn(j(x ) x = (=)' ——— dnf(x) o (2.282)

OF =) = d(x =x )3y = y)3(z = 2') = =0 = ')5(0 = 0)5(p — 9. (2.283)

Representation of kets, bras, and operators

The representation of kets, bras, and operators can be easily inferred from the study that was
carried out in the previous section, for the case of a discrete basis. For instance, the ket | )
is represented by a single column matrix which has a continuous (noncountable) and infinite
number of components (rows) b(k):

ly) — e lw) |- (2.284)

The bra (y | is represented by a single row matrix which has a continuous (noncountable)
and infinite number of components (columns):

(W |— (oeee (W gk) eeeee ). (2.285)

Operators are represented by square continuous matrices whose rows and columns have
continuous and infinite numbers of components:

A—

R ... A(k., k) (2.286)

As an application, we are going to consider the representations in the position and momentum
bases.
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2.6.2 Position Representation

In the position representation, the basis consists of an infinite set of vectors {| #)} which are

eigenkets to the position operator R:

=0

|F) =F|F), (2.287)

where 7 (without a hat), the position vector, is the eigenvalue of the operator R. The orthonor-
mality and completeness conditions are respectively given by

FlrY=60¢—-7") = 6@x—x"No(y —y)dz—172), (2.288)
/d3 PR = I, (2.289)
since, as discussed in Appendix A, the three-dimensional delta function is given by
1 ey
S o 37 ik-G—F")
or—r')= ) /d ke, (2.290)

So every state vector | i) can be expanded as follows:

= [@rineie = [ @i in, (2.291)
where () denotes the components of | y) in the {| )} basis:

Fly) = w). (2.292)

This is known as the wave function for the state vector | y). Recall that, according to the
probabilistic interpretation of Born, the quantity | (# | y) |* d°r represents the probability of
finding the system in the volume element d>r.

The scalar product between two state vectors, | i) and | ¢), can be expressed in this form:

@ly) = (o] (/ &r | P |) ly) = /d3r ¢ Py @). (2.293)
Since R | 7y =7 | 7) we have
F IR =F"SGE —F). (2.294)
Note that the operator 13 is Hermitian, since

/d3r?<¢|?><?| w) = [/d3r?(w|?)(7|¢>}

= (y| R | )" (2.295)

@Ry
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2.6.3 Momentum Representation

The basis {| p)} of the momentum representation is obtained from the eigenkets of the momen-
tum operator }3:
P|p)=plp), (2.296)

where p is the momentum vector. The algebra relevant to this representation can be easily
inferred from the position representation. The orthonormality and completeness conditions of
the momentum space basis | p) are given by

G150 =oG=5)  ad [ & IpGI=1 (2.297)
Expanding | v) in this basis, we obtain

) = / S| DG w) = / Fp ¥R | B, (2.298)

where the expansion coefficient ¥ (p) represents the momentum space wave function. The
quantity | W(p) |> d°p is the probability of finding the system’s momentum in the volume
element d° p located between p and p + dp.

By analogy with (2.293) the scalar product between two states is given in the momentum
space by

Bly) = (¢ ( / d*p | p)p |) | y) = / d*p ©*(p)¥(p). (2.299)
Since P | p) = p| p) we have

(P 1P| p)=p"5(p - p). (2.300)

2.6.4 Connecting the Position and Momentum Representations

Let us now study how to establish a connection between the position and the momentum rep-
resentations. By analogy with the foregoing study, when changing from the {| 7)} basis to the
{| p)} basis, we encounter the transformation function (¥ | p).

To find the expression for the transformation function (7 | p), let us establish a connection
between the position and momentum representations of the state vector | y):

Fly) =l (/d3p | PP |) | y) = /d3p 7| pY¥(D); (2.301)

that is,
y(E) = / & p | B E). (2.302)

Similarly, we can write

YG) = (Bly) = (] / Pr ) | y) = / LT G) (2.303)
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The last two relations imply that y (+) and ¥ (p) are to be viewed as Fourier transforms of each
other. In quantum mechanics the Fourier transform of a function f'(r) is given by

S 1 i ,
fr) = W/“’SP e Mg (p); (2.304)

notice the presence of Planck’s constant. Hence the function (¥ | p) is given by

1

_ - ipFt/h
= Gay /P, (2.305)

(r1p)

This function transforms from the momentum to the position representation. The function
corresponding to the inverse transformation, (p | ), is given by

N S 1 T
(PI7) = (F | p) = =———e P7/N. (2.306)

The quantity [(7 | f))l2 represents the probability density of finding the particle in a region
around 7 where its momentum is equal to p.

Remark

If the position wave function

w(F) = / d>p P/ (p) (2.307)

1
Qrh)3/2

is normalized (i.e., [ d*r y (F)y*(F) = 1), its Fourier transform

¥(p) = / PPr e Py ) (2.308)

Qrh)3?

must also be normalized, since

- - N 1 ] .
[ owe = [Epvo)]| o [aret )]

- 1 %N —ipr
/d3r w(r) [W/d3p‘i’ (p)e™'? /h}
= [Ervov e
= 1 (2.309)

This result is known as Parseval’s theorem.

2.6.4.1 Momentum Operator in the Position Representation

To determine the form of the momentum operator P in the position representation, let us cal-
culate (7 | P | y):

r | Ply)

/<; | P1A)G w>d3p=/ﬁ<F | VB | w)dp
1

e [ pér ey, (2:310)
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where we have used the relation [ | p){(p | d°p = [ along with Eq. (2.305). Now, since
pePT/h = _iVelPT/h and using Eq. (2.305) again, we can rewrite (2.310) as

5 Y L2 1 iDr -
(r | Ply) = —th(W/ep /h\P(P)dsp)
= —ih%(/ | p)p w>d3p)
= —ikV{F | y). (2.311)

Thus, Pis given in the position representation by

P =—ihV. (2.312)
Its Cartesian components are
R n L0 o 0
P :—zh— P, =—ih—, P, =—ihi—. (2.313)
ox’ oy oz

Note that the form of the momentum operator (2.312) can be derived by simply applying the
gradient operator Vona plane wave function w (v, t) = Ae' (pr=En/h,

—inVy P 0) = pu 1) = Py, 1). (2.314)

It is easy to verlfy that P is Hermitian (see equation (2.378)).

Now, since P = —i/V, we can write the Hamiltonian operator H = P 2/(2m) + V in the
position representation as follows:

. K2 K2 (32 0% o2
H=——V4+ V@) =— (— + — 14 2315
T @) 2m (ax +8 +62)+ ©, ( )

where V? is the Laplacian operator; it is given in Cartesian coordinates by V2 = 8%/ox? +
d%/0y* + 0% /622

2.6.4.2 Position Operator in the Momentum Representation

The form of the position operator R in the momentum representation can be easily inferred

from the representation of P in the position space. In momentum space the position operator
can be written as follows:

N 0
R; =ih— (G=x,y,2) (2.316)
op;
or
N 0 A 0 A 0
X=ih , Y=ii—1, Z=ih (2.317)
Opx apy op:
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2.6.4.3 Important Commutation Relations

Let us now calculate the commutator [ﬁ’ s ﬁk] in the position representation. As the separate
actions of X P, and P, X on the wave function w () are given by

A oy (r
KBy ) = —ina O (2.318)
ox
I 0 . . oy (r
PRw ) = —inL ey ) = —iny () — i D). (2.319)
ox ox
we have
oA PP o1 71 () K 1V (
[X, P ly(@) = XPw(@F)— P Xy(r)=—ihx lg)(c)+lh(//(r)+lhx v
= ihy(@) (2.320)
or o
[X, Py] = ih. (2.321)
Similar relations can be derived at once for the y and the z components:
(X, Pl =ih, [Y, Pyl = ih, [Z, Py]=ih. (2.322)
We can verify that
(X, 2] =X, B1=V, Pl =V, P) =2, P = [Z, B] =, (2.323)

since the x, y, z degrees of freedom are independent; the previous two relations can be grouped
into

[Rj, P =ihojr,  [Rj,R1=0, [P, P]l=0 (j,k=x,y,2).] (2324)

These relations are often called the canonical commutation relations.
Now, from (2.321) we can show that (for the proof see Problem 2.8 on page 139)

[X", P.]=ihinX""", [X, P =ihn P!, (2.325)

Following the same procedure that led to (2.320), we can obtain a more general commutation
relation of Py with an arbitrary function f(X):

o B dfD SR T
), Bl =i = [P, F(R)]_—thF(R)), (2.326)

where F is a function of the operator R.

The explicit form of operators thus depends on the representation adopted. We have seen,
however, that the commutation relations for operators are representation independent. In par-
ticular, the commutator [Iéj, ﬁk] is given by i/ in the position and the momentum represen-
tations; see the next example.
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Example 2.20 (Commutators are representation independent)
Calculate the commutator [X P] in the momentum representation and verify that it is equal to
ih.

Solution
As the operator X is given in the momentum representation by X = i%40/0p, we have

N o 5 55 0 oy (p)
[X, Ply(p) = XPy(p)—PXy(p)= lhg (pw(p)) —lhpF
0
= i) +inp P i, 2P o), (2.327)
op op
Thus, the commutator [)A( , f’] is given in the momentum representation by
[X, P] = [zh— } = ih. (2.328)
op

The commutator [)A( , 13] was also shown to be equal to i/ in the position representation (see
equation (2.321):

[X, P]=— [X in2 ]:ih. (2.329)

Opx

2.6.5 Parity Operator

The space reflection about the origin of the coordinate system is called an inversion or a parity
operation. This transformation is discrete. The parity operator P is defined by its action on the
kets | 7) of the position space:

PR = =), P = (=), (2.330)

such that R
Py ) = w(=r). (2.331)

The parity operator is Hermitian, Pt = P, since

[ereoPvo] = [ = [dre e
_ / &r [75¢(?)]* (@) (2332)
From the definition (2.331), we have
PPy () = Py(—7) = y () (2.333)
hence P2 is equal to the unity operator:
P2=f o P=P (2.334)
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The parity operator is therefore unitary, since its Hermitian adjoint is equal to its inverse:
pt=p-L. (2.335)
Now, since P2 = I, the eigenvalues of P are +1 or —1 with the corresponding eigenstates
Pur() =y (=) = ys @), Py—() = y— (=) = —y—(). (2.336)

The eigenstate | ) is said to be even and | w_) is odd. Therefore, the eigenfunctions of the
parity operator have definite parity: they are either even or odd.

Since | w4 ) and | w_) are joint eigenstates of the same Hermitian operator P but with
different eigenvalues, these eigenstates must be orthogonal:

(wy ly-) = /d3r yi(=ry_(-r) = —/d3r i y-(F) = —(wy | w-); (2.337)

hence (w4 | w_) is zero. The states | y4) and | w_) form a complete set since any function
can be written as v () = w4 (¥) + w—(#), which leads to

1

. . . S IPR .
pi(r) = 3 [w() + w(=F)], w_(F) = 3 [w() — w(=F)]. (2.338)

Since P? = I we have

P — 73 when n %s odd, (2.339)
I when n is even.
Even and odd operators
An operator 4 is said to be even if it obeys the condition
PAP =4 (2.340)
and an operator B is odd if o
PBP = —B. (2.341)

We can easily verify that even operators commute with the parity operator P and that odd
operators anticommute with P:

P — (PAPYP = PAPE=PA, (2.342)

y
BP = —(PBPYP = —PBP = -Ph. (2343)

>

The fact that even operators commute with the parity operator has very useful consequences.
Let us examine the following two important cases depending on whether an even operator has
nondegenerate or degenerate eigenvalues:

e If an even operator is Hermitian and none of its eigenvalues is degenerate, then this oper-
ator has the same eigenvectors as those of the parity operator. And since the eigenvectors
of the parity operator are either even or odd, the eigenvectors of an even, Hermitian, and
nondegenerate operator must also be either even or odd; they are said to have a defi-
nite parity. This property will have useful applications when we solve the Schrodinger
equation for even Hamiltonians.
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e Ifthe even operator has a degenerate spectrum, its eigenvectors do not necessarily have a
definite parity.

What about the parity of the position and momentum operators, R and P? We can easily show
that both of them are odd, since they anticommute with the parity operator:

A
5 A

= —PP; (2.344)

e

— &P, P

=

P

hence

PRPT = R, pppT = _p, (2.345)

since PPT = 1. For instance, to show that R anticommutes with P, we need simply to look at
the following relations:

PRIF) = iP|F) = 7 | 7). (2.346)
RPIF) = R|—F) = —F | —F). (2.347)

If the operators A and B are even and odd, respectively, we can verify that

A AN A AN A A

PAP=4", PB"P = (=1)"B". (2.348)

These relations can be shown as follows:

PA'P = (PAP) (PAP).. (PAP) = 4", (2.349)
PP (PBP) (PBP)--- (PBP) = (=1)"B". (2.350)

2.7 Matrix and Wave Mechanics

In this chapter we have so far worked out the mathematics pertaining to quantum mechanics in
two different representations: discrete basis systems and continuous basis systems. The theory
of quantum mechanics deals in essence with solving the following eigenvalue problem:

Hly)=E|y), (2.351)

where H is the Hamiltonian of the system. This equation is general and does not depend on
any coordinate system or representation. But to solve it, we need to represent it in a given basis
system. The complexity associated with solving this eigenvalue equation will then vary from
one basis to another.

In what follows we are going to examine the representation of this eigenvalue equation in a
discrete basis and then in a continuous basis.

2.7.1 Matrix Mechanics

The representation of quantum mechanics in a discrete basis yields a matrix eigenvalue prob-
lem. That is, the representation of (2.351) in a discrete basis {| ¢,)} yields the following matrix
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eigenvalue equation (see (2.257)):

Hy —E Hip His Hiy
Hy; Hy — E Hys e Hyy
Hs; Hy  Hy3—E - H3n =0. (2.352)
Hy, Hy, Hpys -+ Hyy—E

This is an Nth order equation in £ its solutions yield the energy spectrum of the system: E1,
E», E3, ..., En. Knowing the set of eigenvalues Ey, E>, E3, ..., Ex, we can easily determine
the corresponding set of eigenvectors | ¢1), | ¢2), ..., | o).

The diagonalization of the Hamiltonian matrix (2.352) of a system yields the energy spec-
trum as well as the state vectors of the system. This procedure, which was worked out by
Heisenberg, involves only matrix quantities and matrix eigenvalue equations. This formulation
of quantum mechanics is known as matrix mechanics.

The starting point of Heisenberg, in his attempt to find a theoretical foundation to Bohr’s
ideas, was the atomic transition relation, vy, = (£,, — E,)/ h, which gives the frequencies of
the radiation associated with the electron’s transition from orbit m to orbit n. The frequencies
Vmn can be arranged in a square matrix, where the mn element corresponds to the transition
from the mth to the nth quantum state.

We can also construct matrices for other dynamical quantities related to the transition
m — n. In this way, every physical quantity is represented by a matrix. For instance, we
represent the energy levels by an energy matrix, the position by a position matrix, the momen-
tum by a momentum matrix, the angular momentum by an angular momentum matrix, and so
on. In calculating the various physical magnitudes, one has thus to deal with the algebra of
matrix quantities. So, within the context of matrix mechanics, one deals with noncommuting
quantities, for the product of matrices does not commute. This is an essential feature that dis-
tinguishes matrix mechanics from classical mechanics, where all the quantities commute. Take,
for instance, the position and momentum quantities. While commuting in classical mechanics,
px = xp, they do not commute within the context of matrix mechanics; they are related by
the commutation relation [X, P.] = iA. The same thing applies for the components of an-
gular momentum. We should note that the role played by the commutation relations within
the context of matrix mechanics is similar to the role played by Bohr’s quantization condition
in atomic theory. Heisenberg’s matrix mechanics therefore requires the introduction of some
mathematical machinery—Ilinear vector spaces, Hilbert space, commutator algebra, and matrix
algebra—that is entirely different from the mathematical machinery of classical mechanics.
Here lies the justification for having devoted a somewhat lengthy section, Section 2.5, to study
the matrix representation of quantum mechanics.

2.7.2 Wave Mechanics

Representing the formalism of quantum mechanics in a continuous basis yields an eigenvalue
problem not in the form of a matrix equation, as in Heisenberg’s formulation, but in the form
of a differential equation. The representation of the eigenvalue equation (2.351) in the position
space yields

F1H | y) = EF|y). (2.353)
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As shown in (2.315), the Hamiltonian is given in the position representation by —h2VZ%/(2m)+
V (¥), so we can rewrite (2.353) in a more familiar form:

h2 A .
—%Vzl//(r) + V@A) = Ey (), (2.354)

where (¥ | w) = w(F) is the wave function of the system. This differential equation is known
as the Schrédinger equation (its origin will be discussed in Chapter 3). Its solutions yield
the energy spectrum of the system as well as its wave function. This formulation of quantum
mechanics in the position representation is called wave mechanics.

Unlike Heisenberg, Schodinger took an entirely different starting point in his quest to find
a theoretical justification for Bohr’s ideas. He started from the de Broglie particle—wave hy-
pothesis and extended it to the electrons orbiting around the nucleus. Schrodinger aimed at
finding an equation that describes the motion of the electron within an atom. Here the focus
is on the wave aspect of the electron. We can show, as we did in Chapter 1, that the Bohr
quantization condition, L = n#, is equivalent to the de Broglie relation, A = 2z %/p. To es-
tablish this connection, we need simply to make three assumptions: (a) the wavelength of the
wave associated with the orbiting electron is connected to the electron’s linear momentum p
by 2 = 2z %/ p, (b) the electron’s orbit is circular, and (¢) the circumference of the electron’s
orbit is an integer multiple of the electron’s wavelength, i.e., 2z = nA. This leads at once
to 2rr = n x 2rxh/p) or nhi = rp = L. This means that, for every orbit, there is only one
wavelength (or one wave) associated with the electron while revolving in that orbit. This wave
can be described by means of a wave function. So Bohr’s quantization condition implies, in
essence, a uniqueness of the wave function for each orbit of the electron. In Chapter 3 we will
show how Schrddinger obtained his differential equation (2.354) to describe the motion of an
electron in an atom.

2.8 Concluding Remarks

Historically, the matrix formulation of quantum mechanics was worked out by Heisenberg
shortly before Schrodinger introduced his wave theory. The equivalence between the matrix
and wave formulations was proved a few years later by using the theory of unitary transfor-
mations. Different in form, yet identical in contents, wave mechanics and matrix mechanics
achieve the same goal: finding the energy spectrum and the states of quantum systems.

The matrix formulation has the advantage of greater (formal) generality, yet it suffers from
a number of disadvantages. On the conceptual side, it offers no visual idea about the structure
of the atom; it is less intuitive than wave mechanics. On the technical side, it is difficult to
use in some problems of relative ease such as finding the stationary states of atoms. Matrix
mechanics, however, becomes powerful and practical in solving problems such as the harmonic
oscillator or in treating the formalism of angular momentum.

But most of the efforts of quantum mechanics focus on solving the Schrodinger equation,
not the Heisenberg matrix eigenvalue problem. So in the rest of this text we deal mostly with
wave mechanics. Matrix mechanics is used only in a few problems, such as the harmonic
oscillator, where it is more suitable than Schrodinger’s wave mechanics.

In wave mechanics we need only to specify the potential in which the particle moves; the
Schrodinger equation takes care of the rest. That is, knowing 17(17), we can in principle solve
equation (2.354) to obtain the various energy levels of the particle and their corresponding wave
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functions. The complexity we encounter in solving the differential equation depends entirely on
the form of the potential; the simpler the potential the easier the solution. Exact solutions of the
Schroédinger equation are possible only for a few idealized systems; we deal with such systems
in Chapters 4 and 6. However, exact solutions are generally not possible, for real systems do not
yield themselves to exact solutions. In such cases one has to resort to approximate solutions.
We deal with such approximate treatments in Chapters 9 and 10; Chapter 9 deals with time-
independent potentials and Chapter 10 with time-dependent potentials.

Before embarking on the applications of the Schrédinger equation, we need first to lay down
the theoretical foundations of quantum mechanics. We take up this task in Chapter 3, where
we deal with the postulates of the theory as well as their implications; the postulates are the
bedrock on which the theory is built.

2.9 Solved Problems

Problem 2.1
Consider the states | w) =9i | ¢1) +2 | ¢2) and | y) = —ﬁ | $1) + % | ¢2), where the two
vectors | ¢1) and | ¢o) form a complete and orthonormal basis.

(a) Calculate the operators | y){(y | and | y){w |. Are they equal?

(b) Find the Hermitian conjugates of | w), | x), | w)(x |, and | y){y |.

(c) Calculate Tr(] w){(x |) and Tr(] y){y |). Are they equal?

(d) Calculate | w)(y | and | y){x | and the traces Tr(| y){y |) and Tr(| y){y |). Are they
projection operators?

Solution

(a) The bras corresponding to | y) = 9i | $1)+2 | ¢2) and | x) = —i | ¢1)/v/2+ | $2)/+/2
are given by (y | = —9i{¢1 | +2(¢p2 | and (y |= ﬁ(f/ﬁl | +%(¢>2 |, respectively. Hence we
have

W] = s 0190 +21 6 Gl |+ D
= %(—9 | $1)(p1 | +9i | $1){a | +2i | d2) {1 | +2 | $2) (2 D),
(2.355)
ot = %(—9 | p)(B1 | =20 | $1)(g2 | =9 | $2)ight | 421 d2)(d2 ). (2.356)

As expected, | w)(y | and | y)(w | are not equal; they would be equal only if the states | )
and | y) were proportional and the proportionality constant real.

(b) To find the Hermitian conjugates of | w), | x), | w){x |, and | y){w |, we need simply
to replace the factors with their respective complex conjugates, the bras with kets, and the kets
with bras:

Lot = 1==9ig 142021, 10T =(x 1= % Gl ] +iga D, (2.357)
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Gz b =l w1 = %(—9 L)1 | =20 [ 1) 2 |

=9 | )1 | +2 | d2)(2 D), (2.358)
QoD =lwixl = %(—9 | 1)1 | 49 | d1) (b |

+2i | g2 (1 | +2 | ) (2 ])- (2.359)

(c) Using the property Tr(4B) = Tr(BA) and since (¢; | ¢1) = (¢ | ¢2) = 1 and
(@11 $2) = (@2 | ¢1) = 0, we obtain

Tr(y)(x ) = Tex 1l w) = (x| w)

- (%(@ | +%(¢2 |) 1 | d1)+2| ) = —%, (2.360)
Tr(| xXw ) = Te(w | x) =(yw | x)

= (9l | 422 ) (—% 1) + % | ¢2>) _ —%

= T vy D) 2.361)

The traces Tr(| w){y |) and Tr(] x){w |) are equal only because the scalar product of | ) and
| x) is a real number. Were this product a complex number, the traces would be different; in
fact, they would be the complex conjugate of one another.

(d) The expressions | w){w | and | y){y | are

lyXw | = ild1)+2]¢2) (=91 | +2(¢h2 ])
= 81| 1)(d1 | +18i | ¢1) {2 | —18i | ¢2) (1 | +4 | h2) (2 |,

(2.362)
00D = 5 A0 =i 1#ids |+ 1 )i 1+ 1 )i D
= =i 1giiga |+ 142 D). (2.363)

In deriving (2.363) we have used the fact that the basis is complete, | ¢1)(¢1 | + | P2) {2 | = 1.
The traces Tr(| w){y |) and Tr(] y){ |) can then be calculated immediately:

Tr(ly)w ) = (v lyw)=(9%(dr | +2(d2 ) 90 | 1) +2 | ¢2)) =85, (2.364)
1
T ) D = =501 Hea D (=i [ di)+142)) =1. (2.365)

So | y) is normalized but | ) is not. Since | y) is normalized, we can easily ascertain that

| x){x | is a projection operator, because it is Hermitian, (| y){y |)J[ =| x){x |, and equal to
its own square:

A0 D=0 0 =W la) T 1=l (2.366)

As for | w)(w |, although it is Hermitian, it cannot be a projection operator since | ) is not
normalized. That is, | y)(w | is not equal to its own square:

Ay)w D2 =1y Ly =Gy L) L y)y =85 y)iy . (2.367)
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Problem 2.2

(a) Find a complete and orthonormal basis for a space of the trigonometric functions of the
form w (0) = qu\;o a, cos(nb).

(b) Ilustrate the results derived in (a) for the case N = 5; find the basis vectors.

Solution
(a) Since cos(nf) = % (e’”e + e_”’e), we can write quvzo ay cos(nf) as

1 & . . 1| & 4 0 4 N .
- Zan (e’"e + e_’”e) = - |:Z ane"? + Z a_ne"’g:| = Z C,e"?, (2.368)
2 n=0 2 n=0 n=—N n=—N

where C, = a,/2 forn > 0, C, = a_,/2 forn < 0, and Cyp = ap. Since any trigonometric
function of the form w(x) = Z;]z\;o a, cos(nf) can be expressed in terms of the functions
¢ (0) = €0 /27, we can try to take the set ¢, (0) as a basis. As this set is complete, let us
see if it is orthonormal. The various functions ¢, (f) are indeed orthonormal, since their scalar
products are given by

T 1 /4 .
(b | ) = /_ G (O)pn(0)d0 = - / =m0 4o = §,.. (2.369)

-7

In deriving this result, we have considered two cases: n = m and n # m. First, the case n = m
is obvious, since (¢, | ¢,) = % ffﬂ d6 = 1. On the other hand, when n # m we have

b | ) = 1 T im0 gy _ 1 eftn—mz _ j—i(n—m)z 21- sin((n — m)x) o
S PO 2 i(n—m)  2itn—m)
(2.370)

since sin((n — m)x) = 0. So the functions ¢, () = €"? /v/2x form a complete and orthonor-
mal basis. From (2.368) we see that the basis has 2N 4 1 functions ¢, (¢); hence the dimension
of this space of functions is equal to 2N + 1.

(b) In the case where N = 5, the dimension of the space is equal to 11, for the basis
has 11 vectors: ¢_s5(0) = e/ 2m, p_4(0) = e 40/ 2x, ..., po(®) = 1/ 2, ...,
$a(0) = %0/ 2m, ¢5(0) = & )V 2m.

Problem 2.3

(a) Show that the sum of two projection operators cannot be a projection operator unless
their product is zero.

(b) Show that the product of two projection operators cannot be a projection operator unless
they commute.

Solution
Recall that an operator P is a projection operator if it satisfies pt=p and P2 P.
(a) If two operators A and B are pI‘OJeCtIOI’l operators and if AB = B A, we want to show

that (A4 + B)Jr = A+ B and that (4 + B)2 A+ B. First, the hermiticity is easy to ascertain
since 4 and B are both Hermitian: (4 + B)Jr = A + B. Let us now look at the square of
(A + B) since A = A and B? = B, we can write

(A+BP =4 + B2+ (AB+BA) = A+ B+ (AB + BA). (2.371)
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Clearly, only when the product of A and B is zero will their sum be a projection operator.
(b) At issue here is to show that if two operators A and B are projection operators and if
they commute, [A B] = 0, their product is a pl"O_]CCthIl operator. That is, we need to show that

(4 B)Jf = AB and (AB)2 AB. Again, since A and B are Hermitian and since they commute,
we see that (AB)Jf = BA = AB. As for the square of AB, we have

(AB) = (AB)(AB) = A(BAYB = A(AB)B = A°B% = 4B, (2.372)
hence the product ABisa projection operator.

Problem 2.4
Consider a state | /) f |p1)+—= f |p2)+——= J_ |¢3) which is given in terms of three orthonormal

eigenstates |¢1), |¢2) and |¢3) of an operator B such that B |pn) = n%|n). Find the expectation
value of B for the state |y/).

Solution . . .
Using Eq (2.58), we can write the expectation value of B for the state |y) as (B) = (w | B |
w)/{w | y) where

1 1 1
(wly) = (f ¢1|+f ¢2|+J_ ¢3|)(E|¢1>+ﬁ|¢2>+ﬁ|¢3>)
8

= = (2373)
and
wlBly) = ( B1 ] +—mldn |+ ¢>|) (i|¢>>+i|¢>+L|¢>)
"4 "4 == f 1 «/_ 2 \/— 3 \/E 1 ﬁ 2 m 3
1 223
=275 0
= 22 2.374
- = (2.374)

Hence, the expectation value of Bis given by

By = 18lv) 221011 (2.375)
(v | w) 8/10 4

Problem 2.5

(a) Study the hermiticity of these operators: X, d /dx, and id /dx. What about the complex
conjugate of these operators? Are the Hermitian conjugates of the position and momentum
operators equal to their complex conjugates?

(b) Use the results of (a) to discuss the hermiticity of the operators eX d/dx and eld/dx
(¢) Find the Hermitian conjugate of the operator Xd /dx.

(d) Use the results of (a) to discuss the hermiticity of the components of the angular mo-
mentum operator (Chapter 5): L, =—ih (Ya/az — Za/ay) y = —ih (Za/ax - Xa/az)

i, =—in (Xa/ay — Ya/ax).
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Solution ) )
(a) Using (2.69) and (2.70), and using the fact that the eigenvalues of X are real (i.e., X* =

Xorx* = x), we can verify that X is Hermitian (ie., Xt = )A() since

w1 Xv) =/ w*(x)(xw(x))dxz/ (0 (0)*) (@) dx

- -
_ /_ ey () w () dx = (Ky | ). (2.376)

Now, since y (x) vanishes as x — £00, an integration by parts leads to

d +00 d x=+00 100/ dy*
Wiz = [ vw (B2 ar= wewo| 7 - [ () vwas

—o0 dx =—00 —c0 dx

too g * d
_ —/ ( ‘Z(x)) @) dx =~y L), (2.377)
— x dx

So, d/dx is anti-Hermitian: (a’/abc)]L = —d/dx. Since d/dx is anti-Hermitian, id /dx must be
Hermitian, since (id /abc)Jf = —i(—d/dx) = id/dx. The results derived above are

T T
v % 4y __4 -i) 4
X'=X, (dx) =— (ldx _ldx’ (2.378)

From this relation we see that the momentum operator P =—ihd /dx is Hermitian: pt = p.
We can also infer that, although the momentum operator is Hermitian, its complex conjugate is
not equal to P, since P* = (—ihd/dx)* = ihd/dx = —P. We may group these results into
the following relation:

M=% x=x  pPt=p, P*=_bp (2.379)

(b) Using the relations (e4)T = oA and (@4 = =41 derived in (2.113), we infer

(e}Y)T _ ef(’ (ed/dx)T — o4z (eid/dx)T — pid/dx (2.380)

(c) Since X is Hermitian and d /dx is anti-Hermitian, we have

~d f d LA t d -
where d X /dx is given by
d (- d
- (Xz//(x)) - (1 +x5) v (x): (2.382)

hence

T
(X—) - X1 (2.383)
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(d) From the results derived in (a), we infer that the operators Y, Z,i0 /0x, and i0/0y are
Hermitian. We can verify that L, is also Hermitian:

A 0o 0 4 A 0 A 0 A
LI:—ih —Y—-—Z)=—ih\Y——Z— ) =Ly; (2.384)
oz oy oz oy

in deriving this relation, we used the fact that the y and z degrees of freedom commute (i.e.,
0Y/0z =Y0o/0z and 0Z /0y = Z/0dy), for they are independent. Similarly, the hermiticity of

iy = —ih (26/8x — f(a/az) and L. = —ih (f(a/ay - ?8/6}6) is obvious.

Problem 2.6

(a) Show that the operator A=i(X*+ )d/dx +1i X is Hermitian.

(b) Find the state  (x) for which A w(x) = 0 and normalize it.

(c) Calculate the probability of finding the particle (represented by  (x)) in the region:
-1 <x <1

Solution
(a) From the previous problem we know that Xt = Xand d/ a’x)Jr = —d/dx. We can thus
infer the Hermitian conjugate of A4:

T f
/IT = —i(d(i) (XZ)T—I(;;) —zXTzz(Cid)(Xz)—i— (%)—Z)A(

d d d .
i)(2a +i [d—x, X2] i —ik. (2.385)

Using the relation [E, 6’2] = CA‘[Z?, é] + [Z§, é]é‘ along with [d/dx, )A(] = 1, we can easily
evaluate the commutator [d/dx, X?]:

d ~[d . d 7« .
— Xl=X|= X —. X|X=2X. 2.386
|:dx i| |:dx’ ]+|:dx’ ] ( )

A combination of (2.385) and (2.386) shows that A is Hermitian:
At PEY d &
A =i(X*+ 1)_d +iX =A. (2.387)
X

(b) The state y (x) for which Ay (x) = 0, i.e.,

(X2 +1) "’( )+1Xt//(x) —0, (2.388)
corresponds to
dy(x) X
=— ) 2.
WL 40) (2.389)

The solution to this equation is given by

(2.390)
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Since fjozo dx/(x* + 1) = & we have

+00 +00 dx
1 =/ ly () dx = B2/ —— = B’r, (2.391)
—oo —oo X741
hich 1 B=1 h ==L
which leads to /+/7 and hence y (x) Neremy
(c) Using the integral fjll dx/(x? 4+ 1) = 7 /2, we can obtain the probability immediately:
+1 ) 1 +1 dx 1
P = dx = — - = . 2.392
[k =~ [ o= (2392)

Problem 2.7 A
Discuss the conditions for these operators to be unitary: (a) (1 +i4)/(1 —i A),

by (A+iB)yNA + B2

Solution
An operator U is unitary if 0ot =0t =17 (see (2.122)).
(a) Since
(1 Jrz'/I)T 1—idl
=] = , (2.393)
I—id 14idl

we see that if 4 is Hermitian, the expression (1 + i /i) /(1 —i /i) is unitary:

N .
t4id\ 1+id 1—id14+id
( aal ) RLEC el e L (2.394)

1—id) 1—id 1+idl1—id

(b) Similarly, if A and B are Hermitian and commute, the expression (A+i é) / 132 + B2
is unitary:

N S S e s 2 AU
A+iB \ A+iB A-iB A+iB A +B+i(AB- B
- - +i4
Jivp) Ji+p JE+ i+ B A+ B
2
A+ B> .
= %:1. (2.395)
A"+ B?

Problem 2.8

(a) Using the commutator [)A(, pl = ih, show that [)A(m, 13] = imhi’m‘l, withm > 1. Can
you think of a direct way to get to the same result?

(b) Use the result of (a) to show the general relation [F ()AO, P] = ihdF ()AO /d)A( , where
F ()A() is a differentiable operator function of X.
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Solution A A A
(a) Let us attempt a proof by induction. Assuming that [X"™, P] =1 mh X"~ is valid for
m = k (note that it holds forn = 1; i.e., [X, P] =ih),

[X*, Pl =ikhX*!, (2.396)
let us show that it holds form =k + 1:
[XFH1) Pl =[X*X, P]=X'[X, P+ [XF, P)X, (2.397)

A

where we have used the relation [/ié, é] = fi[é, C‘] + [/f, é]é. Now, since [)A(, Pl=in
and [X*, P] = ikh X*~!, we rewrite (2.397) as

(X, Pl =ihX* + (ikh XX = in(k + 1) X*. (2.398)

So this relation is valid for any value of &, notably for k =m — 1:

[X™, Pl =imhX" "\ (2.399)

In fact, it is easy to arrive at this result directly through brute force as follows. Using the relation
A A =1 A A =1 A A . ~ A .
[A",B]= A" [A, Bl +[A" ", B]4 along with [X, P,] = ih, we can obtain

(X2, P\ = X[X, P.]+[X, P]X = 2ihX, (2.400)
which leads to
[X3, Pl = X2[X, P+ [X2, POX =3i XPh; (2.401)
this in turn leads to
(X% Pl = XX, P+ [X3, PolX = 4i . (2.402)

Continuing in this way, we can get to any power of X: [)A( ", 13] =i mhA)A( m_lA.
A more direct and simpler method is to apply the commutator [X™, P] on some wave
function y (x):

L Pwe) = (X7P = PR") yio)
d d
= x" (—ih IZ’)(CX)) +ih£ (xmt//(x))
= x" (—ide(x)) + imhx™ "y (x) — x™ (—ihdl//(x))
dx dx
= imhx" "y (x). (2.403)

Since [X™, Pl (x) = imhx™ =y (x) we see that [X", P]=imhX"~".
(b) Let us Taylor expand F(X) in powers of X, F(X) = >, ax X k and insert this expres-
sion into [F()b, 13]:

[F(fo, ﬁ] - |:Zakf(k, ﬁ] = > alkt, P, (2.404)
k k
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where the commutator [)A( k. 13] is given by (2.396). Thus, we have

i ;
L ) _ g dFE

[F(f(), ﬁ] —in> ka X =i (2.405)
k

A much simpler method again consists in applying the commutator [F (/{ﬁ, f’] on some

wave function y (x). Since F(X’) w(x) = F(x)w(x), we have

PSR an d
[FD. Ply) = FOPy@) +int- (Fop )

= F)Py()— (—ihdz(x)) F(x) +ih d';(x) v (x)
o o dF
= FWPy @~ F Py +inT 0y
- ihdF)(Cx)t//(x). (2.406)

Since [F()AQ, 13] w(x) = ih%w(x) we see that [F()AO, 13] = ih%.

Problem 2.9
7 0 0 1 0 3
Consider the matrices 4 = 0 1 —i and B = 0 2 0
0 i -1 i 0 =5

(a) Are 4 and B Hermitian? Calculate A B and B A4 and verify that Tr(4B) = Tr(B A); then
calculate [4, B]and verify that Tr([4, B]) = 0.

(b) Find the eigenvalues and the normalized eigenvectors of A. Verify that the sum of the
eigenvalues of 4 is equal to the value of Tr(4) calculated in (a) and that the three eigenvectors
form a basis.

(c) Verify that U T AU is diagonal and that U~! = U T, where U is the matrix formed by the
normalized eigenvectors of A4.

(d) Calculate the inverse of 4’ = U t AU and verify that 4’ “lisa diagonal matrix whose
eigenvalues are the inverse of those of 4.

Solution
(a) Taking the Hermitian adjoints of the matrices 4 and B (see (2.188))

70 0 10 —i
al={o1 =), Bi={0 -2 0o}, (2.407)
0 i -1 30 5

we see that 4 is Hermitian and B is not. Using the products

7 0 21 7 3 -3
AB=| 1 2i =5, BA=| o0 2i 2 |, (2.408)
—i =2 5i 705 50
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we can obtain the commutator

0 —-3i 24
[4,B] = 1 0o -7 1. (2.409)
-8 =7 0
From (2.408) we see that
Tr(AB) =742+ 5i =7+ 7i = Tr(BA). (2.410)

That is, the cyclic permutation of matrices leaves the trace unchanged; see (2.206). On the other
hand, (2.409) shows that the trace of the commutator [4, B]is zero: Tr([4, B]) =0+0+0 =
0.

(b) The eigenvalues and eigenvectors of 4 were calculated in Example 2.19 (see (2.266),
(2.268), (2.272), (2.274)). We have a; = 7, a» = +/2, and a3 = —/2:

| 0 0
1 N S
lany =1 0 |, la)=]| Vee=v2) |, la3)= 202++v2) . (2.411)
0 i(v2-1) __i(14+V2)
22—2) 2(24++/2)

One can easily verify that the eigenvectors | a1), | a2), and | a3) are mutually orthogonal:
(a; | a;) = d;; where i, j = 1,2,3. Since the set of | a1), | a2), and | a3) satisfy the
completeness condition

3 1 0 0
DllajMajl=( 0 1 0], (2.412)
0 0 1

and since they are orthonormal, they form a complete and orthonormal basis.
(c) The columns of the matrix U are given by the eigenvectors (2.411):

1 0 0
0 1 1
U= V20-v2) A 20+V2) ) (2.413)
i2-1)  __i(1+V/2)

V20-v2) V2042

We can show that the product U TAU is diagonal where the diagonal elements are the eigenval-
ues of the matrix 4; U TAU is given by

1 0 0 1 0 0
1 (/2= 7.0 0 0 1 1
V20-v2) V202 0 1 —i V20-V2)  N20+V2)
1 i(1+v2) 0 i -1 0 —62-h  __i(+V2)
V202 V2012 V20V V2242
7 0 0
= V20 . (2.414)

0
0 0 —2
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We can also show that U JrU =1:

1 0 0 1 0 0
1 _ i(ﬁ—l) 0 1 1 1 0 O
20—v2) 202 V202 N2+ |=( 0 1 0
1 i(1+v2) 0 —62-h  __i(+v2) 0 0 1
V20+V2)  N20+V2) A202-v2) V202+2)

(2.415)
This implies that the matrix U is unitary: U T = U~1. Note that, from (2.413), we have
| det(U) |=| —i | = 1.
(d) Using (2.414) we can verify that the inverse of A’ = U TaU isa diagonal matrix whose
elements are given by the inverse of the diagonal elements of A”:

7 0 0 : 0 0
A=[0 V2 0 — 47'=[0 5 0 | (2.416)
_ _1
0 0 -2 0 0 -
Problem 2.10
2 i 0
Consider a particle whose Hamiltonian matrix is H = | —i 1
0 0
i
(@)Is| i) = 7i an eigenstate of H? Is H Hermitian?

-2
(b) Find the energy eigenvalues, aj, a2, and a3, and the normalized energy eigenvectors,
| a1), | a2), and | a3), of H.
(¢) Find the matrix corresponding to the operator obtained from the ket-bra product of the
first eigenvector P =| aj){(a; |. Is P a projection operator? Calculate the commutator [P, H]
firstly by using commutator algebra and then by using matrix products.

Solution
(a) The ket | 1) is an eigenstate of H only if the action of the Hamiltonian on | 4) is of the
form H | A) = b | 1), where b is constant. This is not the case here:

2 0 0 i —7+2i
Hiy= - 11 7 = -1+7 |. (2.417)
0 1 0 -2 7i

Using the definition of the Hermitian adjoint of matrices (2.188), it is easy to ascertain that H
is Hermitian:
2 i 0
= - 1 1 |=H (2.418)
0 1 0

(b) The energy eigenvalues can be obtained by solving the secular equation

2—a i 0
0 = | = 1-a 1 |[=C-a)[l-a)(-a)—1]—i(=i)(~a)
0 1 —a

= —(@—Da-1-v3)a—-1++3), (2.419)
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which leads to
a=1, aa=1=+3, a3=1+3. (2.420)

To find the eigenvector corresponding to the first eigenvalue, a; = 1, we need to solve the
matrix equation

2 i 0 X x x+iy = 0
—i 1 1 y]l=ly |= —-ix+z = 0 (2.421)
0 1 0 z z y—z =0
which yields x = 1, y = z = i. So the eigenvector corresponding to a; = 1 is
1
lay=1| i |. (2.422)

i
This eigenvector is not normalized since (a; | a1) = 1+ (i*)(#) 4+ (i*)(Z) = 3. The normalized
| a1) is therefore
1 1
lay=—4=1 i |]. 2.423
g (2.423)
Solving (2.421) for the other two energy eigenvalues, ao = 1 — /3, a3 = 1 4+ /3, and
normalizing, we end up with

. i2-+3) : i2+3)
| a2) = ——=—= 1-v3 |, | a3) = ——=—= 1+4/3
V62 =+/3) 1 V62 ++/3) 1
(2.424)
(c) The operator P is given by
1 1 | 1 —i —i
P =|a){a; |:§ i) (1 i i ):3 i1 1 ). (2.425)
i i
Since this matrix is Hermitian and since the square of P is equal to P,
1 1 =i —i 1 =i —i 1 1 =i —i
PP=—|i 1 1 i1 1 |= i 1 1 |=pr, (2.426)

o\ 11 P11 3\
so P is a projection operator. Using the relations H | a1) =| a1) and (a; | H = (a; | (because

H is Hermitian), and since P =| a1){(a; |, we can evaluate algebraically the commutator
[P, H] as follows:

[P, Hl=PH — HP =|ai){a1 | H—H | ai){a1 |=|ai){ar | — | ar){ar |=0. (2.427)
We can reach the same result by using the matrices of A and P:
1 —i —i 2 i 0 2 i

[P, H] i

Il
W | —
S O O - ~
—_
ol
—_—
O -
I
|
ol
S = O
—_—

S OO

0
0. (2.428)
0
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Problem 2.11

0 0 i 2 i 0
Consider the matrices 4 = 0 1 0 JandB=| 3 1 5
—i 0 0 0 —i =2

(a) Check if 4 and B are Hermitian and find the eigenvalues and eigenvectors of 4. Any
degeneracies?

(b) Verify that Tr(4B) = Tr(B A), det(4B) = det(4)det(B), and det(BT) = (det(B))*.

(c) Calculate the commutator [ 4, B] and the anticommutator {4, B}.

(d) Calculate the inverses 4~!, B! and (4B)~!. Verify that (4B)~! = B~14~!.

(e) Calculate 42 and infer the expressions of 42" and A2*+1. Use these results to calculate
the matrix of ¢4,

Solution
(a) The matrix A4 is Hermitian but B is not. The eigenvalues of 4 are a; = —1 and ap =
a3 = 1 and its normalized eigenvectors are

| 1 1 1 0
ay=——=1{ 0 |, a)) = — 0 , az) = 1 ]. 2.429
| ar) Al | a2) Al L | a3) : ( )

Note that the eigenvalue 1 is doubly degenerate, since the two eigenvectors | ay) and | a3)
correspond to the same eigenvalue ap = a3 = 1.

(b) A calculation of the products (4 B) and (B A) reveals that the traces Tr(4 B) and Tr(B 4)
are equal:

0 1 -2i
Tr(4B) = Tr| 3 1 5 |=1,
-2 1 0
0 i 2
Te(BA) = Tr| —5i 1 3i | =1=Tr(4B). (2.430)
2% —i 0

From the matrices 4 and B, we have det(4) = i(i) = —1, det(B) = —4 + 16i. We can thus
write

0 1 -2
det(AB) =det| 3 1 5 | =4-16i = (—1)(—4+ 16i) = det(4)det(B). (2.431)
-2 1 0

On the other hand, since det(B) = —4 + 16/ and det(BT) = —4 — 16i, we see that det(BT) =
—4 — 16i = (—4 + 16i)* = (det(B))"*.
(c) The commutator [4, B]is given by

0 1 =2 0 i 2 0 1—i -4
AB — B4 = 31 5 - -5 1 3i |=| 345 0 5—3i
-2i 1 0 2i -1 0 —4i 1+ 0

(2.432)
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and the anticommutator {4, B} by

0 1 -2 0 i 2i 0 14+i 0
AB+BA=| 3 1 5 |+| =si 1 3 |=(3-5 2 5+3i
—2i 1 0 2% —i 0 0 1—i 0

(2.433)

(d) A calculation similar to (2.200) leads to the inverses of 4, B, and A B:

0 0 i ] 2243 8—2 20-—5i
A= 0 1 0}, B_1=§ —6—24i 4+16i 104+40i |, (2.434)
—i 0 0 —1243i 8—2 —14-5i

|/ 5200 8-2i —3422i
T = — — 10i + 16§ — 61 . .
(4B)~! 40—10i 4+16i 24—6i (2.435)
8\ _54+14i 8—2i —3—12

From (2.434) it is now easy to verify that the product B~' 4~ ! is equal to (4B)~!:
1 —5—-20i 8-—-2i 3422

Bla7'=— | 40-10i 4+16i 24—6i |=(4B)"". (2.436)
8\ _sy14i 8—20 -3-12i
(e) Since
0 0 i 0 0 i 1 00
A= 0 1 0 0 1 0 |= 1 0 |=1, (2.437)
—i 0 0 —i 0 0 0 0 1

we can write 43 = 4, A* = I, A5 = A, and so on. We can generalize these relations to any
value of n: A%" = [ and 42" = 4:

1 0 0 0 0 i
A= 01 0 |=1, A2+l
00 1 —i 0 0

S
—
S
Il

ANy

(2.438)

Since 4" = I and 4?"t! = A4, we can write

00 X A" 00 xZnAZn 00 x2n+1A2n+l 00 x2n 00 x2n+1
eXA = _— + = I + A P .
r; n! r;) 2n)! r; @2n+1)! nzo(bz)! ;(271-1-1)!
(2.439)
The relations
i x2n N i x2n+l N (
= coshx, ———— =ginhx, 2.440)
= 2n)! o Q2n + 1)!
lead to
1 0 0 0 0 i
&1 = JTcoshx+ Asinhx=[ 0 1 0 |coshx+ 0 1 O |sinhx
0 0 1 - 0 0
cosh x 0 i sinhx
= 0 coshx + sinhx 0 . (2.441)

—i sinhx 0 cosh x
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Problem 2.12

0 i 2 2 i 0
Consider two matrices: 4 = 0 1 0 JandB={[ 3 1 5 . Calculate 4~' B
—i 0 0 0 —i =2
and B A~!. Are they equal?
Solution
As mentioned above, a calculation similar to (2.200) leads to the inverse of A4:
0 0 i
A" =1{ o0 1 0 ). (2.442)
1/2 —i/2 0
The products 4~! B and B A~! are given by
0 0 i 2 i 0 0 1 =2
A7'B = 0 1 0 31 5 = 3 1 5 , (2.443)
/2 —-i/2 0 0 —i =2 1-3i/2 0 -=5i/2
2 i 0 0 0 i 0 i 2i
BA' = 3 1 5 0 1 0 )= 5/2 1-5i/2 3i |. (2444
0 —i =2 /2 —-i/2 0 —1 0 0

We see that 4~! B and B A~! are not equal.

Remark

We should note that the quotient B/ A of two matrices 4 and B is equal to the product BA~!
and not 4~! B; that is:

2 i 0
31 5 , ,
B . 0 —i -2 0 i
A : = 52 1-5i2 3 |. (2.445)
A 0o i 2
-1 0 0
0 1 0
—i 0 0

Problem 2.13
0

010 1 0
Consider the matrices 4 =| 1 0 1 JandB=| 0 0 O
010 0 0 -1
(a) Find the eigenvalues and normalized eigenvectors of 4 and B. Denote the eigenvectors
of Aby | ai), | az), | az) and those of B by | b1), | b2), | b3). Are there any degenerate

eigenvalues?
(b) Show that each of the sets | ai), | a2), | a3) and | b1), | b2), | b3) forms an orthonormal
and complete basis, i.e., show that (a; | ax) = J;; and Z‘j':l | a;){a; |= I, where I is the

3 x 3 unit matrix; then show that the same holds for | b1), | b2), | b3).
(c) Find the matrix U of the transformation from the basis {| @)} to {| b)}. Show that

Ul = U T. Verify that U TU = J. Calculate how the matrix A transforms under U, i.e.,
calculate 4’ = UAUT,



148 CHAPTER 2. MATHEMATICAL TOOLS OF QUANTUM MECHANICS

Solution
(a) It is easy to verify that the eigenvalues of 4 are a; = 0, ay = +/2, a3 = —+/2 and their
corresponding normalized eigenvectors are

—1 1 1

1 1 1
=—1 0 |, == 2], == —v2 |. 2.446
= — 1 |a2) = 3 { |a3) = 5 If (2.446)
The eigenvalues of B are by = 1, b, = 0, b3 = —1 and their corresponding normalized
eigenvectors are
1 0 0
[b1)=1{( 0 |, by =11}, | b3y =1 0 |. (2.447)
0 0 1

None of the eigenvalues of 4 and B are degenerate.
(b) The set | ay), | az), | a3) is indeed complete because the sum of | a;){a; |, | a2){a2 |,
and | az)({a3 | as given by

s /10 =1
laja | = S| 0 (-1 0 I)ZE 0 0 0 |, (2.448)
1 -1 0 1
{ 1 { 1 V2 1
la)a | = 5 V2 (1 V2 1)22 V22 V2], (2449
1 1 V2 1
1 : 1 =2 1
|as)as |= 5 V2 | (1 =2 1)22 V2 2 =2 |, (2450
1 1 =2 1
is equal to unity:
3 L[ 10 -1 e V2 o1
Z|a,><a,| = S| 0 0 0 )+g V22 2
= -1 0 1 1 V2 1
1 V2 1
+- V2 2 V2
1 —=V2 1
1 00
— 1 0 (2.451)
0 0 1

The states | ay), | a2), | a3) are orthonormal, since (aj | a2) = (a1 | a3) = (a3 | a2) = 0 and
(a1 | a1) = (a2 | @) = (a3 | a3) = 1. Following the same procedure, we can ascertain that

(2.452)

—_ o O

1 0
[ b1) by | 4+ | ba)(ba | + | b3)b3 = O 1
0 0
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We can verify that the states | b1), | b2), | b3) are orthonormal, since (b; | by) = (b1 | b3) =
(b3 | by) = 0and (by | b1) = (b2 | b2) = (b3 | b3) = 1.

(¢) The elements of the matrix U, corresponding to the transformation from the basis {| a)}
to {| b)}, are given by U;; = (b, | ar) where j, k=1,2,3:

(br lar) (b1 |az) (b1]|as3)
U=\ (bala) (balay) (ba]a3z) |, (2.453)
(b3 la1) (b3 |az) (b3]az)

where the elements (b; | ax) can be calculated from (2.446) and (2.447):

—1

Un :(b1|al>=%(1 0 0)( 0 ) =—g, (2.454)
1
! 1

Un =(bila)=5(1 0 0)[ 2 =3 (2.455)
1
! 1

Uz =(ila)=5(1 0 0)| —v2 =3 (2.456)
1
—1

U =(bala)=—7(0 1 0)f 0 =0, (2.457)
1
1 V2

Un =(la)=5(0 1 0)[ 2 == (2.458)
1

| 1 %!

Uy =(balay=5(0 1 0)| =2 === (2.459)

1
1 FARRE

Usi =(b3|al>=7§(0 0 1) (1) =5 (2.460)
1 1

Up =(la)=3(0 0 1) V2 =3 (2.461)
1
! 1

Us =(bslas)=3(0 0 1)| —v2 | =5 (2.462)
1

i -2 1 1
U=- ( 0 V2 =2 ) . (2.463)
1 1
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Calculating the inverse of U as we did in (2.200), we see that it is equal to its Hermitian adjoint:

-2 0 V2
-1 1 '|-
U =3 1 V21 =Ul. (2.464)
1 =v2 1
This implies that the matrix U is unitary. The matrix 4 transforms as follows:
L[ V2L 010 -2 0 V2
4 = vavt=2 o V2 V2 |[1 01 IV I
V2.1 010 1 V2 1
AR 7
= 3 -1 -2 1 . (2.465)
1 1 1+42

Problem 2.14
Calculate the following expressions involving Dirac’s delta function:

(a) [°5cos(3x)d(x — 7 /3) dx

®) 3 [T + 4] 6(x + 3) dx
(c) [2 cos?(3x) — sin(x/2)] 5(x + )
(d) [i7 cos(30)5" (0 — = /2) db
(@) f5 (x = 5x +2) o[2(x — 4)]dx.

Solution
(a) Since x = 7 /3 lies within the interval (-5, 5), equation (2.281) yields

5
/ cos(3x)3(x — 7/3) dx = cos (35) - 1. (2.466)
s 3

(b) Since x = —3 lies outside the interval (0, 10), Eq (2.281) yields at once

10
T4 4|0(x +3)dx =0. (2.467)
/0 [2 7 ]

(c) Using the relation f(x)d(x —a) = f(a)d(x — a) which is listed in Appendix A, we
have

[2 cos?(3x) — sin(x/2)] S(x+m) = [2 cos?(3(=1)) — sin((=1) /2)] S(x + 1)
— 36(x + 7). (2.468)

(d) Inserting n = 3 into Eq (2.282) and since cos”’ (30) = 27 sin(36), we obtain

/ i c0s(30)5" (0 —7/2)d0 = (=1)}cos” (37 /2) = (—1)327sin(37/2)
0
= 27. (2.469)
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(e) Since J[2(x —4)] = (1/2)0(x — 4), we have

’ x2—=5x +2)02(x —4)],dx = ’ x2 —5x +2)6(x —4)dx
2 2

N = N =

(42—5x4+2)=—1. (2.470)

Problem 2.15
Consider a system whose Hamiltonian is given by H=a (| d1){d2 | + | P2) {1 |), where a is
a real number having the dimensions of energy and | ¢1), | ¢2) are normalized eigenstates of a
Hermitian operator A that has no degenerate eigenvalues.

(@Is Ha projection operator? What about a"2A%

(b) Show that | ¢1) and | ¢») are not eigenstates of A.

(c) Calculate the commutators [I:I , | é1){(¢1 |] and []:I , | @2)(¢2 |] then find the relation
that may exist between them.

(d) Find the normalized eigenstates of H and their corresponding energy eigenvalues.

(e) Assuming that | ¢1) and | ¢;) form a complete and orthonormal basis, find the matrix
representing H in the basis. Find the eigenvalues and eigenvectors of the matrix and compare
the results with those derived in (d).

Solution

(a) Since | ¢1) and | ¢») are eigenstates of A and since A is Hermitian, they must be
orthogonal, (¢ | ¢2) = 0 (instance of Theorem 2;1)' Now, since | ¢1) and | ¢») are both
normalized and since (¢ | ¢») = 0, we can reduce H> to

A

B = (102 [ +1 (b1 D) d1)ig |+ d2) (2 )
= o) |+ 12 D), (2.471)
which is different from H; hence H is not a projection operator. The operator a2l is a

projection operator since it is both Hermitian and equal to its own square. Using (2.471) we
can write

@Z2HD = (Ig)iga |+ 1201 ) )2 | + | 2)igi ])
= g1 |+ ¢2)(ga |= a2 H. (2472)
(b) Since | ¢1) and | ¢) are both normalized, and since (¢ | ¢2) = 0, we have
H¢gr)=ald)d2| 1) +ala)igi | d1)=al| b, (2.473)
H | ¢y) =a | $1); (2.474)

hence | ¢1) and | ¢,) are not eigenstates of H. In addition, we have

(11 H | 1) = (g | H| ) =0. (2.475)

(c) Using the relations derived above, H | ¢1) = a | ¢o) and H | $2) = a | ¢1), we can
write

(A, | o)1 I=a(¢2)id1 | = | p1) (g 1), (2.476)
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[, $2) i D= (1 1) | = | $2) (b1 D) (2.477)

hence

[, 1) (1 1= —[H,] $2) (¢ II. (2.478)
(d) Consider a general state | ) = 11 | ¢1) + 42 | ¢2). Applying H to this state, we get

Hly) = a(¢i){gn|+1d20{b1 ) (A1 ] d1)+ 12| ¢2))
= a(la| o) +4i11¢2). (2.479)

Now, since | ) is normalized, we have
wly)=l PP+ P=1 (2.480)

The previous two equations show that | 41 |=| 4> | = 1/+/2 and that A; = %1,. Hence the
eigenstates of the system are:

| ys) = J% (I d1)E | b)) (2.481)

The corresponding eigenvalues are +a:
H|ys)=a | y). (2.482)

(e) Since (¢1 | ¢2) = (2 | ¢1) = O and ($1 | 1) = (¢2 | ¢2) = 1, we can verify
that Hy1 = (¢1 | 1) =0,Hn = (| H|¢)=0 Ho= (| H|P)=a,
Hy = (p2 | H| 1)

[ j—
Q

. The matrix of H is thus given by
0 1
H—oc(1 0). (2.483)
The eigenvalues of this matrix are equal to o and the corresponding eigenvectors are % ( :tl 1

These results are indeed similar to those derived in (d).

Problem 2.16

1 0 0 0 —i 3i
Consider the matrices A =| 0 7 —3i | and B = - 0 i
0 3i 5 3i i 0

(a) Check the hermiticity of 4 and B.

(b) Find the eigenvalues of 4 and B; denote the eigenvalues of 4 by aj, a;, and a3. Explain
why the eigenvalues of 4 are real and those of B are imaginary.

(c) Calculate Tr(A) and det(A). Verify Tr(4) = a1 + a2 + a3z, det(4) = ajazas.

Solution
(a) Matrix A is Hermitian but B is anti-Hermitian:

1o 0 0 i =3
Al=(o0o 7 -3 )=4, BI= i 0o -i |=-8 (2.484)
0 3 5 3 —i 0



2.9. SOLVED PROBLEMS 153

(b) The eigenvalues of 4 are a; = 6 — V10, a; = 1, and a3 = 6 + +/10 and those of B
are by = —i (3 + \/ﬁ) /2,by = 3i,and by =i (—3 + \/ﬁ) /2. The eigenvalues of A4 are
real and those of B are imaginary. This is expected since, as shown in (2.74) and (2.75), the
expectation values of Hermitian operators are real and those of anti-Hermitian operators are
imaginary.

(c) A direct calculation of the trace and the determinant of 4 yields Tr(4) = 1+7+5 =13
and det(A4) = (7)(5) — (3i)(—3i) = 26. Adding and multiplying the eigenvalues a; = 6—+/10,
a = 1,a3 = 6+ 10, wehave a; + a2 +a3 = 6 — V10 + 1 + 6 + /10 = 13 and
arazaz = (6 — +/10)(1)(6 + +~/10) = 26. This confirms the results (2.260) and (2.261):

Tr(A) = a; + a + a3 = 13, det(4) = ayaraz = 26. (2.485)

Problem 2.17
Consider a one-dimensional particle which moves along the x-axis and whose Hamiltonian is
H = —Ed?/dx® + 16E X2, where £ is a real constant having the dimensions of energy.

(@) Is wkx) = Ae‘zxz, where A is a normalization constant that needs to be found, an
eigenfunction of H? If yes, find the energy eigenvalue.

(b) Calculate the probability of finding the particle anywhere along the negative x-axis.

(c) Find the energy eigenvalue corresponding to the wave function ¢ (x) = 2x w (x).

(d) Specify the parities of ¢ (x) and y (x). Are ¢(x) and w (x) orthogonal?

Solution
(a) The integral fjof e~ dx = /7 /2 allows us to find the normalization constant:

+oo +o0
1= / ly (x)I* dx = 47 / ey = 42T (2.486)
—00 —00 2

this leads to 4 = /2/./7 and hence y(x) = ,/2/ﬁe‘2x2. Since the first and second

derivatives of y (x) are given by

d?y (x)
dx?

_dy(x)

= (16x% = 4y (x), (2.487)
dx

y'(x) = —dxy (x), p"(x) =

we see that iy (x) is an eigenfunction of H with an energy eigenvalue equal to 4&:

d?y (x)

Hy(x) =& -

+16Ex2y (x) = —£(16x2—4)y (x)+16Ex2y (x) = 4Ew (x). (2.488)

(b) Since fi) o e dx = /7 /4, the probability of finding the particle anywhere along the
negative x-axis is equal to %:

/0 Ly (0)2 d 2 /0 gy = (2.489)
X X = —— e X = —. .
o N 2

This is expected, since this probability is half the total probability, which in turn is equal to one.
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(c) Since the second derivative of ¢(x) = 2xy(x) is ¢"(x) = 4y'(x) + 2xy"(x) =
8x (=3 4+ 4x2)y(x) = 4(=3 + 4x?)p(x), we see that ¢ (x) is an eigenfunction of H with an
energy eigenvalue equal to 12&:

2
Hep(x) = —5d j(zx) + 16Ex%p(x) = —4E(=3 + 4xD)p (x) + 16Ex%p (x) = 12Ep (x).
* (2.490)
(d) The wave functions  (x) and ¢ (x) are even and odd, respectively, since y (—x) = w(x)
and ¢(—x) = —¢(x); hence their product is an odd function. Therefore, they are orthogonal,
since the symmetric integration of an odd function is zero:
“+00 —+00 —00
@ly) = P* () (x)dx = Py (x)dx = ¢(=x)y (=x)(—=dx)
—00 —00 +o0o
“+o0
= — ¢x)p(x)dx =0. (2.491)
—00

Problem 2.18

(a) Find the eigenvalues and the eigenfunctions of the operator A =—d? /dx?; restrict the
search for the eigenfunctions to those complex functions that vanish everywhere except in the
region0 < x < a.

(b) Normalize the eigenfunction and find the probability in the region 0 < x < a/2.

Solution
(a) The eigenvalue problem for —d? /dx? consists of solving the differential equation
d2
— l//(x) = OC!//()C) (2492)
dx?

and finding the eigenvalues a and the eigenfunction w (x). The most general solution to this
equation is

w(x) = Ade'™ 4+ Be ™Y, (2.493)

with a = b?. Using the boundary conditions of y (x) at x = 0 and x = a, we have
w0)=A+B=0 = B=—A4, w(a) = 4e'"® + Be™4 =0, (2.494)
A substitution of B = —4 into the second equation leads to A4 (e'? — e71%9) = 0 or €/** =

e~b4 which leads to €224 = 1. Thus, we have sin 2ba = 0 and cos 2ba = 1,s0 ba = nr. The
eigenvalues are then given by a,, = n’z2/a? and the corresponding eigenvectors by y, (x) =
A (eimrx/a _ e—innx/a); that is,

2.2

t="2—,  yu(x) = Cysin (@) (2.495)
a a
So the eigenvalue spectrum of the operator A=—-d? /dx? is discrete, because the eigenvalues

and eigenfunctions depend on a discrete number 7.
(b) The normalization of , (x),

a 2 a 2
e .9 (NTTX G _ 2nmx G
1= C”/o sin (—a ) ax==| [1 cos( - )}dx =, (2.496)
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yields C,, = 4/2/a and hence v, (x) = +/2/a sin (nwx /a). The probability in the region
0 < x < a/2is given by

2 [9? 1 (o2 2 1
—/ sin’ (ﬂ) dx = —/ |:l — cos( nnx)j| dx = —. (2.497)
a o a a o a 2

This is expected since the total probability is 1: foa | wu(x) |2 dx = 1.

2.10 Exercises

Exercise 2.1
Consider the two states | w) =1 | ¢1) +3i | d2)— | p3)and | y) =| ¢1) —i | ¢2) + 5i | ¢3),
where | ¢1), | ¢2) and | ¢3) are orthonormal.

(a) Calculate (w | w), {x | x)> {(w | x), {x | w),and infer (w + y | w + x). Are the scalar
products (y | ) and (y | w) equal?

(b) Calculate | y)(x | and | y){y |. Are they equal? Calculate their traces and compare
them.

(c) Find the Hermitian conjugates of | w), | x), | w){x |,and | y){w |.

Exercise 2.2

Consider two states |w1) = |¢1) + 4i|d2) + S|¢3) and |y2) = bld1) + 4|da) — 3i|¢3), where
|$1), |¢2), and|¢3) are orthonormal kets, and where b is a constant. Find the value of b so that
|w1) and |w») are orthogonal.

Exercise 2.3
If | ¢1), | P2), and | ¢3) are orthonormal, show that the states | w) =i | ¢1) + 3i | p2)— | P3)
and | x) =|¢1) —i | ¢2) + 5i | ¢p3) satisfy

(a) the triangle inequality and

(b) the Schwarz inequality.

Exercise 2.4
Find the constant o so that the states | w) =a | ¢1) +5 | d2)and | ) =30 | ¢1) — 4 | ¢2)
are orthogonal; consider | ¢1) and | ¢») to be orthonormal.

Exercise 2.5
If| w)=|¢1)+ | d)and | y) =| ¢1) — | ), prove the following relations (note that | ¢;)
and | ¢;) are not orthonormal):

@y ly)+ L x) =21 | ¢1) + 22 | P2),

Gyl w)— (x| x)=2(¢1|¢2) +2(d2 | $1).

Exercise 2.6
Consider a state which is given in terms of three orthonormal vectors |¢1), |¢$2), and |¢3) as
follows:

1 1 1
ly) = ﬁkﬁl) + fl(ﬁz) + %|¢3>,

where |¢,) are eigenstates to an operator B such that: Z§|¢S,,) = (3n% — 1)|¢py) withn = 1,2, 3.
(a) Find the norm of the state |y/).
(b) Find the expectation value of B for the state ly).
(c) Find the expectation value of B2 for the state [y).



Chapter 3

Postulates of Quantum Mechanics

3.1 Introduction

The formalism of quantum mechanics is based on a number of postulates. These postulates are
in turn based on a wide range of experimental observations; the underlying physical ideas of
these experimental observations have been briefly mentioned in Chapter 1. In this chapter we
present a formal discussion of these postulates, and how they can be used to extract quantitative
information about microphysical systems.

These postulates cannot be derived; they result from experiment. They represent the mini-
mal set of assumptions needed to develop the theory of quantum mechanics. But how does one
find out about the validity of these postulates? Their validity cannot be determined directly;
only an indirect inferential statement is possible. For this, one has to turn to the theory built
upon these postulates: if the theory works, the postulates will be valid; otherwise they will
make no sense. Quantum theory not only works, but works extremely well, and this represents
its experimental justification. It has a very penetrating qualitative as well as quantitative pre-
diction power; this prediction power has been verified by a rich collection of experiments. So
the accurate prediction power of quantum theory gives irrefutable evidence to the validity of
the postulates upon which the theory is built.

3.2 The Basic Postulates of Quantum Mechanics

According to classical mechanics, the state of a particle is specified, at any time ¢, by two fun-
damental dynamical variables: the position 7 () and the momentum p(z). Any other physical
quantity, relevant to the system, can be calculated in terms of these two dynamical variables.
In addition, knowing these variables at a time ¢, we can predict, using for instance Hamilton’s
equations dx /dt = 0H/op and dp/dt = —0H /0x, the values of these variables at any later
time ¢'.

The quantum mechanical counterparts to these ideas are specified by postulates, which
enable us to understand:

e how a quantum state is described mathematically at a given time ¢,

e how to calculate the various physical quantities from this quantum state, and
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e knowing the system’s state at a time ¢, how to find the state at any later time ¢’; that is,
how to describe the time evolution of a system.

The answers to these questions are provided by the following set of five postulates.

Postulate 1: State of a system

The state of any physical system is specified, at each time ¢, by a state vector |y (¢)) in a Hilbert
space H; |y (¢)) contains (and serves as the basis to extract) all the needed information about
the system. Any superposition of state vectors is also a state vector.

Postulate 2: Observables and operators
To every physically measurable quantity 4, called an observable or dynamical variable, there
corresponds a linear Hermitian operator 4 whose eigenvectors form a complete basis.

Postulate 3: Measurements and eigenvalues of operators

The measurement of an observable 4 may be represented formally by the action of A on a state
vector |y (¢)). The only possible result of such a measurement is one of the eigenvalues a,
(which are real) of the operator A. If the result of a measurement of 4 on a state |y (®)) is ay,
the state of the system immediately after the measurement changes to |y, ):

Aly (@) = anlya), 3.1

where a, = (y,|w(¢)). Note: a, is the component of | (¢)) when projected' onto the eigen-
vector |y, ).

Postulate 4: Probabilistic outcome of measurements

e Discrete spectra: When measuring an observable 4 of a system in a state | ), the proba-
bility of obtaining one of the nondegenerate eigenvalues a,, of the corresponding operator
A is given by

waly)? lagl?

wly) — (wly)

where |y, ) is the eigenstate of A with eigenvalue a,. If the eigenvalue a,, is m-degenerate,
P, becomes

Pa(an) =

(3.2)

Sl e P

(wly) (wly)
The act of measurement changes the state of the system from |w) to |y,). If the sys-
tem is already in an eigenstate |y, ) of A, a measurement of 4 yields with certainty the
corresponding eigenvalue a,,: A Wn) = anlyn).

Pu(an) = (3.3)

e Continuous spectra: The relation (3.2), which is valid for discrete spectra, can be ex-
tended to determine the probability density that a measurement of 4 yields a value be-
tween a and a + da on a system which is initially in a state |y):

dP@ _lv@P __ lv@P
da wly) [Ty @) da’

(3.4)

for instance, the probability density for finding a particle between x and x + dx is given
by d P (x)/dx = [y (x)*/(yly).

1Ty see this, we need only to expand | (¢)) in terms of the eigenvectors of A which form a complete basis: |y (?)) =

2o ) (nly (O) = 22, anlyn).
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Postulate 5: Time evolution of a system
The time evolution of the state vector |y (¢)) of a system is governed by the time-dependent
Schrédinger equation

_Oly () A
ih———= Hly ), (3.5)

where A is the Hamiltonian operator corresponding to the total energy of the system.

Remark
These postulates fall into two categories:

e The first four describe the system at a given time.
e The fifth shows how this description evolves in time.

In the rest of this chapter we are going to consider the physical implications of each one of the
four postulates. Namely, we shall look at the state of a quantum system and its interpretation,
the physical observables, measurements in quantum mechanics, and finally the time evolution
of quantum systems.

3.3 The State of a System

To describe a system in quantum mechanics, we use a mathematical entity (a complex function)
belonging to a Hilbert space, the state vector |y (¢)), which contains all the information we need
to know about the system and from which all needed physical quantities can be computed. As
discussed in Chapter 2, the state vector | (¢)) may be represented in two ways:

e A wave function y (¥, ) in the position space:  w (¥, 1) = (F|y (¢)).
e A momentum wave function ¥ (p, ) in the momentum space: ¥(p, t) = (p|w(t)).

So, for instance, to describe the state of a one-dimensional particle in quantum mechanics we
use a complex function y (x, t) instead of two real real numbers (x, p) in classical physics.

The wave functions to be used are only those that correspond to physical systems. What
are the mathematical requirements that a wave function must satisfy to represent a physical
system? Wave functions y(x) that are physically acceptable must, along with their first deriv-
atives dy (x)/dx, be finite, continuous, and single-valued everywhere. As will be discussed in
Chapter 4, we will examine the underlying physics behind the continuity conditions of w (x)
and dw (x)/dx (we will see that y (x) and dy (x) /dx must be be continuous because the prob-
ability density and the linear momentum are continuous functions of x).

3.3.1 Probability Density

What about the physical meaning of a wave function? Only the square of its norm, |y (7, 1),
has meaning. According to Born’s probabilistic interpretation, the square of the norm of
y (1),

PG0) =y 0P, (3.6)
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represents a position probability density; that is, the quantity |y (7, t)|>d>r represents the prob-
ability of finding the particle at time # in a volume element d3r located between 7 and 7 + dF.
Therefore, the total probability of finding the system somewhere in space is equal to 1:

400 +00 400
/Iw(ﬂ N1>d3r =/ dx/ dy/ lw (7, 1)|?dz = 1. (3.7)
—00 —0o0 —00

A wave function w (7, ¢) satisfying this relation is said to be normalized. We may mention
that w () has the physical dimensions of 1/ VL3, where L is a length. Hence, the physical
dimensions of |y ()% is 1/L>: [y (F)I*] = 1/L%.

Note that the wave functions y (7, t) and e/* y (¥, t), where a is a real number, represent the
same state.

Example 3.1 (Physical and unphysical wave functions)

Which among the following functions represent physically acceptable wave functions: f(x) =

3sin 7x, g(x) =4 — |x|, h?(x) = 5x, and e(x) = x2.

Solution

Among these functions only f(x) = 3 sin z x represents a physically acceptable wave function,

since f(x) and its derivative are finite, continuous, single-valued everywhere, and integrable.
The other functions cannot be wave functions, since g(x) = 4 — |x| is not continuous,

not finite, and not square integrable; 42(x) = 5x is neither finite nor square integrable; and

e(x) = x? is neither finite nor square integrable.

3.3.2 The Superposition Principle

The state of a system does not have to be represented by a single wave function; it can be rep-
resented by a superposition of two or more wave functions. An example from the macroscopic
world is a vibrating string; its state can be represented by a single wave or by the superposition
(linear combination) of many waves.

If w1 (7, t) and yo (F, t) separately satisfy the Schrodinger equation, then the wave function
w(r,t) = a1y (7, t) +a2wa (7, t) also satisfies the Schrodinger equation, where a1 and a; are
complex numbers. The Schrodinger equation is a linear equation. So in general, according to
the superposition principle, the linear superposition of many wave functions (which describe
the various permissible physical states of a system) gives a new wave function which represents
a possible physical state of the system:

lv) =D ailyi), (33)

where the a; are complex numbers. The quantity

2

P , (3.9)

Za,-nm
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represents the probability for this superposition. If the states |y;) are mutually orthonormal,
the probability will be equal to the sum of the individual probabilities:

Za,-wm

where P; = |a;|%; P; is the probability of finding the system in the state | ;).

2
P = =Z|ai|2=P1+P2+P3+--~, (3.10)
;

Example 3.2
Consider a system whose state is given in terms of an orthonormal set of three vectors: |¢1),

|2), |3) as 7 ”
3 2 2
ly) = TW)I) + §I¢2) + T|¢>3)-

(a) Verify that |w) is normalized. Then, calculate the probability of finding the system in
any one of the states |¢1), |¢2), and |¢3). Verify that the total probability is equal to one.

(b) Consider now an ensemble of 810 identical systems, each one of them in the state |y).
If measurements are done on all of them, how many systems will be found in each of the states

|#1), |¢2), and |¢p3)?

Solution
(a) Using the orthonormality condition (@;|¢x) = J;x where j, k = 1,2, 3, we can verify
that |y) is normalized:

4 2 1 4 2
(wly) = (¢1|¢1>+§<¢2|¢2>+§(¢3|¢3>=§+§+§=1. (3.11)

W =

Since |) is normalized, the probability of finding the system in |¢) is given by

2

3 2 2 1
P = lgly)* = §<¢1|¢1> + §(¢1|¢2> + §<¢1|¢3) =3 (3.12)

since (¢p1]¢1) = 1 and (¢1]¢2) = (p1l¢3) = 0.
Similarly, from the relations (¢2]|¢2) = 1 and (¢|p1) = (P2|¢3) = 0, we obtain the
probability of finding the system in |¢;):

2

4
S (3.13)

2
Py = |{ly))* = '§(¢2|¢2) 5

As for (p3|¢p3) = 1 and (P3]|d1) = (P3]|d2) = 0, they lead to the probability of finding the

system in |¢3):
2

_2 (3.14)

?(¢3|¢3) 5

Py = ligsly)|* =

As expected, the total probability is equal to one:

N~

1 2
P=P1+P2—I—P3=§—|—— §=1. (3.15)

O
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(b) The number of systems that will be found in the state |¢;) is

810
Ni =810 x P = —= =270, (3.16)

Likewise, the number of systems that will be found in states |¢;) and |¢3) are given, respec-
tively, by

810 x 4 810 x 2
X7 360, N3=810xP3= >

N, =810x P, = = 180. (3.17)

3.4 Observables and Operators

An observable is a dynamical variable that can be measured; the dynamical variables encoun-
tered most in classical mechanics are the position, linear momentum, angular momentum, and
energy. How do we mathematically represent these and other variables in quantum mechanics?

According to the second postulate, a Hermitian operator is associated with every physical
observable. In the preceding chapter, we have seen that the position representation of the
linear momentum operator is given in one-dimensional space by P = —iho /0x and in three-
dimensional space by P =—ihV.

In general, any function, f (7, p), which depends on the position and momentum variables,
7 and p, can be "quantized" or made into a function of operators by replacing 7 and p with their
corresponding operators:

f(p) —> F(R,P)= f(R,—ihV), (3.18)

or f(x,p) > F ()A( , —ihd/0x). For instance, the operator corresponding to the Hamiltonian

1. R
H=—p>+V({F#, 1) (3.19)
2m

is given in the position representation by
A h2 5
H=——V>4+V(R,1), (3.20)
2m

where V? is the Laplacian operator; it is given in Cartesian coordinates by: V2 = 6%/x? +
o2 /ay* + 8% /822.

Since the momentum operator Pis Hermitian, and if the potential V(f?, t) is areal function,
the Hamiltonian (3.19) is Hermitian. We saw in Chapter 2 that the eigenvalues of Hermitian
operators are real. Hence, the spectrum of the Hamiltonian, which consists of the entire set
of its eigenvalues, is real. This spectrum can be discrete, continuous, or a mixture of both. In
the case of bound states, the Hamiltonian has a discrete spectrum of values and a continuous
spectrum for unbound states. In general, an operator will have bound or unbound spectra in the

same manner that the corresponding classical variable has bound or unbound orbits. As for R

and P, they have continuous spectra, since 7 and p may take a continuum of values.
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Table 3.1 Some observables and their corresponding operators.

Observable Corresponding operator
P R

p P =—ihV

r=4£ f=-Lv
E=L +V(F, 0 H=-Lv+ V(R0
L=rFxp L=—ihRxV

According to Postulate 5, the total energy E for time-dependent systems is associated to the
operator

N 0
H=ih—. 3.21
th (321

This can be seen as follows. The wave function of a free particle of momentum p and total
energy E is given by w (7, t) = Ae!P"~ED/" \where A is a constant. The time derivative of
w (7, t) yields

ow(r,t .
ih% = Ey(,0). (3.22)

Let us look at the eigenfunctions and eigenvalues of the momentum operator P. The eigen-
value equation B
—ihVy () = py @) (3.23)

yields the eigenfunction y (#) corresponding to the eigenvalue p such that | (7)|>d>r is the
probability of finding the particle with a momentum p in the volume element d3r centered
about 7. The solution to the eigenvalue equation (3.23) is

() = 4PN, (3.24)

where 4 is a normalization constant. Since p = hk is the eigenvalue of the operator 13, the
eigenfunction (3.24) reduces to w () = Ae'™"; hence the eigenvalue equation (3.23) becomes

Py () = hky (). (3.25)

To summarize, there is a one-to-one correspondence between observables and operators
(Table 3.1).

Example 3.3 (Orbital angular momentum)
Find the operator representing the classical orbital angular momentum.

Solution

The classical expression for the orbital angular momentum of a particle whose position and
linear momentum are 7 and p is given by L =7 x p = I;i +1,,j + I.k, where [, = yp. — zp,,
ly =zpy — xp;,I; =xpy — ypx.
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To find the operator representing the classical angular momentum, we need simply to re-

place 7 and p with their corresponding operators Rand P = —ihV: L = —ihR x V. This
leads to

n ~ A ~ A A~ O ~ 0

L = YP,—ZP,=—ih|\Y——-Z7Z—), 3.26

X z y l ( P (3)/) ( )

i P Y L (3.27)

= — =—i — A=, .

Y x z ox oZ

. A A e 50

L. = XP,—VP =—ih|X——-7T—). (3.28)
oy ox

Recall that in classical mechanics the position and momentum components commute, xp, =
pxx, and so do the components of the angular momentum, //,, = /,/;. In quantum mechanics,
however, this is not the case, since X f’x = ﬁx)A( + i% and, as will be shown in Chapter 5,
I:XI:y = iyl:x +ikL.,and so on.

3.5 Measurement in Quantum Mechanics

Quantum theory is about the results of measurement; it says nothing about what might happen
in the physical world outside the context of measurement. So the emphasis is on measurement.

3.5.1 How Measurements Disturb Systems

In classical physics it is possible to perform measurements on a system without disturbing it
significantly. In quantum mechanics, however, the measurement process perturbs the system
significantly. While carrying out measurements on classical systems, this perturbation does
exist, but it is small enough that it can be neglected. In atomic and subatomic systems, however,
the act of measurement induces nonnegligible or significant disturbances.

As an illustration, consider an experiment that measures the position of a hydrogenic elec-
tron. For this, we need to bombard the electron with electromagnetic radiation (photons). If we
want to determine the position accurately, the wavelength of the radiation must be sufficiently
short. Since the electronic orbit is of the order of 10719 m, we must use a radiation whose
wavelength is smaller than 10719 m. That is, we need to bombard the electron with photons of
energies higher than

c 3x108
h=h- = hW ~ 10*eV. (3.29)
When such photons strike the electron, not only will they perturb it, they will knock it com-
pletely off its orbit; recall that the ionization energy of the hydrogen atom is about 13.5eV.
Thus, the mere act of measuring the position of the electron disturbs it appreciably.

Let us now discuss the general concept of measurement in quantum mechanics. The act of
measurement generally changes the state of the system. In theory we can represent the measur-
ing device by an operator so that, after carrying out the measurement, the system will be in one
of the eigenstates of the operator. Consider a system which is in a state |y ). Before measuring
an observable A, the state ) can be represented by a linear superposition of eigenstates |y,,)
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of the corresponding operator A:

) =D lyn)waly) =D anlya). (330)

According to Postulate 4, the act of measuring A changes the state of the system from | ) to one
of the eigenstates |y, ) of the operator fi, and the result obtained is the eigenvalue a,. The only
exception to this rule is when the system is already in one of the eigenstates of the observable
being measured. For instance, if the system is in the eigenstate |y, ), a measurement of the
observable 4 yields with certainty (i.e., with probability = 1) the value a, without changing the
state |yy).

Before a measurement, we do not know in advance with certainty in which eigenstate,
among the various states |y, ), a system will be after the measurement; only a probabilistic
outcome is possible. Postulate 4 states that the probability of finding the system in one particular
nondegenerate eigenstate |y,,) is given by

2
P _ Kwnlw)l . (3.31)

T ()
Note that the wave function does not predict the results of individual measurements; it instead
determines the probability distribution, P = |y|?, over measurements on many identical sys-
tems in the same state.

Finally, we may state that quantum mechanics is the mechanics applicable to objects for
which measurements necessarily interfere with the state of the system. Quantum mechanically,
we cannot ignore the effects of the measuring equipment on the system, for they are important.
In general, certain measurements cannot be performed without major disturbances to other
properties of the quantum system. In conclusion, it is the effects of the interference by the
equipment on the system which is the essence of quantum mechanics.

3.5.2 Expectation Values

The expectation value (A) of 4 with respect to a state |y ) is defined by

(dy = WA (3.32)

(ylw)

For instance, the energy of a system is given by the expectation value of the Hamiltonian:
E=(H) = (y|Hly)/(y|y). . )

In essence, the expectation value (4) represents the average result of measuring 4 on the
state | ). To see this, using the complete set of eigenvectors |y,) of 4 as a basis (i.e., 4 is
diagonal in y,,), we can rewrite (A) as follows:

. 1 . Sk
(A) = —— D " (wlym) (ymlAlya) (yaly) = Z%M

, 3.33
(wly) <= ~ (wlw) (3:33)

where we have used (y, |/i| Wn) = apdum. Since the quantity |(w,|w)|?/(w|w) gives the
probability P, of finding the value a, after measuring the observable 4, we can indeed interpret
(A) as an average of a series of measurements of A4:

- (waly)1?
A) = z y—————— = § 2P 3.34
w . “ ) - ¢ (334
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That is, the expectation value of an observable is obtained by adding all permissible eigenvalues
an, with each a, multiplied by the corresponding probability P,.

The relation (3.34), which is valid for discrete spectra, can be extended to a continuous
distribution of probabilities P(a) as follows:

(A) =

+oo 12 o
:&E—aﬂﬂa—)l—ﬁz/+ adP(a). (3.35)

[y (a)*da

The expectation value of an observable can be obtained physically as follows: prepare a very
large number of identical systems each in the same state |y). The observable A4 is then mea-
sured on all these identical systems; the results of these measurements are ay, as, ..., @, .. .;
the corresponding probabilities of occurrence are Py, P, ..., P,, .... The average value of all
these repeated measurements is called the expectation value of A with respect to the state |y/).

Note that the process of obtaining different results when measuring the same observable
on many identically prepared systems is contrary to classical physics, where these measure-
ments must give the same outcome. In quantum mechanics, however, we can predict only the
probability of obtaining a certain value for an observable.

—0oQ

Example 3.4
Consider a system whose state is given in terms of a complete and orthonormal set of five

vectors |@1), |¢2), [93), |¢4), |ps) as follows:

1 2 2 3 5
lw) = \/—1_9|¢1> + \/—1_9|¢2> +\/;|¢S3> +\/;|¢4> +\/;|¢5>3

where |¢,) are eigenstates to the system’s Hamiltonian, Vit |¢pn) = neoldy) withn =1,2,3,4,5,
and where ¢¢ has the dimensions of energy.

(a) If the energy is measured on a large number of identical systems that are all initially in
the same state | ), what values would one obtain and with what probabilities?

(b) Find the average energy of one such system.

Solution
First, note that |y) is not normalized:

, 1 4 2 3 5 15

(wly) = Za@Mn= =5t 5+ 5+ 5+ 15 = 19 (3.36)

n=1

since (¢;|or) = dj with j, k=1,2,3,4,5.

(a) Since E, = (¢,,|1—AI|¢,[> = ney (n = 1,2,3,4,5), the various measurements of the
energy of the system yield the values E| = ¢g, E2 = 2¢9, E3 = 3¢, E4 = 49, Es = 5¢¢ with
the following probabilities:

2

PI(EY) = @W b_¢m> §=%, (3.37)
2
Py(ED) = @W b_@m>x%=%, (3.38)
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ligsly)® | [2 19 2
Py(E3))=————=|,/— — =—, 3.39
3(E3) i) 19<¢3|¢>3> * 5= 715 (3.39)
(gl 2| [3 S 3
4
Py(Eg) = —— = |,/ — — =—, 3.40
4(E4) i) 19<¢54|¢>4> X515 (3.40)
and
lgsly)® | [5 19 s
Ps(Es) = ———— = ||/ —= — =—, 3.41
5(Es) W) 19<¢5|¢5> X T =13 (3.41)
(b) The average energy of a system is given by
5
1 8 6 12 25 52
E— P.E, — — - — — —e0 = —¢p. 342
2 PrEj = g360+ g3e0+ 1360 + 360 + 3560 = 560 (3.42)

This energy can also be obtained from the expectation value of the Hamiltonian:

WIHly) 19 5 & 9(1 8 6 12 25
E = —_— H - — J— J— —_ P -
D 2 R A T SR TR TR TR A

52
= — 3.43
1550 (3.43)

where the values of the coefficients a% are listed in (3.36).

3.5.3 Complete Sets of Commuting Operators (CSCO)

Two observables 4 and B are said to be compatible when their corresponding operators com-
mute, [/i , l§’] = 0; observables corresponding to noncommuting operators are said to be non-
compatible.

In what follows we are going to consider the task of measuring two observables 4 and B
on a given system. Since the act of measurement generally perturbs the system, the result of
measuring 4 and B therefore depends on the order in which they are carried out. Measuring A
first and then B leads? in general to results that are different from those obtained by measuring
B first and then 4. How does this take place?

If 4 and B do not commute and if the system is in an eigenstate | y/,S”)> of A, a measurement
of A yields with certainty a value a,,, since A | 1//,5“)) = ay,| w,&‘”). Then, when we measure B, the
state of the system will be left in one of the eigenstates of B. If we measure A again, we will
find a value which will be different from a,,. What is this new value? We cannot answer this
question with certainty: only a probabilistic outcome is possible. For this, we need to expand
the eigenstates of B in terms of those of 4, and thus provide a probabilistic answer as to the
value of measuring 4. So if A and B do not commute, they cannot be measured simultaneously;
the order in which they are measured matters.

2The act of measuring A first and then B is represented by the action of product B A of their corresponding operators
on the state vector.
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What happens when 4 and B commute? We can show that the results of their measurements
will not depend on the order in which they are carried out. Before showing this, let us mention
a useful theorem.

Theorem 3.1 If two observables are compatible, their corresponding operators possess a set
of common (or simultaneous) eigenstates (this theorem holds for both degenerate and nonde-
generate eigenstates).

Proof
We provide here a proof for the nondegenerate case only. If |y,) is a nondegenerate eigenstate
of 4, Alyy) = anlyy), we have

(W[4, Bllyn) = (am — an){ym|Bly,) =0, (3.44)

since 4 and B commute. So (wm |Z§| vy, ) must vanish unless a, = a,,. That is,

(W Blyn) = (wnl Blyn) & dum. (3.45)

Hence the |y, ) are joint or simultaneous eigenstates of Aand B (this completes the proof).

Denoting the simultaneous eigenstate of Aand B by |1//,$‘11), y/,(lf)), we have

Ay D) = ay ly@, D), (3.46)
Byl w®)y = by, y®). (3.47)

Theorem 3.1 can be generalized to the case of many mutually compatible observables A4,
B, C, .... These compatible observables possess a complete set of joint eigenstates

lyn) = 1w\, D, O, . (3.48)

The completeness and orthonormality conditions of this set are

DDl s u wds= (3.49)

ny nz n3

(W' lWn) = Opn = 5n1’n15n2’1125n3/n3 e (3.50)

Let us now show why, when two observables 4 and B are compatible, the order in which
we carry out their measurements is irrelevant. Measuring A first, we would find a value a,
and would leave the system in an eigenstate of 4. According to Theorem 3.1, this eigenstate is
also an eigenstate of B. Thus a measurement of B yields with certainty b, without affecting the
state of the system. In this way, if we measure A4 again, we obtain with certainty the same initial
value a,. Similarly, another measurement of B will yield b, and will leave the system in the
same joint eigenstate of 4 and B. Thus, if two observables 4 and B are compatible, and if the
system is initially in an eigenstate of one of their operators, their measurements not only yield
precise values (eigenvalues) but they will not depend on the order in which the measurements
were performed. In this case, 4 and B are said to be simultaneously measurable. So com-
patible observables can be measured simultaneously with arbitrary accuracy, noncompatible
observables cannot.

What happens if an operator, say A, has degenerate eigenvalues? The specification of
one eigenvalue does not uniquely determine the state of the system. Among the degenerate
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eigenstates of A4, only a subset of them are also eigenstates of B. Thus, the set of states that
are joint eigenstates of both 4 and B is not complete. To resolve the degeneracy, we can
introduce a third operator C which commutes with both 4 and B; then we can construct a set of
joint eigenstates of A, B, and C that is complete. If the degeneracy persists, we may introduce a
fourth operator D that commutes with the previous three and then look for their joint eigenstates
which form a complete set. Continuing in this way, we will ultimately exhaust all the operators
(that is, there are no more independent operators) which commute with each other. When that
happens, we have then obtained a complete set of commuting operators (CSCO). Only then will
the state of the system be specified unambiguously, for the joint eigenstates of the CSCO are
determined uniquely and will form a complete set (recall that a complete set of eigenvectors of
an operator is called a basis). We should, at this level, state the following definition.

A

Definition: A set of Hermitian operators, /I, B, é, ..., is called a CSCO if the operators
mutually commute and if the set of their common eigenstates is complete and not degenerate
(i.e., unique).

The complete commuting set may sometimes consist of only one operator. Any operator
with nondegenerate eigenvalues constitutes, all by itself, a CSCO. For instance, the position
operator X of a one-dimensional, spinless particle provides a complete set. Its momentum
operator P isalso a complete set; together, however, X and P cannot form a CSCO, for they
do not commute. In three-dimensional problems, the three-coordinate position operators_ X, 7,
and Z form a CSCO; similarly, the components of the momentum operator P, P ’» and P. also

form a CSCO. In the case of spherically symmetric three-dimensional potentials, the set H,
L 2. [, forms a CSCO. Note that in this case of spherical symmetry, we need three operators

to form a CSCO because H , L 2 and I:Z are all degenerate; hence the complete and unique
determination of the wave function cannot be achieved with one operator or with two.

In summary, when a given operator, say A, is degenerate, the wave function cannot be
determined uniquely unless we introduce one or more additional operators so as to form a
complete commuting set.

3.5.4 Measurement and the Uncertainty Relations

We have seen in Chapter 2 that the uncertainty condition pertaining to the measurement of any
two observables 4 and B is given by

AAAB > %|<[/i, Bl (3.51)

where Ad =/ (A7) — (A)2.

Let us illustrate this on the joint measurement of the position and momentum observables.
Since these observables are not compatible, their simultaneous measurement with infinite ac-
curacy is not possible; that is, since [X, P] = i there exists no state which is a simultaneous
eigenstate of X and P. For the case of the position and momentum operators, the relation (3.51)
yields

h
AxAp > 7. (3.52)

This condition shows that the position and momentum of a microscopic system cannot be mea-
sured with infinite accuracy both at once. If the position is measured with an uncertainty Ax,
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the uncertainty associated with its momentum measurement cannot be smaller than %/2Ax.
This is due to the interference between the two measurements. 1f we measure the position first,
we perturb the system by changing its state to an eigenstate of the position operator; then the
measurement of the momentum throws the system into an eigenstate of the momentum operator.

Another interesting application of the uncertainty relation (3.51) is to the orbital angular
momentum of a particle. Since its components satisfy the commutator [L o L vyl = ihL., we
obtain

1.
ALyALy > ShI(L:)]. (3.53)

We can obtain the other two inequalities by means of a cyclic permutation of x, y, and z. If
(L.)=0,L, and L will have sharp values simultaneously. This occurs when the particle is in

an s state. In fact, when a particle is in an s state, we have (L )y = (L y)y = (i ) = 0; hence all
the components of orbital angular momentum will have sharp values simultaneously.

3.6 Time Evolution of the System’s State

3.6.1 Time Evolution Operator

We want to examine here how quantum states evolve in time. That is, given the initial state
|w (%)), how does one find the state |y (7)) at any later time ¢#? The two states can be related by
means of a linear operator U (¢, £p) such that

ly () = U@ w)ly @) > w); (3.54)
U, to) is known as the time evolution operator or propagator. From (3.54), we infer that
Ulto, 10) = 1, (3.55)

where 7 is the unit (identity) operator.
The issue now is to find U(z, tp). For this, we need simply to substitute (3.54) into the
time-dependent Schrodinger equation (3.5):

m% (U(r, zo)w/(zo))) =H (U(t, to)lw(to)>) (3.56)
or A
ou(t, to) _ _i NN
— = hHU(t, t). (3.57)

The integration of this differential equation depends on whether or not the Hamiltonian depends
on time. If it does not depend on time, and taking into account the initial condition (3.55), we
can easily ascertain that the integration of (3.57) leads to

Ut 1) = e OAM and  y(e)) = e Oy (). (3.58)

We will show in Section 3.7 that the operator U, to) = e 'U—H/M renresents a finite time
translation.

If, on the other hand, # depends on time the integration of (3.57) becomes less trivial. We
will deal with this issue in Chapter 10 when we look at time-dependent potentials or at the
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time-dependent perturbation theory. In this chapter, and in all chapters up to Chapter 10, we
will consider only Hamiltonians that do not depend on time.
Note that U(¢, #p) is a unitary operator, since

U, )0 ¢, 10) = U(t, 1) 071 ¢, 1) = e~ 0 A/ gile—) /B _ (3.59)

or Ut = -1,

3.6.2 Stationary States: Time-Independent Potentials

In the position representation, the time-dependent Schrodinger equation (3.5) for a particle of
mass m moving in a time-dependent potential V' (¥, ¢) can be written as follows:

oW (F, ¢ h2
i (r, ) _

——VXYE )+ VEDYE D). (3.60)
ot 2m

Now, let us consider the particular case of time-independent potentials: Vv, t) = 19(77). In
this case the Hamiltonian operator will also be time independent, and hence the Schrédinger
equation will have solutions that are separable, i.e., solutions that consist of a product of two
functions, one depending only on 7 and the other only on time:

Y&, t) =w@) f@). (3.61)
Substituting (3.61) into (3.60) and dividing both sides by w (#) £ (¢), we obtain
L Ldf@ 1 L S
lhf(t) PR [—%V w(r)+ V(V)l//(}’):| . (3.62)

Since the left-hand side depends only on time and the right-hand side depends only on 7, both
sides must be equal to a constant; this constant, which we denote by E, has the dimensions of
energy. We can therefore break (3.62) into two separate differential equations, one depending

on time only, p
ih% = Ef(1), (3.63)

and the other on the space variable 7,

2
[—h—v2 + f/(?)} w () = Ey (). (3.64)
2m

This equation is known as the time-independent Schrodinger equation for a particle of mass m
moving in a time-independent potential ¥ (¥).
The solutions to (3.63) can be written as f(f) = e *£%/7; hence the state (3.61) becomes

Y@, 1) = w(F)e EU, (3.65)

This particular solution of the Schrodinger equation (3.60) for a time-independent potential
is called a stationary state. Why is this state called stationary? The reason is obvious: the
probability density is stationary, i.e., it does not depend on time:

P, 01 = ly@e B2 = [y @))*. (3.66)
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Note that such a state has a precise value for the energy, £ = fiw.

In summary, stationary states, which are given by the solutions of (3.64), exist only for
time-independent potentials. The set of energy levels that are solutions to this equation are
called the energy spectrum of the system. The states corresponding to discrete and continuous
spectra are called bound and unbound states, respectively. We will consider these questions in
detail in Chapter 4.

The most general solution to the time-dependent Schrodinger equation (3.60) can be written
as an expansion in terms of the stationary states ,, () exp(—i E,t/):

W 1) =D oy exp (—ii”t) : (3.67)

where ¢, = (y,|'¥(t = 0)) = [ () (¥) d°r. The general solution (3.67) is not a stationary
state, because a linear superposition of stationary states is not necessarily a stationary state.

Remark

The time-dependent and time-independent Schrodinger equations are given in one dimension
by (see (3.60) and (3.64))

2 A2

ih% _ _j_m%();t) P (x, 0P(x, 0), (3.68)
n? d? .

~ TV 4 ) = By ), (3.69)

3.6.3 Schrodinger Equation and Wave Packets

Can we derive the Schrodinger equation (3.5) formally from first principles? No, we cannot;
we can only postulate it. What we can do, however, is to provide an educated guess on the
formal steps leading to it. Wave packets offer the formal tool to achieve that. We are going to
show how to start from a wave packet and end up with the Schrodinger equation.

As seen in Chapter 1, the wave packet representing a particle of energy £ and momentum
p moving in a potential ¥ is given by

+00

1

V2h J—co
1 +oo . 2

- ﬁ/_ F(p) exp [% (px - (5—’” + V) t)i| dp;  (3.70)

recall that wave packets unify the corpuscular (£ and p) and the wave (k and w) features of
particles: k = p/h, how = E = p?/(2m) + V. A partial time derivative of (3.70) yields

19w [ (2 4y i LAY P
la (Xa)—\/j—h o ¢(P)(%+ )eXP[g(PX—(%'F ))] p. (3.71)

Y(x,t)

$(p) exp [% (px — Et)} dp
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Since p?/(2m) = —(h?/2m)é%/ox? and assuming that ¥ is constant, we can take the term
—(#%/2m)8%/6x? + V outside the integral sign, for it does not depend on p:

v = (-2 4 y) L [ Tawen|; 2 v)o)]a
— = -——— —_— xXp | — = .
PR 2m ox2 Lok )se TP H P T o P
(3.72)
This can be written as
0 K 8%
A—Y(x,)=|——+V [¥P(x,1). 3.73
i (x, ) [2max2+} (x, 1) (3.73)

Now, since this equation is valid for spatially varying potentials ' = V' (x), we see that we have
ended up with the Schrédinger equation (3.68).

3.6.4 The Conservation of Probability

Since the Hamiltonian operator is Hermitian, we can show that the norm (W (¢)|¥(¢)), which is
given by

(PO|¥ @) = / Y@, 1) d°r, (3.74)

is time independent. This means, if |'¥'(¢)) is normalized, it stays normalized for all subsequent
times. This is a direct consequence of the hermiticity of /.

To prove that (W (¢)|W(¢)) is constant, we need simply to show that its time derivative is
zero. First, the time derivative of (¥ (¢)|¥ (¢)) is

d (4 d|Y (1))
Z(‘P(I)I‘P(m = (dt (‘P(t)l) [Y(@®) + (Y@ ( 7 ) (3.75)
where d|V(¢))/dt and d{¥(¢)|/dt can be obtained from (3.5):
d i A
ZI‘I’(I)) = —gHI‘P(t)% (3.76)
d = Lypat=1 :
E(‘P(t)l = 7 (YOIH' = P (YOI H. (3.77)
Inserting these two equations into (3.75), we end up with
d i i N
E(‘P(I)I‘i’(m = (% - %> (Y@OIH|Y(1) =0. (3.78)

Thus, the probability density (¥|¥) does not evolve in time.
In what follows we are going to calculate the probability density in the position representa-
tion. For this, we need to invoke the time-dependent Schrédinger equation

OF (P, t 2 . N .
ihL =——VVE D+ VE DY, 1) (3.79)
ot 2m

and its complex conjugate

OW*(F, ¢ h? ; . B,
—ih& = —— VW@, ) + VFE DY b). (3.80)
ot 2m
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Multiplying both sides of (3.79) by ¥* (7, ¢) and both sides of (3.80) by ¥ (7, ¢), and subtracting
the two resulting equations, we obtain

ih 0 [¥*(F, Y (F, 1)) i
ih— r, r, = —-—
ot 2m

[‘P*(F, OV, 1) — ‘I’VZ‘P*] . (3.81)

We can rewrite this equation as

op(r,t S
pg; ) 4+v.J=o, (3.82)

where p (7, ) and J are given by

, . . S h = =
p(F, 1) = ¢, W (7, 1), JG 1) = 21— (‘I‘V‘I’* - ‘I’*V‘I‘) ; (3.83)
m

p (7, t) is called the probability density, while J (7, t) is the probability current density, or sim-
ply the current density, or even the particle density flux. By analogy with charge conservation
in electrodynamics, equation (3.82) is interpreted as the conservation of probability.

Let us find the relationship between the density operators p(¢) and p(#o). Since |¥(¢)) =

U, 10)|¥ (t0)) and (¥ (1) = (¥ (10)|UT (2, t0), we have
5(t) = [PONP@)] = Ut 1) ¥ O) (P O)TT (¢, 10). (3.84)

This is known as the density operator for the state | ¥ (¢)). Hence knowing p(#y) we can calcu-
late p(¢) as follows:

A6 = U, 0)pt)UT @, 10). (3.85)

3.6.5 Time Evolution of Expectation Values

We want to look here at the time dependence of the expectation value of a linear operator; if the
state | (7)) is normalized, the expectation value is given by

(4) = (YOIA1¥ (). (3.86)
Using (3.76) and (3.77), we can write d (/i y/dt as follows:

d - 1 AA AA 04
A = (YOI4H — HAY (@) + (YOI () (3.87)

or

iA>_i<jﬁ> 6_/1
(4) = [’]+6t'

3.88
dt ih (3:88)

Two important results stem from this relation. First, if the observable 4 does not depend ex-
plicitly on time, the term 0.4/0¢ will vanish, so the rate of change of the expectation value of 4
is given by ([4, H])/i#A. Second, besides not depending explicitly on time, if the observable 4

~

commutes with the Hamiltonian, the quantity d(A)/d¢ will then be zero; hence the expectation



3.7. SYMMETRIES AND CONSERVATION LAWS 183

value (A) will be constant in time. So if 4 commutes with the Hamiltonian and is not dependent
on time, the observable A4 is said to be a constant of the motion; that is, the expectation value of
an operator that does not depend on time and that commutes with the Hamiltonian is constant
in time:

I oA A .
If [H,A]=0 and i 0 = TRl 0 = (A4) = constant. (3.89)

For instance, we can verify that the energy, the linear momentum, and the angular momentum

A
A

of an isolated system are conserved: d(H)/dt = 0, d(ﬁ)/dt = 0, and d(Z)/dt = 0. This

implies that the expectation values of H, 13, and L are constant. Recall from classical physics
that the conservation of energy, linear momentum, and angular momentum are consequences
of the following symmetries, respectively: homogeneity of time, homogeneity of space, and
isotropy of space. We will show in the following section that these symmetries are associated,
respectively, with invariances in time translation, space translation, and space rotation.

As an example, let us consider the time evolution of the expectation value of the den-
sity operator p(¢) = |¥P(@)){(P()|; see (3.84). From (3.5), which leads to o|¥(¢))/0t =
(1/iR)H|¥ (1)) and 0(¥ (1)|/0t = —(1/ik) (¥ (t)|H, we have

opty 1 - 1 N N
= = A ONF O] = — ¥ O) YOI = ——[p(0). A1, (3.90)
A substitution of this relation into (3.88) leads to
d ... 1 N opty, 1 . A 1. o
E(P(t)) = E([ﬂ(f)a H]) + (7) = E([P(t): H]) - E([P(t): H]) =0. (3.91)
So the density operator is a constant of the motion. In fact, we can easily show that
(o), H]) = (‘I‘(t)I[I‘P(t)><‘I‘(t)[, H|¥ (1))
= (YOIYONYOIHIY (@) = (YOIH]Y @) (YOI (1))
= 0, (3.92)

which, when combined with (3.90), yields (0p(¢)/0t) = 0.

Finally, we should note that the constants of motion are nothing but observables that can be
measured simultaneously with the energy to arbitrary accuracy. If a system has a complete set
of commuting operators (CSCO), the number of these operators is given by the total number of
constants of the motion.

3.7 Symmetries and Conservation Laws

We are interested here in symmetries that leave the Hamiltonian of an isolated system invariant.
We will show that for each such symmetry there corresponds an observable which is a constant
of the motion. The invariance principles relevant to our study are the time translation invariance
and the space translation invariance. We may recall from classical physics that whenever a
system is invariant under space translations, its total momentum is conserved; and whenever it
is invariant under rotations, its total angular momentum is also conserved.

To prepare the stage for symmetries and conservation laws in quantum mechanics, we are
going to examine the properties of infinitesimal and finite unitary transformations that are most
essential to these invariance principles.
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3.7.1 Infinitesimal Unitary Transformations

In Chapter 2 we saw that the transformations of a state vector |w) and an operator A under an
infinitesimal unitary transformation U, (G) = I + i¢G are given by
ly")

(I +ieG)y) = ly) +ly), (3.93)
A = (d+ieG)Ad —ieG)~ A+ ic[G, 4], (3.94)

where ¢ and G are called the parameter and the generator of the transformation, respectively.
Let us consider two important applications of infinitesimal unitary transformations: time
and space translations.

3.7.1.1 Time Translations: G = H /h
The application of Us, (ﬁ) =7+ (i/h)ot H on a state |y (1)) gives

(i+ ;_l;(st H) ly (1)) = ly (1) + (%51) Hly (). (3.95)
Since ﬁlw(t)) = iho|y(t))/0t we have
(i+;;(m)|w(m = @)~ Ty, (3.96)

because |y (t)) —ot |y (¢)) /0t is nothing but the first-order Taylor expansion of |y (t —dt)). We
conclude from (3.96) that the application of Us:(H ) to |w(¢)) generates a state | w (t —oJt)) which
consists simply of a time translation of |y (¢)) by an amount equal to 6t. The Hamiltonian in
(I 4 (i /h)t H) is thus the generator of infinitesimal time translations. Note that this translation
preserves the shape of the state |y (7)), for its overall shape is merely translated in time by Jz.

3.7.1.2 Spatial Translations: G = P, /h
The application of U, (P;) = I + (i/h)e Py to y(x) gives

I N i A
(1 + ESPX) vx)=ykx)+ (£e) Py (x). (3.97)
Since P, = —ihd/0x and since the first-order Taylor expansion of w(x + ¢) is given by
wx+e)=w(x)+edy(x)/ox, we have
s 15 1//( )
I+ %813" v@)=pyx)+e——= = w(x +¢). (3.98)

So, when U (P, ¢) acts on a wave function, it translates it spatially by an amount equal to ¢.
Using [X P, ] = i% we infer from (3.94) that the position operator X transforms as follows:

= (f N ;—gﬁx) % (f _ %gﬁx) ~ iy CelPe K= Xt (3.99)

The relations (3.98) and (3.99) show that the linear momentum operator in (I + (i /h)e Py) is a
generator of infinitesimal spatial translations.
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3.7.2 Finite Unitary Transformations

In Chapter 2 we saw that a finife unitary transformation can be constructed by performing a
succession of infinitesimal transformations. For instance, by applying a single infinitesimal
time translation N times in steps of 7 /N, we can generate a finite time translation

N . . N .
A A A 0T A P S i A
U:(H)= i I+—-——H)= 1l I+ —-tH = —1tH], 3.100
() = lim k_l( tIN ) N—1>r-ir-loo(+hT ) exP(h’ ) (3-100)
where the Hamiltonian is the generator of finite time translations. We should note that the
time evolution operator. Ul(t, 1p) = e~ "0~ H/h_displayed in (3.58), represents a finite unitary
transformation where H is the generator of the time translation.
By analogy with (3.96) we can show that the application of U, (H) to |y (¢)) yields

U (E)y (1)) = exp (%m) ly (1)) = ly(t — 1)), (3.101)

where |y (t — 7)) is merely a time translation of |y (¢)).

Similarly, we can infer from (3.98) that the application of Ug (}3) = exp(ia- P /h) to a wave
function causes it to be translated in space by a vector a:

04 (P)y () = exp (;—a.?’) w(@®) = y( +a). (3.102)

To calculate the transformed position vector operator R’ , let us invoke a relation we derived
in Chapter 2:

A1 LA A (ia)Z

. : 3
A =elaGA€_laG=A+i(l[G,A]+ o (l(l)

3 (G, [G, [G, AN +---.

(3.103)

[G, [G, AT+

An application of this relation to the spatial translation operator Ugl‘ (13) yields

' — exp (%a : f)) Rexp (—%a : ﬁ) - 1%+%[a .P,R]=R +a. (3.104)

=
=

In deriving this, we have used the fact that [a - 13, ﬁ] = —i#a and that the other commutators
are zero, notably [a - 13, [a - f’, 13]] = 0. From (3.102) and (3.104), we see that the linear

momentum in exp(ia - P/h) is a generator of finite spatial translations.

3.7.3 Symmetries and Conservation Laws

We want to show here that every invariance principle of H is connected with a conservation
law.

The Hamiltonian of a system transforms under a unitary transformation e
see (3.103):

2G a5 follows;

(3.105)
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If H commutes with G, it also commutes with the unitary transformation ﬁa (G) = “G.

In this case we may infer two important conclusions. On the one hand, there is an invariance
principle: the Hamiltonian is invariant under the transformation U, (G), since

A = el*C femiol — iaGo=iaGfy _ [y (3.106)

On the other hand, if in addition to [G, H 1 = 0, the operator G does not depend on time
explicitly, there is a conservation law: equation (3.88) shows that G is a constant of the motion,
since

A 1
(G) = —([G, H]) + (—) =0. (3.107)

SE
N
o))
Q

We say that G is conserved.

So whenever the Hamiltonian is invariant under a unitary transformation, the generator of
the transformation is conserved. We may say, in general, that for every invariance symmetry of
the Hamiltonian, there corresponds a conservation law.

3.7.3.1 Conservation of Energy and Linear Momentum

Let us consider two interesting applications pertaining to the invariance of the Hamiltonian
of an isolated system with respect to time translations and to space translations. First, let us
consider time translations. As shown in (3.58), time translations are generated in the case of
time-independent Hamiltonians by the evolution operator U, to) = e t—H/E gGince H
commutes with the generator of the time translation (which is given by H itself), it is invariant
under time translations. As H is invariant under time translations, the energy of an isolated
system is conserved. We should note that if the system is invariant under time translations,
this means there is a symmetry of time homogeneity. Time homogeneity implies that the time-
displaced state w (¢ — 7), like y(¢), satisfies the Schrodinger equation.

The second apphcatlon pertains to the spatial translations, or to transformations under

U; (P) =exp(ia- P /), of an isolated system. The linear momentum is invariant under U; (P)
and the position operator transforms according to (3.104):

P'=P, R =R+a. (3.108)

For instance, since the Hamiltonian of a free particle does not depend on the coordinates, it

commutes with the linear momentum [FI , }3] = 0. The Hamiltonian is then invariant under
spatial translations, since

H' = exp (%5 . f’) H exp (—%ﬁ . ﬁ) = exp (%& . f’) exp (—;—07 . f’) H=H. (3.109)

Since [ﬁ , 13] = 0 and since the linear momentum operator does not depend explicitly on time,

we infer from (3.88) that P is a constant of the motion, since

d > 1~ . 61%
E<P>:i_h<[P’H]>+<E>=O' (3.110)

Soif [H, P] = 0 the Hamiltonian will be invariant under spatial translations and the linear
momentum will be conserved. A more general case where the linear momentum is a constant
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of the motion is provided by an isolated system, for its total linear momentum is conserved.
Note that the invariance of the system under spatial translations means there is a symmetry of
spatial homogeneity. The requirement for the homogeneity of space implies that the spatially
displaced wave function w (¥ + a), much like v (+), satisfies the Schrédinger equation.

In summary, the symmetry of time homogeneity gives rise to the conservation of energy,
whereas the symmetry of space homogeneity gives rise to the conservation of linear momentum.

In Chapter 7 we will see that the symmetry of space isotropy, or the invariance of the
Hamiltonian with respect to space rotations, leads to conservation of the angular momentum.

Parity operator

The unitary transformations we have considered so far, time translations and space translations,
are continuous. We may consider now a discrete unitary transformation, the parity. As seen in
Chapter 2, the parity transformation consists of an inversion or reflection through the origin of
the coordinate system:

Py ) = y (7). G.111)

If the parity operator commutes with the system’s Hamiltonian,
[H, P]=0, (3.112)

the parity will be conserved, and hence a constant of the motion. In this case the Hamiltonian
and the parity operator have simultaneous eigenstates. For instance, we will see in Chapter 4
that the wave functions of a particle moving in a symmetric potential, 17(7) = 17(—17), have
definite parities: they can be only even or odd. Similarly, we can ascertain that the parity of an
isolated system is a constant of the motion.

3.8 Connecting Quantum to Classical Mechanics

3.8.1 Poisson Brackets and Commutators

To establish a connection between quantum mechanics and classical mechanics, we may look
at the time evolution of observables.

Before describing the time evolution of a dynamical variable within the context of classical
mechanics, let us review the main ideas of the mathematical tool relevant to this description,
the Poisson bracket. The Poisson bracket between two dynamical variables 4 and B is defined
in terms of the generalized coordinates ¢; and the momenta p; of the system:

{A,B}=Z(a—46—é—%a—é). (3.113)

Since the variables g; are independent of p;, we have dq;/0py = 0, op;/dq; = 0; thus we can
show that

{gj.q91} =1{pj, Pk} =0, {9j, pr} = Ojk. (3.114)

Using (3.113) we can easily infer the following properties of the Poisson brackets:

e Antisymmetry
{4, B} = —{B, A4} (3.115)
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e Linearity

{d, aB+pC+yD+---}=al{d, B} +p{4, C}+y{4, D} +--- (3.116)

Complex conjugate
{4, B}* ={4", B"} (3.117)

o Distributivity
{4, BC}={A, B)C+ B{d4, C},  {AB, C} = A{B, C}+ {4, C}B (3.118)

e Jacobi identity
{4, (B, C}Y} + (B, (C, A)}+(C, {4, B}} =0 (3.119)

Using df" (x)/dx = nf"~'(x)df (x)/dx, we can show that

{4, B"}=nB"" {4, B}, (4", By =nd""'{4, B} (3.120)

These properties are similar to the properties of the quantum mechanical commutators seen in
Chapter 2.
The total time derivative of a dynamical variable 4 is given by

dA 0A 0q; 0A Op; 04 0A 0H 0A 0H 0A
Lo e A ) +—=> (- )+ G2
dt 7 oq; Ot opj ot ot 7 0q; Op; opj Op; ot

in deriving this relation we have used the Hamilton equations of classical mechanics:
dq; _ oH dp; _ oH

= — = -, 3.122
dt  op;’ dt 0q; ( )

where H is the Hamiltonian of the system. The total time evolution of a dynamical variable 4
is thus given by the following equation of motion:

dA 04

— ={4,H} + —. 3.123

o7 = A+ — (3.123)
Note that if 4 does not depend explicitly on time, its time evolution is given simply by d 4 /dt =
{A,H}. IfdA/dt =0or {4, H} = 0, A4 is said to be a constant of the motion.

Comparing the classical relation (3.123) with its quantum mechanical counterpart (3.88),

d - 1~ A oA
—(A>=—<[A,H])+<5

3.124
dt ik ) ( )

we see that they are identical only if we identify the Poisson bracket {4, H} with the commuta-
tor [/i JH 1/(@i%). We may thus infer the following general rule. The Poisson bracket of any pair
of classical variables can be obtained from the commutator between the corresponding pair of
quantum operators by dividing it by i/:

I~ 4
E[A: B] — {4, Blciassical - (3.125)
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Note that the expressions of classical mechanics can be derived from their quantum counter-
parts, but the opposite is not possible. That is, dividing quantum mechanical expressions by i/
leads to their classical analog, but multiplying classical mechanical expressions by i doesn’t
necessarily lead to their quantum counterparts.

Example 3.5

(a) Evaluate the Poisson bracket {x, p} between the position, x, and momentum, p, vari-
ables.

(b) Compare the commutator [)A( , }3] with Poisson bracket {x, p} calculated in Part (a).

Solution
(a) Applying the general relation

{4, B}=Z(a—46—€—%a—é) (3.126)
j

to x and p, we can readily evaluate the given Poisson bracket:

o(x) a(p) _ 9(x) a(p)

opt = ox op op ox
_ ) a)
ox Op
= 1.
(3.127)
(b) Using the fact that [)A( , }3] =i/ , we see that
I~ &
—[X,P]=1, (3.128)
i
which is equal to the Poisson bracket (3.127); that is,
I~ a
E[ X, P] ={x, pleiassical = 1. (3.129)

This result is in agreement with Eq. (3.125).

3.8.2 The Ehrenfest Theorem
If quantum mechanics is to be more general than classical mechanics, it must contain classical
mechanics as a limiting case. To illustrate this idea, let us look at the time evolution of the

expectation values of the position and momentum operators, R and P of a particle moving in
a potential 14 (), and then compare these relations with their classical counterparts.
Since the position and the momentum observables do not depend explicitly on time, within

the context of wave mechanics, the terms ( 8R/8t ) and ( 6P/6t are zero. Hence, inserting
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H=P 2/(2m) + 17(13, t) into (3.88) and using the fact that R commutes with V(Ié, t), we can
write

4= Ly = gk B v = <k B (3.130)
de' T iR TR 2m T imR ‘ '
Since A R
[R, P?] =2ihP, (3.131)
we have
d » 1 »
—(R) = —(P). 3.132
dt( ) m( ) ( )

As for d (13) /dt, we can infer its expression from a treatment analogous to d (13) /dt. Using

[P, V'(R,0)] = —ihV (R, 1), (3.133)
we can write
d » 1 =~ . 5 SoA D
E<P> = E([P, V(R,0)]) = =(VV(R,1)). (3.134)

The two relations (3.132) and (3.134), expressing the time evolution of the expectation values
of the position and momentum operators, are known as the Ehrenfest theorem, or Ehrenfest
equations. Their respective forms are reminiscent of the Hamilton—Jacobi equations of classical
mechanics, e . i3
r 14 14 o1
= = VV (), (3.135)

which reduce to Newton’s equation of motion for a classical particle of mass m, position 7, and
momentum p:

dp d*r

ar ~ar
Notice 7 has completely disappeared in the Ehrenfest equations (3.132) and (3.134). These two
equations certainly establish a connection between quantum mechanics and classical mechan-
ics. We can, within this context, view the center of the wave packet as moving like a classical
particle when subject to a potential ¥ (7).

= —VV ). (3.136)

3.8.3 Quantum Mechanics and Classical Mechanics

In Chapter 1 we focused mainly on those experimental observations which confirm the failure
of classical physics at the microscopic level. We should bear in mind, however, that classical
physics works perfectly well within the realm of the macroscopic world. Thus, if the theory
of quantum mechanics is to be considered more general than classical physics, it must yield
accurate results not only on the microscopic scale but at the classical limit as well.

How does one decide on when to use classical or quantum mechanics to describe the motion
of a given system? That is, how do we know when a classical description is good enough or
when a quantum description becomes a must? The answer is provided by comparing the size of
those quantities of the system that have the dimensions of an action with the Planck constant,
h. Since, as shown in (3.125), the quantum relations are characterized by /4, we can state that
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if the value of the action of a system is too large compared to %, this system can be accurately
described by means of classical physics. Otherwise, the use of a quantal description becomes
unavoidable. One should recall that, for microscopic systems, the size of action variables is of
the order of /; for instance, the angular momentum of the hydrogen atom is L = n#, where n
is finite.

Another equivalent way of defining the classical limit is by means of "length." Since 1 =
h/p the classical domain can be specified by the limit 4 — 0. This means that, when the de
Broglie wavelength of a system is too small compared to its size, the system can be described
accurately by means of classical physics.

In summary, the classical limit can be described as the limit # — 0 or, equivalently, as the
limit A — 0. In these limits the results of quantum mechanics should be similar to those of
classical physics:

/}irr}) Quantum Mechanics — Classical Mechanics, (3.137)

5

}in}) Quantum Mechanics —> Classical Mechanics. (3.138)
5

Classical mechanics can thus be regarded as the short wavelength limit of quantum mechanics.
In this way, quantum mechanics contains classical mechanics as a limiting case. So, in the limit
of h - 0or A — 0, quantum dynamical quantities should have, as proposed by Bohr, a one-to-
one correspondence with their classical counterparts. This is the essence of the correspondence
principle.

But how does one reconcile, in the classical limit, the probabilistic nature of quantum me-
chanics with the determinism of classical physics? The answer is quite straightforward: quan-
tum fluctuations must become negligible or even vanish when # — 0, for Heisenberg’s un-
certainty principle would acquire the status of certainty; when & — 0, the fluctuations in the
position and momentum will vanish, Ax — 0 and Ap — 0. Thus, the position and momentum
can be measured simultaneously with arbitrary accuracy. This implies that the probabilistic as-
sessments of dynamical quantities by quantum mechanics must give way to exact calculations
(these ideas will be discussed further when we study the WKB method in Chapter 9).

So, for those cases where the action variables of a system are too large compared to /
(or, equivalently, when the lengths of this system are too large compared to its de Broglie
wavelength), quantum mechanics gives the same results as classical mechanics.

In the rest of this text, we will deal with the various applications of the Schrodinger equation.
We start, in Chapter 4, with the simple case of one-dimensional systems and later on consider
more realistic systems.

3.9 Solved Problems

Problem 3.1
A particle of mass m, which moves freely inside an infinite potential well of length @, has the
following initial wave function at ¢ = 0:

(x. 0) A . (7Z'X) n 3 . (3nx + 1 . [(Szx
,0) = —sin|— A/ —sin{ — ——sin{—),
v Ja a Sa a JSa a
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where 4 is a real constant.

(a) Find 4 so that w (x, 0) is normalized.

(b) If measurements of the energy are carried out, what are the values that will be found and
what are the corresponding probabilities? Calculate the average energy.

(c) Find the wave function w (x, t) at any later time ¢.

(d) Determine the probability of finding the system at a time ¢ in the state ¢ (x,?) =
/2/asin (5zx/a) exp(—i Est/h); then determine the probability of finding it in the state
x(x, 1) = /2/asin 2rx/a) exp(—i Ext/F).

Solution
Since the functions

2
b (x) = /= sin (ﬂ) (3.139)
a a
are orthonormal,

(¢hnlpm) = /Oa & () (x) dx = g/oa sin (%) sin (m”) dx =6y, (3.140)

a

it is more convenient to write y (x, 0) in terms of ¢, (x):

(x. 0) A (71')6) n 3 3rx + 1 . [(Szx
——sin \/—sin{ — ——sin{ —
i Ja 5a a J3a a

= —¢1( )+\/ ¢3( )+—¢5( )- (3.141)
(a) Since (¢, |dm) = Sum the normalization of q/(x, 0) yields
—<|)—A2+3 ! (3.142)
SWIVIES T 00 '
or A = ,/6/5; hence
y(x,0) = f¢1(x) /1 ¢3(x) + ¢5(X) (3.143)
(b) Since the second derivative of (3.139) is given by d2¢,, (x) /dx = —(n*7?/a®)pu(x),
and since the Hamiltonian of a free particle is H = —(#? /2m)d? /dx?, the expectation value of
H with respect to ¢, (x) is
N d*¢pp (x n*n2h?
En = (@ul A1) = / 4100 D00 gy - TR (3.144)

If a measurement is carried out on the system, we would obtain E, = n?z24?/(2ma?) with
a corresponding probability of P,(E,) = |{¢,|w)|>. Since the initial wave function (3.143)
contains only three eigenstates of H, P1(x), ¢$3(x), and ¢s(x), the results of the energy mea-
surements along with the corresponding probabilities are

2h2 3

— (ilAI$)) = ——, PU(ED) = (11w = <, (3.145)
9 2h2 3

= (p3|H\3) = ——, Py(E3) = lsly) = ., (3.146)
5 2h2 1

= (gslAlps) = S, Ps(E3) = (gsly)* = 1. (3.147)



3.9. SOLVED PROBLEMS 193

The average energy is

3 1 297242
E= ZP E, E1 + 5Bt B =TT (3.148)

(c) As the initial state y (x, 0) is given by (3.143), the wave function w (x, ¢) at any later
time ¢ is

wx, 1) = @m(x)e-’f”/h + \/%qsz(x)e"“’/h + J%_Oqss(x)e-'f“/h, (3.149)

where the expressions of £, are listed in (3.144) and ¢, (x) in (3.139).
(d) First, let us express ¢(x, ¢) in terms of ¢, (x):

2 5 . A
0(x, 1) =/ = sin (ﬂ) et — b (x)eTEst/, (3.150)
a a
The probability of finding the system at a time # in the state ¢ (x, ¢) is

1
~ 1ot = | ["o" o, nar| = =, @I

/ B2(s() x|

|

since (p|p1) = (pl¢3) = 0 and (p|ps) = exp(i Est/h).
Similarly, since y(x,t) = /2/asin 2rx/a)exp(—iExt/h) = ¢o(x)exp(—i Eat/h), we
can easily show that the probability for finding the system in the state y (x, ¢) is zero:

2

P =|(xlv)? '/ 1O, Dyp(x,t)dx| =0, (3.152)

since (x|¢1) = (x|p3) = (x|ps) =

Problem 3.2
A particle of mass m, which moves freely inside an infinite potential well of length a, is initially
in the state w (x, 0) = /3/5a sin 37 x /a) + (1/+/5a) sin (57 x /a).

(a) Find y (x, t) at any later time 7.

(b) Calculate the probability density p (x, ) and the current density, J (x, ).

(c) Verify that the probability is conserved, i.e., dp /ot + V.J (x,t) =0.

Solution
(a) Since w (x, 0) can be expressed in terms of ¢, (x) = /2/a sin (nzx /a) as

W(x,O)z\/?sin(3”)+%si (5”) \/7¢3(x)+ =), (315)

we can write

/3 3rx . 1 Stx .
Jt — sin —iEst/h + i —iEst/h
w(x, 1) _Sa 1 (—a ) e ——Sa sin —a e

3 . 1 .
= gPeT B+ —mqss(x)e—”fﬁ/h, (3.154)
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where the expressions for E,, are listed in (3.144): E, = n’z2h?/Q2ma?).
(b) Since p(x,t) = w*(x,t)y(x, t), where y(x, t) is given by (3.154), we can write

plx,1) = —¢3( x) + €¢3(x)¢s(x) [e"<E3—E5>’/h + e—"<E3—E5>’/h] + 1—10¢§(x). (3.155)

From (3.144) we have E3 — Es = 9E; — 25E; = —16E| = —8x%#%/(ma?). Thus, p(x, t)
becomes

3 3 16 1
plet) = ﬁ¢§(x>+§¢3<x>¢s<x>cos( E”)+E¢>§(x)

7
3 ., (3nx 2«/_ 3zx\ . (Snx 16E1t
= —sin“|— ——sin| — ) sin{ — ) cos
Sa a Sa a a A
1 ., (57x
+ —sin“ | — ). (3.156)
Sa a

Since the system is one-dimensional, the action of the gradient operator on y (x, #) and y* (x, 1)

is given by Vt//(x t) =(dy(x, t)/dx)z and Vw (x, ) = (dy*(x, t)/dx)z We can thus write

the current density J(x, t) = (ih/2m) (y/(x, t)Vt// (x, ) — yw*(x, t)Vt//(x, t)) as

dl//*(xst) dl//(-x’t) e
dx dx "

J(x, t) = % (z//(x, 1) —wr(x,1) (3.157)

Using (3.154) we have

dy(x,1t) _ 3_7F icos(3nx)e_iE3t/h+5—ﬂLCOS (57r_x) e—iEst/h, (3.158)
a

dx a V5a a a \/5a
dy" ) _ 37 3 (X it 3T L (3R Bt (3.150)
dx a V5a a a /5

A straightforward calculation yields

dy* *dl// V3 37rx Sax . [Smx 3nx
-y =—2im — | 5sin cos| — ) —3sin{ — Jcos| —
dx dx 5a? a a a a
E;—FE
x sin( 3 - 51). (3.160)

Inserting this into (3.157) and using E3 — E5 = —16E, we have

wh \/_ . (3rx Stx . [ Smx 3rx . (16E1t\ -

J(x t)=———=|5sin{—)cos{ — ) —3sin{—— ) cos{ — ) | sin i.
m 5a? a a a a 7

(3.161)

(¢) Performing the time derivative of (3.156) and using the expression 32+/3E/(5ah) =

1672h+/3/(5ma?), since E1 = n2h%/(2ma?), we obtain
op 32V3E) . (3nx\ . (Szx\ . (16Et
- = - sin sin { — ) sin
ot Sah a a i

1672 16E
_len?ny3 (3T oo (570 gin (L6E , (3.162)
Sma? a a 7
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Now, taking the divergence of (3.161), we end up with

L 1672 16E
Vo Jn o WD _16n%3 (”_x)sin(s”_x)sin( 6h”). (3.163)

dx Sma3 a a

The addition of (3.162) and (3.163) confirms the conservation of probability:

o - -
a—‘; +V.J(x, 1) =0. (3.164)

Problem 3.3
Consider a one-dimensional particle which is confined within the region 0 < x < a and whose
wave function is W (x, ¢) = sin (zx/a) exp(—iwt).

(a) Find the potential V' (x).

(b) Calculate the probability of finding the particle in the interval a/4 < x < 3a/4.

Solution

(a) Since the first time derivative and the second x derivative of ¥ (x, ) are given by
oW (x,1)/0t = —iw¥(x,t) and 8*¥(x,t)/0x> = —(x?/a®)¥(x, t), the Schrodinger equa-
tion (3.68) yields

h? 7?2 S
ih(—iw)¥(x,t) = E?‘P(x, )+ Vx,t)¥(x,t). (3.165)

Hence V (x, t) is time independent and given by V (x) = Aw — h’2x2/(2ma?).
(b) The probability of finding the particle in the interval a/4 < x < 3a/4 can be obtained
from (3.4):

p= Jofd WweoPdx [ sin® @x/adx 24x 0.82 (3.166)
S e @)Pdx Jo sin® (wx/a) dx o2 '

Problem 3.4
A system is initially in the state [yo) = [v2]¢1) + v/3]¢2) + |¢3 ) + |¢4)1/+/7, where |,) are
eigenstates of the system’s Hamiltonian such that H |n) = n%Eolpn).

(a) If energy is measured, what values will be obtained and with what probabilities?

(b) Consider an operator A whose action on |, is defined by A|¢S,, (n + Daglgy). If
A is measured, what values will be obtained and with what probabilities?

(c) Suppose that a measurement of the energy yields 4&y. If we measure 4 immediately
afterwards, what value will be obtained?

Solution .
(a) A measurement of the energy yields £, = (¢, |H|pn) = n2&, that is

E\=&), E,=4&, E3=9&, E4=16&. (3.167)

Since | yyg) is normalized, (wg | wo) = 2+3+141)/7 = 1, and using (3.2), we can write the
probabilities corresponding to (3.167) as P(E,) = |(¢nlwo)l? /(wo | wo) = |(énlwo)]?; hence,
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using the fact that (¢, |¢n) = dpm, wWe have

2 2
2 2 3 3
P(Ey) = ‘\/;(¢1|¢1) = P(Ey) = \/;<¢52|¢2> = (3.168)
1 2 1 2
P(E3) = ‘ﬁ(@l%) = P(E4) = ‘77(¢4|¢4) =z (3.169)

(b) Similarly, a measurement of the observable A yields a, = ((ﬁ,,l/f |¢n) = (n + 1ag; that

is,
a1 = 2ag, ax =3ag, a3 =4%ay, a4 =>5ay. (3.170)
Again, using (3.2) and since | wp) is normalized, we can ascertain that the probabilities cor-
responding to the values (3.170) are given by P(an) = l{galwo)l* /(wo | o) = l{gulwo)l’,

or
P = \/3 : = 2 P = \/? : = 3 3.171
(a1) = ;(¢1|¢>1) = (@2) = 7<¢2|¢>2> = (3.171)
1 2 1 2
P(a3) = ‘ﬁ(¢3|¢3> = P(as) = 'ﬁ(¢4|¢4) (3.172)

(c) An energy measurement that yields 4&y implies that the system is left in the state |¢;).
A measurement of the observable 4 immediately afterwards leads to

(2l A|p2) = 3ao(ald) = 3ao. (3.173)

Problem 3.5

(a) Assuming that the system of Problem 3.4 is initially in the state |¢3), what values for the
energy and the observable 4 will be obtained if we measure: (i)H first then A4, (ii) A4 first then
H?

(b) Compare the results obtained in (i) and (ii) and infer whether H and A are compatible.
Calculate [H, A]|¢3).

Solution
_ (a) (1) The measurement of H first then 4 is represented by AH |¢3). Using the relations
HIgy) = n*Eoldy) and A|¢y) = nagldn+1), we have

AH|¢3) = 9E A|p3) = 27Eoap|pa). (3.174)
(1) Measuring A first and then H, we will obtain
H Algs) = 3aoH\ps) = 48Enaolgs). (3.175)

(b) Equations (3.174) and (3.175) show that the actions of AH and HA vyield different
results. This means that # and A do not commute; hence they are not compatible. We can thus
write o

[H, Allg3) = (48 — 27)Eoaolpa) = 17E0aolP4). (3.176)



3.9. SOLVED PROBLEMS 197

Problem 3.6
Consider a physical system whose Hamiltonian A and initial state |yg) are given by

0 i 0 L[ 1-i
H=¢c| =i 0 0o ), jwo=—[1-i],
0 0 —1I VA

where £ has the dimensions of energy.
(a) What values will we obtain when measuring the energy and with what probabilities?
(b) Calculate (H), the expectation value of the Hamiltonian.

Solution
(a) The results of the energy measurement are given by the eigenvalues of H. A diago-
nalization of H yields a nondegenerate eigenenergy £; = £ and a doubly degenerate value

E, = E3 = —& whose respective eigenvectors are given by
| 1 1 —i 0
1) =—| —i |, oy =—1=| 1 |, py=1 0 |; (3.177)
V2 o V2 \ o 1

these eigenvectors are orthogonal since H is Hermitian. Note that the initial state |w() can be
written in terms of |¢1), |¢2), and |¢3) as follows:

o= (120 ) =i+ B+ i G.179)
wo) = ﬁ | 1 =V53 1 5 2 ﬁ 3). .
Since |¢1), |¢2), and |¢p3) are orthonormal, the probability of measuring £ = £ is given by
2

Pi(E1) = [(g1lyo)l” = §<¢1|¢1> =3 (3.179)
Now, since the other eigenvalue is doubly degenerate, £, = E3 = —&, the probability of

measuring —& can be obtained from (3.3):

) , 21 3

Py(E2) = [{d2lwodl” + 1(P3lyo)l =st3=3 (3.180)

(b) From (3.179) and (3.180), we have

N 2 3 1

(H)=P1E1+P2E2=§8—§8=—§5. (3.181)

We can obtain the same result by calculating the expectation value of H with respect to |wo).
Since (yolwo) = 1, we have (H) = (yolH|wo)/(wolwo) = (wol Hlwo):

R . P 0 i 0 1—i )
(H)=(polHlwo)=—=(14+i 1+i 1) —i 0 0 1—i | =—=¢.
5 0 0 —I 1 5
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Problem 3.7
Consider a system whose Hamiltonian A and an operator 4 are given by the matrices
1 -1 0 0 4 0
H=&]| -1 1 0 , A=a| 4 0 1 |,
0 0 -1 010

where &) has the dimensions of energy.

(a) If we measure the energy, what values will we obtain?

(b) Suppose that when we measure the energy, we obtain a value of —&y. Immediately
afterwards, we measure 4. What values will we obtain for 4 and what are the probabilities
corresponding to each value?

(c) Calculate the uncertainty A 4.

Solution
(a) The possible energies are given by the eigenvalues of H. A diagonalization of H yields
three nondegenerate eigenenergies £1 = 0, £y = —&, and E3 = 2&). The respective eigen-
vectors are
| 1 0 1 -1
) =—0| 1 |, 2y =1 0 |, g3y =—0| 1 |; (3.183)
V2 1\ o I V2 \ o

these eigenvectors are orthonormal.

(b) If a measurement of the energy yields —&, this means that the system is left in the
state |¢7). When we measure the next observable, 4, the system is in the state |¢;). The result
we obtain for 4 is given by any of the eigenvalues of 4. A diagonalization of A yields three
nondegenerate values: a; = —«/ﬁa, ay = 0,and a3 = ma; their respective eigenvectors
are given by

1 4 1 1 1 4
la)) = —= | —V17 |, laz) = ——= 0 , laz) = — | V17
VTS VIV W RV U

(3.184)
Thus, when measuring 4 on a system which is in the state |¢;), the probability of finding
—+/17a is given by

0
1 1
Pi(ar) = lailg)* = |—= (4 —V17 1 0] == 3.185
1(a1) = [{a1l¢2)] «/3—4( ) : 34 ( )
Similarly, the probabilities of measuring 0 and +/17a are

1 VT

Pya) = lalg)P = |—=(1 0 —4)[ 0 || == (3.186)
? V17 1 17 '

2 1 0| 1

Py(@) =|(aslp)° =|—= (4 V17 1) 0 =—. (3.187)

V34 1 34
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(c) Since the system, when measuring A is in the state |¢;), the uncertainty A 4 is given by
A4 = ($2]4%d2) — (2] A1$2)%, where

0 40 0
(#2]Alg2) =a (0 0 1)[ 4 0 1 0]=o, (3.188)
010 1
0 4 0 0 4 0 0
(ol Ay =a* (0 0 1) 4 0 1 4 0 1 0 | =4 (3.189)
010 010 1
Thus we have A4 = a.
Problem 3.8
Consider a system whose state and two observables are given by
-1 1 010 1 0 0
ly (@) = 2 , A=—| 1 0 1], B=|10 0 0
1 V2 010 0 0 -1

(a) What is the probability that a measurement of A at time ¢ yields —1?

(b) Let us carry out a set of two measurements where B is measured first and then, imme-
diately afterwards, A is measured. Find the probability of obtaining a value of O for B and a
value of 1 for 4.

(c) Now we measure A first then, immediately afterwards, B. Find the probability of ob-
taining a value of 1 for 4 and a value of 0 for B.

(d) Compare the results of (b) and (c). Explain.

(e) Which among the sets of operators {/i 1 {B}, and {/I , é} form a complete set of com-
muting operators (CSCO)?

Solution
(a) A measurement of A yields any of the eigenvalues of 4 which are given by a; = —1,
a> = 0, a3 = 1; the respective (normalized) eigenstates are
1 7} 1 ] W
lay =5 v2 |, la)=—01{ 0 |, las) =< | V2 |- (3.190)
2\ 4 V2 A

The probability of obtaining a; = —1 is
-1

faily @) _ 1|1 !
P(-)=—"""" —_|- (-1 /2 -1 2 =, (3.191)
(w@Oly @) 6|2 ( ) ) 3
-1
where we have used the fact that (y (1)|w (1)) =( =1 2 1)| 2 |=6.
1
(b) A measurement of B yields a value which is equal to any of the eigenvalues of B:
b1 = —1, by =0, and b3 = 1; their corresponding eigenvectors are
0 0 1
lb1y=1 0 |, by=1{( 1 |, b3y =1 0 |. (3.192)

1 0 0
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Since the system was in the state |y (¢)), the probability of obtaining the value b, = 0 for B is

2

2
P(b) = M = ! ( 1 0) 2 = 2 (3.193)
(w@Oly @) 6 1 3
We deal now with the measurement of the other observable, A. The observables 4 and B do
not have common eigenstates, since they do not commute. After measuring B (the result is
by, = 0), the system is left, according to Postulate 3, in a state |¢) which can be found by
projecting | (¢)) onto |by):

0 -1 0
1#) = 1b2)baly@) = 1 J(0 1 0) 2 J=[2]. (3.194)
0 1 0

The probability of finding 1 when we measure 4 is given by

{aslp)* 1|1

Pa)=——=-|=(1 2 1 2 =, 3.195
oo a2l N2 =z G199

since (p|¢p) = 4. In summary, when measuring B then 4, the probability of finding a value of

0 for B and 1 for A4 is given by the product of the probabilities (3.193) and (3.195):

21 1
P(by,a3) = P(by)P(a3) = 35 = 3. (3.196)
32 3
(c) Next we measure 4 first then B. Since the system is in the state |y (¢)), the probability
of measuring a3 = 1 for 4 is given by
—1 2

, Hasly () 11 1
P — R 2 = = 3.197
(@) w®ly@) 6 2( Pv2on) 1 3’ ( )

where we have used the expression (3.190) for |a3).
We then proceed to the measurement of B. The state of the system just after measuring A4
(with a value a3 = 1) is given by a projection of |y (¢)) onto |az):

1 -1 1

1 2

|x>=la3><a3|w(t)>=z V2l (1t V2 )| 2 :% V2 . (3.198)
1 1 1

So the probability of finding a value of 5, = 0 when measuring B is given by
2

oy b2l 112 3
P(bz)—W_2 2(o 1 0)| 2 == (3.199)

since (y|y) = 2.
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So when measuring 4 then B, the probability of finding a value of 1 for 4 and 0 for B is
given by the product of the probabilities (3.199) and (3.197):

P(az, by) = P'(a3) P' (b)) = ll = l (3.200)
32 6

(d) The probabilities P (by, a3) and P (a3, by), as shown in (3.196) and (3.200), are different.
This is expected, since 4 and B do not commute. The result of the successive measurements
of A and B therefore depends on the order in which they are carried out. The probability of
obtaining 0 for B then 1 for A4 is equal to % On the other hand, the probability of obtaining 1
for A then 0 for B is equal to %. However, if the observables 4 and B commute, the result of the
measurements will not depend on the order in which they are carried out (this idea is illustrated
in the following solved problem).

(e) As stated in the text, any operator with non-degenerate eigenvalues constitutes, all by
itself, a CSCO. Hence each of {A} and {B} forms a CSCO, since their elgenvalues are not
degenerate. However, the set {4, BY} does not form a CSCO since the opertators {A} and {B)
do not commute.

Problem 3.9
Consider a system whose state and two observables 4 and B are given by
1 1 1 2 0 0 1 0 O
lw@)=-1 0 ], A=—| 0 1 i ], B=| 0 0 —i
6\ 4 V2\ o —i 1 0 i 0

(a) We perform a measurement where A4 is measured first and then, immediately afterwards,
B is measured. Find the probability of obtaining a value of 0 for 4 and a value of 1 for B.

(b) Now we measure B first then, immediately afterwards, 4. Find the probability of ob-
taining a value of 1 for B and a value of 0 for 4.

(c) Compare the results of (b) and (c). Explain,

(d) Which among the sets of operators {A} {B} and {A B } form a complete set of com-
muting operators (CSCO)?

Solution
(a) A measurement of 4 yields any of the eigenvalues of 4 which are given by a; = 0 (not
degenerate) and ay = a3 = 2 (doubly degenerate); the respective (normalized) eigenstates are

0 0 1

1 1
lai) =—=| =i |, la2) =—| i |, lazy =1 0 |. (3.201)
V2 vz 0

The probability that a measurement of 4 yields a; = 0 is given by

1

a1|1//(t) 36 11 . 8
Play) = AWEIE _ 21 2o i 1) o || =2, 3.202
yOly () 17|26 (0 ) 4 17 ( )
1
where we have used the fact that (y (1)|y(t)) =+ (1 0 4 )| 0 | =1L
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Since the system was initially in the state |y (7)), after a measurement of 4 yields a; = 0,
the system is left, as mentioned in Postulate 3, in the following state:

11 0 1 1 0
lp) =la)arly @) === =i J(0 i 1)l 0 |==| —i |. (3.203)
26 3
1 4 1
As for the measurement of B, we obtain any of the eigenvalues by = —1, by = b3 = 1; their
corresponding eigenvectors are
1 0 1 0 1
bi)y=—0=( 1 |, b)) =— | —i |, b3y =1 0 |. 3.204
A\ AR 0 0209

Since the system is now in the state |¢), the probability of obtaining the (doubly degenerate)
value b, = b3 =1 for B is
[(B2Ig)  1(Bslo) 1

(@1#) (@19

P(by)
2 2
(1.0 0)[ —i

[\o]
Sl
~—~~
.
SN

_

N —

_

= 1 (3.205)

The reason P(by) = 1 is because the new state |¢) is an eigenstate of B; in fact |¢p) = «/5/3 |b2).
In sum, when measuring A4 then B, the probability of finding a value of 0 for 4 and 1 for B
is given by the product of the probabilities (3.202) and (3.205):

8
P(ai, b2) = P(a1) P(b2) = 'Th (3.200)
(b) Next we measure B first then 4. Since the system is in the state |y (¢)) and since the
value by = b3 = 1 is doubly degenerate, the probability of measuring 1 for B is given by

(ol () [bslw ()P

Plby) =
@)= owor T oo
361 |1 L\ L\
=E%E(i1)g+(1oo)g
9
- = (3.207)

We now proceed to the measurement of 4. The state of the system immediately after measuring
B (with a value b, = b3 = 1) is given by a projection of |y (¢)) onto |b,), and |b3)

lx) = 1b2)(baly () + 1b3)(b3|w(2))
L]0 1 e 1
= —( =i (o i t)yfo)+={o])(1 0oo0)fo0
12\ 4 6\ o 4
YA
- < 2 ) (3.208)
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So the probability of finding a value of a; = 0 when measuring 4 is given by

2

1

, Hail)> 36| 1 , ‘ 8

P =— 2 ——|——(0 1 -2 = -, 3.209
(a1) ) 9 6«/5( 1 ) 2il 9 ( )

since (y|x) 396
Therefore, when measuring B then A4, the probability of finding a value of 1 for B and 0 for

A is given by the product of the probabilities (3.207) and (3.209):
P(by,az) = P'(b)P'( )—98—8 (3.210)
2,03) = 2) 1 (a 179 = 17" .

(¢) The probabilities P(aj, by) and P (b2, ay), as shown in (3.206) and (3.210), are equal.
This is expected since 4 and B do commute. The result of the successive measurements of A
and B does not depend on the order in which they are carried out.

(d) Neither {A} nor {B} forms a CSCO since their e1genvalues are degenerate. The set
{A B} however, does form a CSCO since the opertators {A} and {B} commute. The set of
eigenstates that are common to (A, B} are given by

1 0 1 0 1
|a29 bl) = E ll s |a1a b2) = E _ll B |a39 b3> = 0 . (3211)

S

Problem 3.10
Consider a physical system which has a number of observables that are represented by the
following matrices:

500 1 00 03 0 1 0 O
A= 01 2 }),B=10 0 3 }|,C=|302],D=|010 —i
0 2 1 0 3 0 02 0 0 i O

(a) Find the results of the measurements of these observables.

(b) Which among these observables are compatible? Give a basis of eigenvectors common
to these observables.

(©) Wthh among the sets of operators {A} {B} {C 1, {D} and their various combinations,
such as {A B} {A C } {B ¢ 1 {A D} {A C }, form a complete set of commuting operators
(CSCO)?

Solution

(a) The measurements of 4, B, C and D yielda; = —1,a =3,a3 =5,b1 = —-3,by =1,
by =3,c1 = —1/«/5, c=0,c3= 1/«/5, d1 = —1, d» = d3 = 1; the respective eigenvectors
of A, B, C and D are

1 (0 1 !

lar) = 7 -1, laz) = 7 1], laz) = 8 , (3.212)
1 [0 1 L [0

|b1) = 7 —11 , |b2) = 8 , |b3) = Wi } . (3.213)
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3 2 3
1 1 |
o) — VBB |, ley=— | 0 |, le5n=— [ V13 |.3.214
lc1) e ’ lc2) NiE ° lc3) e ) ( )
1 [0 1 L /0
ldiy = — | i |, )= 0 ], d)=—( 1 ). (3215

V2 \ 0 V2

(b) We can verify that, among the observables 4, B, C, and D, only 4 and B are compatible,
since the matrices 4 and B commute; the rest do not commute with one another (neither 4 nor
B commutes with C or D; C and D do not commute).

From (3.212) and (3.213) we see that the three states |ay, b1), |az, b3), |as, b2),

1 0 1 0 1
lay, b1) =—| -1 |, laz, b3) =—=| 1 |, laz,b2) = 0 |, (3.216)
ﬁ 1 ﬁ 1 0

form a common, complete basis for 4 and B, since /I|a,,, b)) = aylay, by,) and Blan, by) =
bmlan, by). . . .

(c) First, since the elgenvalues of the operators {4}, {B}, and {C} are all nondegenerate,
each one of {A} {B} and {C } forms separately a CSCO. Additionally, since two eigenvalues
of {D} are degenerate (dy = d3 = 1), the operator {D} does not. form a CSCO

Now, among the various comblnatlons {A B} {A C} {B C} {A D} and {A B C} only
{A B} forms a CSCO, because {A} and {B} are the only operators that commute; the set of
their joint eigenvectors are given by |a1, b1), |az, b3), |as, ba).

Problem 3.11
Consider a system whose initial state |y (0)) and Hamiltonian are given by

e 3.0 0
lw@©0)=—-1{ 0 |, H=|0 0 5
S\ 4 05 0

(a) If a measurement of the energy is carried out, what values would we obtain and with
what probabilities?

(b) Find the state of the system at a later time #; you may need to expand | (0)) in terms of
the eigenvectors of H.

(c) Find the total energy of the system at time ¢ = 0 and any later time #; are these values
different?

(d) Does {ﬁ } form a complete set of commuting operators?

Solution
(a) A measurement of the energy yields the values £y = —5, E; = 3, E3 = 5; the
respective (orthonormal) eigenvectors of these values are

1 0 1 1 0
1) 7 1 |$2) 0 |h3) AR ( )
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The probabilities of finding the values £1 = —5, E; = 3, E3 = 5 are given by

2

3
1 8
P(E)) = NP =|—=(0 -1 1 0| =, 3.218
(E1) = K1y (0))] 5\/5( ) y 5 ( )
2
, 3 9
P(E2) = [2lw (0))]° = g( 1.0 0)foO =55 (3.219)
4
3\ P
P(E3) = (31w (0)]* = L( 01 1)fo0 -3 (3.220)
52 4 25
(b) To find |w (¢)) we need to expand |y (0)) in terms of the eigenvectors (3.217):
3
1 24/2 3 24/2
lw(0)) = 3 0| = Tf|¢l) + §|¢2) + Tf|¢3>; (3.221)
4
hence
2/2 3 2/2 [ 3
ly (1)) = Te"'E”Iqﬁl) o+ ge‘iEz’Iqﬁz) + Te-“53’|¢3> — | —4isinst |. (3.222)
4 cos 5t

(c) We can calculate the energy at time ¢ = 0 in three quite different ways. The first method
uses the bra-ket notation. Since (y (0)|w (0)) = 1, {(¢n)|dm) = Onm and since H|p,) = E,|dn),
we have

N 8 N 9 A 8 N
E0) =(w(O)|H|y(0)) = E(¢1|HI¢51) + E<¢2IHI¢2) + g<¢3IHI¢>3)

8 9 8 27
= == Y —=0) == 22
25( 2 25 @+ 25 ) 25 (3:223)
The second method uses matrix algebra:
A 1 300 3 27
EQ©) = (y(O)H|ly0)==<(3 0 4)( 0 0 5 0| ==. (3.224)
25 05 0 4 25

The third method uses the probabilities:

27

—. 3.225
G (3.225)

2 8 9 8
EO) =Y P(ENE, = 5(=5) + 720) + 55(5) =

n=1

The energy at a time ¢ is

. 8 ‘ . 9 . 4 .
E@) =y (OIH|y @) = ge’E"e_’E”<¢1|H|¢1) + e BT R (o | H o)

25
8 iEst —iEyt A 8 9 8 27
— H = —(-5 —@3 —(5) =—=E). (3.226
+25€ e (P31 H|p3) 25( )+25()+25() 5 0. ( )
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As expected, E(t) = E(0) since d(H /dt =0.
(d) Since none of the eigenvalues of His degenerate, the eigenvectors |¢1), |¢P2), |¢3) form
a compete (orthonormal) basis. Thus {H} forms a complete set of commuting operators.

Problem 3.12

(a) Calculate the Poisson bracket between the x and y components of the classical orbital
angular momentum.

(b) Calculate the commutator between the x and y components of the orbital angular mo-
mentum operator.

(c) Compare the results obtained in (a) and (b).

Solution
(a) Using the definition (3.113) we can write the Poisson bracket {/x, /,,} as

3

oly al, ol al

{zx,zy}zz( "—y——x—y), (3.227)
= \04; 0p;  Opj oy,

where g1 = x, g2 = y, 93 = z, p1 = px, p2 = py, and p3 = p,. Since I, = yp; — zp,,
ly = zpx — xpz, I, = xp, — ypx, the only partial derivatives that survive are 9/, /0z = —p,,
oly/op; = —x, 01, /0p. =y, and 01, /0z = py. Thus, we have

ol al, ol ol

I, )} = = - =/. 3.228

{lx y} 6z op, op, 0z XPy — VDx z ( )

(b) The components ofL are listed in (3. 26) to (3.28): L,=YP— ZP iy = 7P, —)A(}SZ,
and I 7 = X P -Y P Since X Y and Z mutually commute and so do l3 o P,, and 132, we

have

[Le L)] =
VP, ZP )~ VP, XP.)—[ZP,, ZP)+ [ZP,, XP.]

V[P, Z1P, + X[Z, P.1P, = ik(X P, — Y P,)

= ihl.. (3.229)

(c) A comparison of (3.228) and (3.229) shows that

{les )Y =1, —> [Ly, L] = ihL,. (3.230)

Problem 3.13
Consider a charged oscillator, of positive charge ¢ and mass m, which is subject to an oscillating
electric field Ey cos wt; the partlcle s Hamlltoman is H = P2 /(2m) + kX? /2+ qu)A( cos wt.
(a) Calculate d (X )/dt d{P )/dt d{H )/dt
(b) Solve the equation for d{X)/dt and obtain (X X X)(¢) such that (X) (0) = xo.

Solution
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(a) Since the position operator X does not depend explicitly on time (i.e., 0X /ot = 0),
equation (3.88) yields

, )
D ix = Lix o = 1<[)?,P—}>=@. (3.231)
ih 2m m

—
—

Now, since [P, X] = —ih, [P, X?] = —2ihX and 9P /ot = 0, we have

~ 1 A A 1 N
d(P)—_ ([P, H]) = —(| P, kX2+quXcos ot |) = —k(X) — g Eq cos wt,
dt ih ih
(3.232)
d ~ 1 A - oH oH f
E(H) 1h<[H H]) + <E> = <E> = —qEow(X) sin wt. (3.233)

(b) To find (X) we need to take a time derivative of (3.231) and then make use of (3.232):

d? 14
dr?

) k . gE
Lpy=—Z18) — 220 o5 or. (3.234)
m dt m m

The solution of this equation is

(X)(#) = (X)(0) cos (\/Et) _ B0 G + 4, (3.235)
m ma

where A is a constant which can be determined from the initial conditions; since ()A( 1(0) = x9
we have 4 = 0, and hence
A k E
(X)(1) = xo cos (, / —t) — 220 Gin . (3.236)
m mm

Problem 3.14
Consider a one-dimensional free particle of mass m whose position and momentum at time
t = 0 are given by xo and po, respectively.

(a) Calculate (P)(¢) and show that (X)(¢) = pot?/m + xq.

(b) Show thatd X2 )/dt =2(PX)/m +ih/m and d(P?)/dt = 0.

(c) Show that the position and momentum fluctuations are related by d?(Ax)?/dt*> =
2(Ap)?/m? and that the solution to this equation is given by (Ax)? = (Ap)(z)tz/m2 + (Ax)(z)
where (Ax)p and (Ap)g are the initial fluctuations.

Solution
(a) From the Ehrenfest equations d (P ) /dt = [P V(x t)])/ik as shown in (3.134), and
since for a free particle V(x, 1) = 0, we see that d(P)/dt = 0. As expected this leads to
P)(#) = po, since the linear momentum of a free particle is conserved. Inserting (P Py = Po
1nto Ehrenfest’s other equation d(X)/dt = (P)/m (see (3.132)), we obtain

Xy 1
— = —po. 3.237
7 PO ( )
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The solution of this equation with the initial condition ()A( Y(0) = xq is

(X)) = %t + xo.

(3.238)

(b) First, the proof of d (P?)/dt = 0 is straightforward. Since [P2, H] = [P2, P2/2m] =0

and 8 P2 /0t = 0 (the momentum operator does not depend on time), (3.124) yields

o P2

d 4 1
P2 -
ot

— (P2 O —
a7 = U A =0

For d()A(2>/dt we have

d oo 1 o2 5 1 72 52
dt( ) ih([ , H]) 2imh([ , P7]),
since 8)?2/61? = 0. Using [)A(, f’] = i/, we obtain

A A_ A

[X?, P7] = P[X?, P]+[X% PP
= PX[X, P]+ P[X, P)1X + X[X, P]1P + [ X, P1XP
2ih(PX + XP)=2ihQPX + ih);

hence

2 Aa ih 2 ~ A
= —(PX) + — — —(X)(P).
m m

d(Ax)?  d(X?) ~ d{X)
a - a2y

In deriving this expression we have used (3.242) and d (X) /dt = (P) /m. Now, since
d((X)(P))/dt = (P)d(X)/dt = (P)*/m and

diPXy 1 .. . 1
=—([PX, H]) = —
2imh

=— PX, PY) =
7 7 ((PX, P7])

we can write the second time derivative of (3.243) as follows:

Ay 2\ 2 5
dt? m\ dr  dt W(<P>_<P>)—W(Ap)0,

d*(Ax)? g(du%?) d(f()(ﬁ))_ 2 .

(3.239)

(3.240)

(3.241)

(3.242)

(3.243)

(3.244)

(3.245)

where (Ap)g = (}32) — (IS)2 = (132)0 — (ﬁ)%; the momentum of the free particle is a constant
of the motion. We can verify that the solution of the differential equation (3.245) is given by

(A0 = — (Ap)® + ()},

(3.246)

This fluctuation is similar to the spreading of a Gaussian wave packet we derived in Chapter 1.




UNIT 6 SCHRODINGER EQUATION

Strueture

6.1 Introduction
Objectives

6.2 One-dimensional Schrodinger Equation

6.3 Statistical Interpretation of the Wave Function
Probability Curent Density and the Continuity Equation
Nommalisation of Wave Functions

6.4 Time independent Schrédinger Equation
Boundary Conditions and Acceptable Solutions

6.5 Summary

6.6 Terminal Questions

6.7 Solutions and Answers

6.1 INTRODUCTION

In Unit 4. you have seen that a microscopic particle 1s essentially represented by a
matter wave with its wavelength given by the de Broglie relation. How do we describe
the motion of such a particle or a system of such particles? Clearly. we cannot make
use of Newton's laws of motion for thus purpose. So a new theoretical description is
needed for the motion of quantum mechanical particles. The new theory should be
consistent with the wave nature of particles. It should also reduce to Newtonian
mechanics for macroscopic particles. Recall that this condition is similar to the special
theory of relativity which reduces to Newtonian mechanics at velocities much smaller
than the velocity of light.

In this connection. we would like to recount a story.,,At the end of a seminar. in 1926,
on de Broglie waves, the physicist Peter Debye said to another physicist that if matter is
a wave, there should be a wave equation to describe a matter wave. Debye prompily
forgot about it but the other physicist. Erwin Schrodinger proceeded to discover the
wave equation for matter waves. This equation 1s named after him as the Schrodinger

equation.

In this unit you will study the one-dimensional Schrédinger equation. and learn about its
solutions. We shall also discuss the physical meaning of these solutions. These solutions
are acceptable only under certain conditions about which vou will study towards the end
of the umt. An appendix has been given at the end of the Unit to explain the basic
complex algebra used in the text. In the next unit we shall introduce another way of
describing quantum mechanical systems. given by Heisenberg and Dirac which makes
use of.operators and observables.

Objectives
After studying this unit you should be able to

® write the onedimensional tume dependent Schrédinger equation and derive the tumne
independent Schrédinger equation from 1it.
give a stafistical interpretation of the wave function.

derive the continuity equation for the probability current density.

normalise a given wave function.

apply the boundary conditions {Q a given wave function.



6.2 ONE-DIMENSIONAL SCHRODINGER EQUATION

You have already leamnt that wave nature is an inherent property of every particle. We
now need a wave equation which smtably describes the time evolution of matter waves

representing the particle. In Unit 5, you have leamnt that one way of localising a particle
is by constructing a wave packet. However, by solving the terminal question 4 you have
also seen that a wave packet spreads with time. This means that. a wave packet cannot
represent a particle.

Hence, I quantum mechanics it is postulated that

Postulate 1:
Description
of the system

Every particle (or a system of particles) is represented by a "wave function",
which 1s a function of space coordinates and time. The wave function determines

all that can be known about the system it represents.
-

For one-dimensional motion of a particle, the wave function may be represented by

y(x, t). Now you may ask: What is the form of ¥ (%, t) in terms of x and ©? To answer
this question. consider a classical (macroscopic) particle moving under the mfluence of a
force. Its dynamical behaviour 1s described by Newton's second law, which 1s a
differential equation. Smmuilarly, Maxwell's equations of classical electromagnetism are
also differential equations. Since all objects exhibit particle as well as wave nafure. it 1s
natural to expect that the quantu:r_l,-mmhanical wave function will also be a solution of a
certan differential equation, involving derivatives of x and t.

The credit for discovering such a differential equation goes to Erwin Schrédinger
(Fig. 6.1). How did he arrive at his equation? The answer 1s, he created it mtuitively
breaking all traditions of such wave equations. The Schrodinger equation is one of the
most successful equations of quantum mechanics because it predicts results which can
be verified experimentally. We will now give you some idea of how he visualised the
particular form of his equation.

Let us first state certain preconditions for establishing this equation. Firstly. for a
particle of mass m, energy E and momentum p, the equation should be consistent with

. . . h
(i)  the de Broglie relation A= 7 and (6.1)
(ii)- Planck formula v=L (6.2)
If IFig. 6.1 :- u;wln Schridinger,
It should also satisfy the relation it ot
Another of the
N e e
(i) = "'zp;z" + Vs D) e | 63)

for all ¥ and t, where V(x, t) is the pbteutial energy of the particle,

(iv) Finally, the SchrGdinger equation must be linear in x and £. That is, if yy(x, ¢) and
y,(x, t) are two solutions of the Schrédinger equation for a given potential energy
W(x, t) then any linear combination of Yy and Wy, say. €| ¥y + C; W, with C
and C, as arbitrary constants, must also be the solution of the same SchrGdmger
equation. This linearity 1s required so that two waves may be added to produce
interference. If the linearity property is to be satisfied. the SchiGdinger
(differential) equation must be of degree 1. i.e,, the wave functions and its
derivatives appearing m it should be only of the first power.

We now put Eqgs. (6.1) and (6.2) m (6.3) to obtain

m_—-’—-z'?n"—“'i' Vix, 1) . _ o 64




where @ = 27v and k = 2nt/A. We now consider a simpler situation where the potential

energy is constant, say equal to ¥4 Under such a situation, if we take the particle to be

a photon then it will have a fixed wavelength and frequency (as givén by Eqs. (6.1) and
(6.2)) and its wavefunction as given by the electromagnetic theory (see Unit 14, PHE-07
entifled Electric and Magnetic Phenomena). will be

wix, 1) = A ef (kx~ @0 (6.5)

\
Differentiating the above equation once with respect to time you can easily obtain

P L))
®=: y(x, t) ot (6.6)
and
9 .
k-; . 1 a ‘I’(xl I)' (57)

T T ox?

Putting Egs. (6.6) and (6.7) in Ey. (6.4) we obtain a differential equation connecting
the wave function y(x, t) and its derivatives:

O A ),
in a"'a': = axﬁ + Vo i, 1) (6.8)

The above equation has been obtained for a special case of constant potential energy
Vp. However, Schrédinger made a bold extrapolation and postulated that the form of
the Eg. (6.8) does not change even for a particle of mags m moving m a potential
which varies with x and £ Thus,

i R—

The time-dependent Schrédinger equation for one-dimensional motion of a[ pestulate >
particle of mass m moving in a potential V{x, t) is given by Time Evolution
of a System
2
x 9 R ()
iA a3y =~ + Vx, ) y(x, ¢ 6.9
o m r e Ve D ©2

You should note that Eq. (6.9) is consistent with (1) to (iv). The appearance of # in the
Schrédinger equation 1s, of course, crucial. This 1s how Schrodinger imposed the'
"quantum condition" on the wave equation of matter. °

While reading this discussion, did
vou wonder what would happen if
we had a wave equation with a
second order time derivative? We
would..then have ended up with the
relativistic energy-momentum
relationship. Actually, 10 begin
with, this is what Schrtdinger
himself attempted. But very soon
he realised that such an cquation
did not work for electrons — it
did not give the correct spectrum
for the hydrogen atom.
Incidentally, the correct relativistic
equation for electrons, discovered
by Dirac, does retain the first-order
time derivative.




The Schrédinger equation is unlike any of the wave equations you have come across so
far. Recall that wave equations usually connect a second-order time derivative of the
function with its second order spatial derivative. But Schrédinger’s equation contains
only the first-derivative with respect to time but the second derivative with respect to
space, Hence. time and space coordinates are not treated on an equal footing i this
equation. Thus Eq. (6.9) cannot be .correct in the relativistic domain. Hence, if 1s a mon«

relativistic time dependent Schrodinger equation.

And, there is a price to pay for having only a first order time derivative in the wave

‘%quation. The solytions of the Schrédinger equation are not real physical waves: they we
complex functions with both a real and an imaginary part. This gives rise to the problem
of mterpretation of the wave function. What exactly does the wavefunction y(x, t) mean
physically? We shall discuss the mterpretation of ¥ given by Max Born i the next
section.

But before that vou might like to verify the linearity property of y(x, r). Try the
followimg SAQ. A

SAQ 1

If Wy (x, t).and yy(x, t) we two solutions of the Schrodinger equation (6.9), show that
ay, and ay; T by, are also solutions of Eq, (6.9), where a and b are arbitrary
constants.

6.3 STATISTICAL INTERPRETATION OF THE WAVE
FUNCTION

The coefficient of the tume derivative of Y m Eq. (6.9) 1s imaginary. Therefore, it 1s
evident that the wave function , which is the solution of (6.9), will, in general, be
complex. Thus, in order to extract any physical information from W(x, 't), we must
establish a quantitative connection between W(x, t) and the observables of the particle.
In 1926, Max Bormn proposed the following connection:

Postulate 3:
Probabilistic interpretation
of the wave function -

If, at any instant t, a measurement 1s made to locate the -object represented by the
wave function Y(x, £, then the probability P{x, £} dx that the object will be found

between the coordinates x and x + dx is
P(x, t) dx = W¥(x, 1) W(x, 1} dx = |y(x, 1) [Fdx, (6.10)

where “*"” on a function represents its complex conjugate.

You can see that | W(x, £) |2-is the 11iodulus square of the wave function. Here, :
P(x, t) = Y*(x, t) Yix, 1) = I‘P(Ia f)l 1s also termed the probability density. To put it

in words:
The probability d finding a quantum mechanical object m a small interval dx is given
by the product d the modulus square o the wave function representing the object and

the interval itself.

The probability of finding the particle within some finite length L = (x, = x)) 1s given
by



J”
Pty =) Plx t)dx 6.11)

xy

Thus, according to Max Born, the Schrédinger equation gives probability waves. The
wave function just tells us probabilistically where the likelihood of finding the particle
will be greater: there the wave will be strong, its amplitude will be larger. If the
probability of finding a particle in a region 1s small, the wave will be weak and its
amplitude will be small. It may seem from the above probabilistic interpretation that the
phase of the wave function is not important, since it is the modulosquare | y(x, 1) |2 that
we nterpret as the probability. However, this is not so. We shall very briefly discuss this
aspect.

To visualise this concept, imagine
you are in a metropolis like Delhi
and looking for traffic jams on Its
mads from a helicopter. If tho
vehicles were deseribed by
Schridinger waves, we would say
that the wave was strang at the
location of traffic jamn. Elsewhere,
the wave would be weak,

The phase of the wave function

From the linearity property of Schrodinger equation and SAQ 1, you know that if
vy and W, are solutions of the Schrédinger equation, the linear combination

Yix, 1 =a ¥, 1) + ay Yy (x, 1) (6.12)

is also a solution of the Schrddinger equation where @, and a, are arbitrary

complex numbers. This is the superposition principle. Now. calculate | w(x, t) |2 using
Eq. (6.5) with a phase difference, say ¢, between ¥, and y,. You will see that it
depends on the relative phase of y; and ;. Such a superposition is called coherent
superposition = it gives rise to the interference of matter waves. Thus, the phase of
the wave function is important and cannot be ignored.

You should also notice a crucial difference between the use of probability in

classical physics and in quantum physics. In classical physics, probabilities add as you
have studied m Unit 5 of the physics elective PHE-04 (Mathematical Methods n
Physics-I), But in quantum physics, the probability amplitudes add, as in Bq, (6.12) and
then we calculate the probabilities from Eg. (6.10) giving 1ise to interference.

Let us come back fo the probabilistic mterpretation. Since the object must always be
somewhere in space, the total probability of finding it in the whole space is unity.
We obtain this by integrating the probability over all space:

j v* (x, 1) yix, 1) dv = 1. at each instant of time t (6.13)

—0g




The interpretation-of the wave function given by Eqs. (6.10) to (6.13) requires that Y
should be finite and single-valued everywhere, otherwise the probability of finding an
object 1n a region of space will not be finite and unique. Further, Eq. (6.13) requires
that we restrict the wave functions used in quantum mechanics to the class of square
integrable functions for which

e, 0 dx <o - .

i.e., W, £) must approach O as x — & at least as fast as ¥ 12, with € > 0 and
arbitrarily small..In addition, certam continuity conditions need to be imposed on y. We
will discuss these m Sec, 6.4.1 m detail. Meanwhile, let us further explore the meaning

of .
6,31 Probability Current Density and the Continuity Equation

Since Egq. (6.13) 1s true for every f, the fotal probability is conserved. But this can be
accomplished only when the probability,is conserved at each point, and at all times. Let
us examine this aspect n some detail.

Let us consider the concrete example of a fluid moving m the positive x-direction
between two points x = x; and x = x; with a velocity v which changes with x. Let p(x)
denote the mass per umit length of the fluid around the point x. The quantity

'8, = v(x) p(x) is then the mass of the fluid crossing a given point X per unit time. What
is the nef mass accumulated per unit time m between the two points x = x; and x = x,?
Clearly, it 1s equal to 8, _ X~ Sy = Xy And if the fluid 1s to be conserved i this region

then this should be equal to the rate of change of mass in this region. Thus

2
% xr p(.x)d.x = Sx:xl __Sx =Xy (6'1‘4)
1

We can extend this analogy to the probabilistic interpretation. We say that £ the fotal
probability is to'be conserved, the conservation equation should look like Eq. (6.14)
where p should be replaced by the probability density P(x, t} and S, by a function which
we term the-probability flux or the probability current density S(x, t). Thus, we must
have

We can extend this analogy to the probabilistic mterpretation. We say that £ the total
probability is to’ be conserved, the conservation equation should look like Eq. (6.14)
where p should be replaced by the probability density P(x, t} and S, by a function which
we term the-probability flux or the probability current density S(x, t). Thus, we must

have
X
"E%' _[ ?P(x, Ddx = S(x;, ) - S(xy, 1) (6.15)
xi

Let us now obfam the definition of the probability flux S(x, 7) so that the probability
conservation equation (6.15) 1s obeyed. For this we shall use the Schrédinger equation:

PV a2 -
“ ot 2m ax + Vv (6.162)



Here and m future we will omit the arguments of y and V as long as it does not create
any confusion. The complex conjugate of Eq. (6.16a) 1s

vk Ry - "
R R T B (6.16b)

where we have assumed that V is real s6 that V¥ = V You éan now multiply
Eq. (6.16a) fram the left by y* and Eq. (6.16b) by y and then subtract (6.16b) from
(6.16a) and obtain

ol dv ) R [ oy |
Iﬂ(wl 3“{’—4‘“;3:)'7”2::: (\F_‘?_wsﬂr"—) |

" Now carry out a simple algebraic manipulation of the above equation to 'show that

o) a9 (., v dyr
o2 e \V o Ve (©17
We now integrate Eq. (6.17) with respect to x from x{ to x, and get
— : = e . " —
or x{ V= ("'_ ax Vor ) (©.19)
1

A comparison of Egs. (6.15) and (6.18) shows that the probability density P(x, ¢)
and the probability flux or probability current density S(x, f) should be defined as

P(x, &) = y*(x, D) y(x, 1)

and
_ A oy oy*
S(x, 1) =— |y* - _
G 0 2mi ( ox “’ax) (€.19)
We may rewrite Eq. (6.18) m terms of P and § as
+ =0
Y _— (6.20)

Doesn’t this equation look familiar to you? It has the form of a continuity equation
analogous to the contiuity equation between the charge density and current density n
electrodynamics. This is one reason why P(x, t) is referred to as the probability density
and S(x, t) 1s called the probability current density. In this equation, the first term

A denotes

at
second term denotes the net outward flux coming out of the same length. Eq. (6.20)
then says that the time rate o change d probability density (which 1s a negative
quantity because as t increases oP/dt decreases) is numerically equal to the net outward
flux (an outward flux is always assumed to be positive quantity). This means that within
the above length, the particles are neither created nor destroyed (1.e., there are neither
sources,nor sinks).

the rate of change of probability density in a certain fixed length. The



Eq. (6.20) 1s, therefore, the conservation law expressing thefact that a change m the
particle density in a region o space is compensatedfor by a net change of flux from
that region. You can now also see why we need fo impose contimuity condifions on Y.

dy

both W and its derivative —— must be finite and contmuous for all values of x
ox
provided V(x} is.finite. That these restrictions on the solutions are necessary may be

judged from the following considerations. >

The probability density P(x) and the probability flux S(x,-ty represent physical quantities
and. therefore, have to be well defined. If w(x) or its first derivative ¥’ (x) were not
finite for some values of x then .P(x) and/or S(x, t) would not be well defined for all
values of x, Further, both y(x} and ¥’ (x) must be continuous. Otherwise S(x, t) would
be singular at some points and these points would act as sources or sinks of probability
current. In other words, creation or destruction of matter would take place. This, as you
know, 1s impossible in non-relativistic physics.

Before proceeding further, we would like to point out.that Eq, (6:20) is obtained under
the condition that Vis real. By writing Y = Y+ !‘\III it is easy to see that both P and S
are real and

2 ' 29
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where Im(Z) denotes the magnitude of the imaginary part of Z and Re (Z) its real part.
You may like to do an exercise to fix the ideas involved.

SAQ 2

(a) Show that for complex potential energy, the continuity equation (6.20) modifies to

oP(x, 1) + oS(x, = 2?} P(x ’j
R

where V is the imaginary part of the potential energy.

(b) The wave function of an object of mass 7 1s given by

W, 1) = (0 + if)x it

Obtam the values of P(x, £) and S(x, t).

The probabilistic interpretation of Y also leads us to the concept of normalising a wave
function.

6.3.2 Normalisation of Wave Functions

Recall Eq. (6.13) which tells us that since the particle must be somewhere m space. the
probability integrated over all x (i.e., all space m one-dimension) must equal 1. A wave
function satisfying Eq. (6.13) 1s said to be normalised.

Now in quanfum mechanics we deal with two types of wave functions. For one of them

oo

the value of the i11teg1‘alj y* " (x. t) ¥’ (x, ) dx is finite, say equal to N, where y’ is
—00

the solution of the Schrbdinger equation. Such functions are said to be normalisable and

N is known as the norm of the wave function, It also means that ¥’ is a square
integrable function which vanishes as | x| — o,



You also know that Schrodinger equation 1s linear. And you have shown in SAQ 1 that
if W’ is a solution of Eq. (6.9) then ¥’ multiplied by a constant (independent of t and
x) is also a solution. Hence we can always choose the constant to be N-122 and take

W = N-12 y’, Then for y, Eq. (6.13) is satistied and the wave function ¥ is said to be
a normalised wave function. Note that N 1s independent of time (otherwise W will not
be a solution of Eq. (6.9)). Hence, a wave function which is normalised at any instant
d tume stays normalised at all other tumes.

However, there exists a category of wave functions for.which the value of the integral
in Eq. (6.13) 1s mfinite. Such functions do not represent a physical system m the
strictest sense. But, we shall see later that such functions are extensively used in
quantum mechanics to describe free particles. In fact, we have already used hlkx =) 1o
represent a free particle. It 1s a wave function whose norm is infinite or. in other words,
it is unnorrnalisable. Wave functions of this form do not go to zero as x = + =, We
shall discuss the normalisation of such functions in detail in Block 3.

Let us now further analyse the Schrodinger Equation.

6.4 TIME INDEPENDENT SCHRODINGER EQUATION

The Schrodinger equation (6.9) represents the time development of the wave functions
Y(x, #). We have seen that the position probability density of the particle 1s related to
y(x, ). We can also transform W(x, t) n such a way that we obtain momentum
pmbabﬂiw distributions of the particle. (Such transforms are called Fourier transforms).
Thus. given the position and momentum distributions of the particle at one time. the
same can be obfained at any Jater time with the help of the Schrédinger equation. Isn't
this situation analogous to the one m classical mechanics? In classical mechanics, if the
posifion and momentum of a particle are known at some inifial time then we can use
Newton's equation of motion to find the position and momentum of the particle at any
later time. However, there 1s a difference between classical and quantum mechanics.

‘What is it? Recall the uncertainty principle which tells us that 1n quantum mechanics
both the position and the momentum of the particle cannot be known precisely at the
same istant of tume. We can know only .their distributions.

In many pmblems of classical mechanics such as Kepler's planetary orbits. Rutherford -
scattering, we assume that the particle has definite energy and/or angular momentum.
However, m quantum mechanics if we assume the energy of the particle to be known
precisely. i.e., if AE = 0 then, according to the uncertainty relation AE At 2 A and At is
infinite. This means that an infinite amount of time should be available to make energy
measurements. In other words, the probability density y* (x, t) W(x, £) should not change

Richard Feynman, whose Feynman

Lectures on Physics are an
essential reading for every physics
student. once said, "Electron
waves 8¢ probability waves in the
ocean of uncertainty:" now yvou
know what that means!




with time. Hence, for a system of constant energy the wave function y(x, /) should take
the form

y(x, 1) = w(x) exp {ig(n)} (6.22)

where g(f} is any function of #. For a system Tepresented by such a wave function, the
energy of the system does not change with time, 1.&., its energy is conserved, Hence, if
the particle is initially in a specified energy state represented by Eq. (6.22) then it stays
in 1t mdefinitely unless it 1s disturbed by some external agency. Such energy states are
called stationary states.

Classically, the energy (which 1s also termed the I-Tamiltnnian) is a constant of metion if
it does not contain time explicitly. Now, the Hamiltortian is the sum of the kinetic
energy and the potential energy. Thus, for the total energy to be conserved, the potential
in which the particle 1s moving should be independent of time. For such potentials, the
Schrodinger equation (6.9) may be separated in x and ¢ as follows. Substituting

w(x, 1) = y(x) f2) | (6.23)

m Eq. (6.9) and rearranging the terms, we get

A1 3y® __ih_ 31
BT + W(x) (6.24)

INCHE

The left side of this equation 1s constant for fixed x nt all ¢, Similarly. the right side 1s
constant for Fixed t at all values of x. Hence, Eq. (6.24) will hold only when both the
sides are equal to a constant C which 1s independent of x and ¢, Thus we obtain

L df | |
and
5 7 (x) + V() wix) = Cyp(x) (6.26)
e, T’}T’ ‘I{ ~ w + -‘F x ¥ . it }

where. " () = d* wix)ldx>.
You can solve Eq. (6.25) to obtain
F(®y = 4 exp {~iCt/A} = 4 exp (-iwt} (6.27)

where A is the normalisation constant and @ = C/A. From Eqs. (6.26) and (6.27) it 1s
clear that ' should have dimensions of energy and be equal to the total energy E,
Eq. (6.27) 1s, therefore, written as

ia W) + V) W) = E gy (6.28)

2m

The above equation 1s known as time independent Schrodinger equation.

We can now write the general solution or the stationary state solution of the time-
dependent Schrédinger equation for a particle of definite energy E as

Wi(x, 1) = y(x) exp (~iEH/A), (6.29)

where W(x) satisfies Eq. (6.28). The probability density and the probability flux m such
cases are given by

PO) = w* (1) w(x) (630)



and

S0 = o T ()~ i) - W) Sy () (631)

It 1s evident that both P(x) and .S(x} are independent of time. You should note that
Eq. (6.28) contains no mmaginary quantities and hence Y{x) 1s not necessarily complex
although w(x, t) is. The normalisation condition (6.13) for the stationary state function
reduces to a form

_[ v (x) W(x) de = 1 (6.32)

—)

You may now like to apply the concepts discussed so far.

SAQ3
The wave function for a steady state is given by
y(x) = N exp ('%2)

Calculate the value of the normalisation constant &,

In this coursé we shall confine our study to those problems which require solutions of
time independent Schrtidinger equation, i.e., we shall study stationary state problems. Let
us now examine the conditions which the wave function Y(x) has to satisfy m order to
be a physically acceptable solution.

Recall that the probabilistic interpretation imposes the following €anditions on the wave
function y(x):

I} wy(x) should be finite and single-valued everywhere,
2)  y(x) should be square mntegrable and

3) both y(x} and % should be continuous everywhere.

We can rewrife the time independent Schrddinger equation (6.28) as

&y 2m _
B - B V) - E] o) (6.33)

You know that y(x) represents a probabilistic wave satisfying Eq. (6.13). Further,
whether Y(x) 1s an acceptable solution of Eq. (6.33) or not 1s also determined by V(x} as
well as by the boundary conditions which depend upon the nature of the problem. Let
us consider an example of a particle bound in a potential well shown in Fig. 6.2. Here
V(x} > E for x <, and x > x,.

Classically, if the particle is initially between x, and X then for all times to come 1t will
be confined between the same space, i.e., the particle 1s bounded between x, and x,, .
Then we say that the particle 1s in a bound state. Quantum mechanically we expect a
large probability of finding the particle between the space x, < x < x,. However. there
also exists a decreasingly small probability of finding the particle outside this space,
which 1s forbidden classically. This, in turn, demands for the (boundary) condition that
the bound state wave functions must vanish at infinity, A very interesting result follows
from the consideration of such a boundary condition which you shall study i the next
block in detail. Here we just mention it: The (acceptable) solutions of the time
independent Schrédinger equation exist only for certain discrete values of the total

-~ e -~ -
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energy E, Thus the energy quantization is an inherent property o the Schrédinger
equation for the bound states.

You have just learnt that the probabilistic interpretation puts another restriction on an

acceptable (or well behaved) solution: the wave function and its first derivative must be
finite and continuous. Bq, (6.28) shows that if V(x), E and y(x) are finite then ¥ (x) is
also finite. This, m turn, means that ¥’ (x) is continuous. However, if for certain values

of x, V(x) becomes infinite then Eq. (6.28) yields an infinite value for y* (x) at those
points. Hence at those points ¥’ (x) may not be continuous.

We now end this section by summarising the properties and the boundary conditions that
a wave function must satisfy to be acceptable:

Properties of the Wave Function

(1) y(x) must be single valued, finite and continuous for all values of y,

2y V¥ ’ (xy must be finite and continuous for all values of x, except at those
points where V7 > o2, At these points Y * (x)} has a finite discontinuity but yy
remains continuous.

3) For bound statesi the probability of finding the particle between x and
x T dx, i.e., | y["dx must vanish as | x[ > e, Hence | W(x)|—> 0 as |x] — =
i.e., W(x) 1s a square integrable wave function.

Let us now summarise what you have studied m this unit.

6.5 SUMMARY

¢ In this unit we have concentrated on one-dimensional motion of particles. You have
learnt three postulates of quantum mechanics:

1. Every system can be represented by a wave function:

2. The wave function saftisfies a differential equation, called the Schriidinger
equation given by



3. The probability P(x, #} of finding a particle at (x, 7) n the elementary element
dx 1s given by

S Plx, t)dx = w* (x, 1) y(x, t) dx
where P(x, 1) is the probability density.

e Schrddinger equation can be used to derive a continuity equation which connects
the probability density with an associated probability current density S(x, £} as

follows:

aP(x, ©)  aS(x, 1)
= 0
o o

where

a [,y oy
St ’)—"*2“";:" (‘I-"* x

The continuity equation tells us that a particle moving under a real potential 1s
neither destroyed nor is another particle created:; the change in particle density in a
region equals the net change of flux into or away from that region.

@ The total probability of finding a particle in the whole space always remains unity:

Jv@vwa=1

Wave functions which satisfy this condition are said to be normalised.

@ For a conservative system we can write

yir, 0 = gy e F7
where E is the total energy of the system and y(x) is the solution of the time
imndependent Schrodinger equation given by

B Ay
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e In order that y(x) represent a physical system. the wave function Y(x) must be
single valued. finite and continuous at all values of x. Its first derivative dy(x)/dx
must also be finite and continuous at all values of X, except at those pomts where
V(x) = ==. At these points the first derivative has a finite discontinuity.

6.6 TERMINAIL QUESTIONS Spend 45 min

1. The wave function of an object of energy £ and momentum p is given by

Y, ) =A el {px—EDA

(1) Does y represent a bound state?
(11) Is the wave function normalisable?

(iii) Using the above calculate the probability current density S(x, £) in terms of the
velocity v of an object and a constant A, which is complex.

2. The unnormalised wave function of a system 1s given by ¥ exp (—x2/2). Obtain the
value of 1ts normalisation constant.



3. A certam function 1s given by
W(x) =N T ix) exp (=) for x > |
v =0 forx< 1
Obtain the value of the normalisation constant N. Why can it not represent a

physical system?

4. The potential energy of a simple harmonic oscillator of mass m and frequency v is
equal to 2m(rvx)2. Write down its time independent Schrddinger equation and show
that 1t can be rewritten as

dzw . o 2)
‘9?*(’@"5 ve?

2
where O =% E B=2mmv/kand £ = JE X, E being the total energy of the
oscillator. For what values of ¢/ are the functions ¥ (£) = exp (—§2f2) and

y(E) =& exp (- 52,2) solutions of the above equation?

6.7 SOLUTIONS AND ANSWERS

Self- As sessment Questions

1. Substituting W = ay; T by, in Eq. (6.9) we obtain.

[ oy 2 B .a-z‘l’l .. ial1*l’2 |
:h( 31‘ + b Br) i (a Iz +b 3.1:2_ )+me1+Vb\|&

or

v i al'l’l ) ( oy, h? 321}'2
.ﬁ - b 'f _ =
“(‘ 3 Tam ae W b\ e k) =0

Since W, and W, satisfy Eq. (6.9), the above equation 1s identically zero. Hence y
satisfies Eq. (6.9). Similarly, you can show that ay, is also a solution of Eq. (6.9).

5 (a) Let us express the complex potential energy V as
V = VR + ll V'l

where Vp is its réal part and V;, its imaginary part. The Schrodinger equation (6.16a)
and its complex conjugate are then. respectively, written as:

Loy 7y .

in 3 = - 5 axz + (VR + IV‘()'L]I
oy* B Py . -

— i ot - T 2m +Vey® -V

Repealing the process of obtaining Ey. (6.20), we get

dy ourF 7 a'-!q; o "—.l,a: .
% £ 4 - —_ % +
’ (W Jt M dr ) 2m (W o v o Vv

or

N R s « OV, 9y" |V, Wt
Iﬁ'ar (v = 2m  ox (lp dx M ox rAVIvtY



P, 1) . oS(x, ) 2V

or dx

(b) PG, 1) =y*y

- ﬂ’ P(x, 1)

~ g{0-iB)x pitt (00 T iP)y ,~ieot

Using Eq. (6.21) we obtain

Sx, 0 = -’%— Im

= LA Im
m

- aw -
¥

g~ (@-iP)x pion ¢y iB) e+ iPlx ,~ox ]

3. The normalisation candition is

.' - .[Iu?l[f*lil_dx:l _

—o

or

Inp ] "o g

or

(==
% |NJ? J e dy = 1 since ¢ is an even function.

0

By making the substitution x* = t, the integral takes the form

# oo

‘ le g t-12 ¢~ dt. Thus we have

(==
]NFJ. =12 ¢~ dt = |

0

, 2 (1) _ 1) = [ e
ot IN| .1"(2)-1 1"(2)_[ t-12 ¢~ gt

or IN?F(m=1

1
or [N = =

fn

] 1/4
and N = (——)
\n

Terminal Questions

1. (i) NoO. it does not as W(x) does not go to zero as | x | 3 e

(11) No. 1ts norm 1s infinite.



oD | px peiton-Edfa (P i (=B
(iii) S(x, 7) i [A* Aé 3 et \ P
_AA* ol px—Et)A (_ ‘Tg__) et (px - Er)/f:]

__% . | 2P
_'ZmiAA I:)?]

=vAA* (vp=mv)

2. Applying the normalisation condition we get

INFJ R e dy = 1

—00

or

L]
oo

2|N[? ,[ 2 e dx = 1 since the integrand is even
0

Substituting x2 = ¢, we get

[le.[ 12 ot dt = 1
or

n
| g 1, since I 2t dt = J_
0

T - 3 1 1 r

Since(n + )=nT @) 2| =— T[] =&

moeT s D=n 70, (2) 2 (2) 2
2 4 1/4

3, The normalisation condition is

Im\p*\pdxz 1

or

NP ] i (—in exp o) dr = 1
since 1

wx) =0 for x < 1,
or -

| &2 _[ (1 +xHNeF dx=1
or Im -

fNF_[ e‘zxdx+|N|2,|- X2 e dx =1
or 1 1

2 oo
|;r~.r|2—t’§—-|-|.ﬂ~.f|2 f x? e dx = 1
l -

Integrating the second term by parts, we get



-2 2
[N (82 + 5‘: )=1

IN|=2¢/[T

This wave function cannot represent a physical system because it 1s discontinuous at
x = 1. Check this out by taking the limit x — 1 from right (+=) and left (—e<), Both
the limits are unequal.

or

4. The time independent Schrédinger equation for a simple harmonic oscillator 1s

2
- -—5%—% +2m (mvx)? y = Ey 1

where we have substituted V(x) = 2m(nvx)2. Changing the variable to & = \{E x, where

nmv
f=—— we get

dy _dy dE = dy
dx  dE dx_m-c'iﬁ—

&y g LY
a2

Thus, (1) becomes

Py 'y

#  2mmv dy . 2mmdv2A

or - -
| 2m B oogg2 o 2mmv

£y =Ey

or MW _mgvA-pr oy =— 2y
dg2  mVA ey 7B
Jz‘-l’ ZJIIE . 2 i 0
or ‘_(E;'z—' + ( }?ZB g) ‘V
2mE

Defining o = 2 we can write the cquation as
vy -ﬁ—é)\v=0 (A)
de? B .
Substituting W(§) = exp (— %—) in this equation, we get:

2 l.[l\v 2
Byt Ey - y=0 [ =g+ w]

B dE*
(¢
or —=-1jy=0
(f’ )
1]
or XLt sincey#0

Similarly, substituting w(§) = £ exp (—§2/2) in (A), we get:

—3\v+§2\v+<%-—~ tf) =0

S A



Power series

Complex number
Phase factors
Real part

Imaginary part

92
x=rcosB=r|1-—+ ..
: 2}

Yy=rsinb=y (9-—§+ )

Z=r(cos 8 T isin8)

2 g3
=r|l +l'9+ﬂ+—0£)1—'+ ]
2! 31
z = rei® (polar form)
€i® = cos B + / sin 8 and e = cos 8 = isin 8

Re ¢/ = cos @ = (ei® T £-i8)/2

Im €@ = sin § = (e - ¢18)/2i
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Instructions for Candidates

I3

Attempt FIVE questions in all. Question No. 1 1s
compulsory.

3. All questions carry equal marks.

4. Non programmable calculators are allowed.

1. Attempt any FIVE of the following :

(a) Calculate the commutator [L, 7). (given [2, 5] = ih).

(b) The wave-function of a particle is Y(x) = f smﬂ

for {] = x = L. Determine the probability of finding
the particle at x = L/3 for n = 3 state.

P.T.O.
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2

(¢) Derive the relation between ‘magnetic dipole
moment’ and ‘orbital angular momentum® of an
clectron revolving around a nucleus,

(d) Write the quantum numbers for the stare
represented by 4°F,.

(e) Normalize the wave function e’ in a one-
dimensional space,

() A free particle of mass m is described by the
wave-function y(x) = A exp(ipx) where A and u
are constants. Determine the probability current
density for this particle.

(g) Determine the uncertainty in position for the
1/4
normalized wave-function y(x) = (EEJ e ™" for
n

-0 < X € o, (5x3=13)

(a) Explain the concept of expectation values. Give
expressions for the expectation values of velocity,
momentum and energy in terms of respective
operators in three dimensions. Mention the
difference Ibetwcen expectation values and
cigenvalues of an operator corresponding to @
dynamical variable.

(b) The wave-function of a particle of mass m is given
by

2y 1/4
¥(x) = (Eﬂ-) . e P22 for —o0 < x < 0.
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l“‘
el

(Use [7 e/ dx = oy and [, e~(@'#0) dx = [Zob®/e )

Determine the total unLrpy of the particle. i

potential enerpy is V(x) = mm’ : (7.%)

The Gaussian wave packel for a free partich
defined by the wave function

W (x,0) = Nexp (~25 + lhgx).

Prove that the centre of this Gaussian wave packet

travels with a velocity v = :

c
(13)
(a) Solve the Schrodinger equation for a linear
Harmonic Oscillator and obtain first two
eigenfunctions. (10)

(b) Find AX and AP for the ground state eigenfunction
of linear Harmonic Oscillator and obtain the

uncertainty principle. ) (5)

(a) The ‘0" equation obtained after applying separation
for variables to the Schrodinger equation for a 3D
hydrogen atom in spherical polar coordinates, 1$

given by
nuua(mﬂ ) (A—;MEI-&)B=U.

Solve the above equation for my = 0 (or othery iS¢

to show that

A=1l+1), =012 e (12)
P.T.O.

LIS
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(b) An clectron in a hydrogen atom is in a stale

described by
= ;—lg{zﬂ':nu + g1 + W21l
C:ilcul;il;: the expectation value of L; in tins state.
(Given [, .1"‘&“fdx=;-§{—i- and
1 1N -7
i
bioo =35 (5;) e

(3)
] 1 -

5 (a) What is Larmor Precession? Draw the relevant
diagram and derive the expression for Larmor

frequency.

(b) A beam of silver atoms moving with a velocity
10" cm/s passes through a magnetic field of
gradient 0.5 Wb/m¥em for 10 cm. What is the
scparation between the two components of the

beam as 1t comes out of the magnetic field?
. (8.7)
7. (a) What 1s spin orbit coupling? Explain the fine
structure splitting in the energy levels due to
thas. For the 2p level of the hydrogen atom with
L, -~ ~3.14 eV, evaluate the fine structure splitting.

(b) Consider a two-clectron system with /, =1, /, = 1.
Explain the LS coupling scheme in such a case.
Write the spectral notation for each state.  (10,3)

(2000)



Name of the Department: PHYSICS DEPARTMENT
Name of Course: B.Sc. Hons.~CBCS_Core (NC) 2 0 2

Semester: V- Semester

Name of the Paper: Quantum Mechanics and Applications
Unique Paper Code: 32221501

Time Duration: 3 Hours Maximum Marks: 75

Attempt four questions out of six. Each question carries equal marks.

1.
i. Aparticle is represented at (t=0) by the wave function:
Alat=x*) —a<x<a
x,0)= [ =
W(x,0) 0 otherwise
Find A and expectation value of x, x*,p and p®. Find uncertainties in

position and momentum.
ii. Show that Divergence of ) (probability current density) is zero for
stationary states.

iii. Find the Fourier transform of the wave function e ™"
(14.75+2+2)
2.
i. State Heisenberg's Uncertainty principle. What s the origin of concept
of uncertainty in position and momentum? Derive AxAp > h/2.
il. Verify whether the following operators are linear:

a e =gf@
b.  fx)=Jf(x)

lii.  What is uncertainty in the location of a photon of wavelength 5000
Angstrom which is known to an accuracy of one partin 107?

(12.75+343)
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I.

Solve Schrodinger's equation for the potential energy V = (1/2)kx?
and show that the energy eigenvalue are £, = (n + -;-}hm.
Which of the following wave functions
) e~ (i) sin(kx)
are eigenvalues of operator (a) p and (b) p*.
Find the locations of classical turning points for a One Dimensional

Harmonic Oscillator in its ground state.
(12.75+4+2)

Describe the Stern-Gerlach Experiment and its theory. Discuss the
significance of the experiment. Why is an inhomogeneous magnetic
field required?

A beam of silver atoms moving with a velocity of 10°¢m/s passes
through a magnetic field of gradient 0.50Wb/m?/cm for a distance of
10cm. Determine acceleration of Ag atoms, time spent by atoms in the
field and displacement of Ag atoms along z-direction as it comes out

of the magnetic field (along z-axis).

d
Show that -

Schrodinger’s equation, ¥, and if/,.

I: Yy, dx = 0 for any two (normalizable) solutions to

(12.75+3+3)

Derive an expression for energy difference AE between doublets due
to Spin-Orbit coupling. How does AE depend on quantum numbers n
and I?

Show that the angle between angular momentum (L) and z-axis is
givenbyé,, = cos™( = ]}. Find the values of angle 8, for I=2.

yI{l+1
Calculate the probability of finding the electron in the region ? <r<

2a, in a hydrogen atom in ground state given that wave function for



the ground state of Hydrogen atom is y(r) = ]l—je;;, where a; =
=l

amegh?
me®
(12.75+3+3)
6.

i. Solve 1-D time independent Schrodinger’'s eguation for a particle
having energy E for a square well of finite depth Vo (E<Vo). Show
graphically existence of bound states.

il. An electron moves in 1-D potential well of width 8 Angstrom and
depth 12eV. Find the number of bound states?

iil. Assuming LS coupling scheme, list the possible total angular
momentum and spectral terms for three electron having configuration
2p 3p 4d.

(12.75+3+3)
Physical Constants:

Mass of Ag atom = 107.87amu,
Charge of electron = 1.6 x 107'%C,
h=6.626 x 10*1s

Mass of electron = 9.1 x 10'Kg.
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2. Attempt five questions in all Q.1 and all its parts are
compulsory.

3. Attempt any four questions from the rest, Also,

attempt any two parts out of three from ecach
question.

4. Non-programmable calculators arc allowed.

ai#.v; (a) Normalize the wave function, W(x) = e "'

(3)
P.T.O.




L S S
(©) Giver  and momentum o
are Hermitian, verify whether the o

b

%'+ Xp, , is Hermitian. '

(d) Write the values of quantum numbers n, 1, X
for the following states :

(i) 27S,, (i) 57%F,,.

|
1 3. &
(e) Consider the state, ‘”=\/%“+\Eﬁ*i
where ¢, are orthonormal cigenstates of
operator A. Find the expectation value of |

operator A in the state ¢, if it satisfies

eigenvalue equation fi¢|, =(2n1 +l)¢,.

(f) Write down the wave function for n__._“

.~

(i) two Bosons and (ii) two fermions indist nguish



5 aal

(a) I@”:;Set' up the time dependent Schrodinger
equation and hence derive the time
independent Schrodinger equation. (4)

(ii) Starting with the Schrodinger equation in one
dimension and using a de Broglie plane wave
as a solution, show that when V = 0 this leads
to the correct nonrelativistic relationship between

energy and momentum. (3)

(b) For a Gaussian wave packet

[W(x) = Aete’ c'i"""""lj

corresponding to a free particle (1) Find the
- probability current density and (ii) Verify the

continuity equation. (443)

b




e the Schrodinger equation for a lig
'-_"‘ Mllator and solve it to ¢ Stai
ergy 1 values.

A Harmonic Oscillator has a wave fu

’ﬁm‘h 1S a superposition of the ground st;
and the second excited state eigen unctiot
ﬂx) - "Fn(x) + 2‘1’1[1)-

Find the expectation value of the

: ﬁﬂ Using the Uncertainty Principle show thi _=._-':".

ground state energy for a Harmonic Oscilla
is non-zero.

ah electron is confined in the gl‘oll!ld
m-dimenamnal harmonic osciliator
at Ax = 10"'°m, Assuming that the 8

REDMI NOTE 7

a [ ] = h"“\‘



Kinetic energy is equal to the average
Potential energy, find the energy in electron

volts required to excite it to the first excited
state. (4)

(1) For a linear harmonic oscillator in its ground
state, show that the probability of finding it

beyond the classical limits is approximately
0.16. (3)

(a) (1) Obtain the solution for the Legendre equation

What are the conditions that need to be

imposed so that the solutions are well
behaved? What do the conditions imply.

(4)
(i1) Verify whether the function Y, (0,9) =

—JE sinBe” is an eigenstate of the following
8n

angular momentum operator :

I:l =ih[sin¢£+mtﬂmn¢%) (1)

P.T.0.
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-

(¢) The electron in the hydrogen atom is ;
Mefme m =200m_ wherembie
*et‘ the electron, Determine the correspon

inges in the following :

(i) The Larmor frequency and hence
Zeeman splitting for the 2p level in

presence of a magnetic field of | -.
(Ignore the electron spin)

——

(i) The wavelength of the corresponding
line. Will it be in the visible regic
(Rydberg constant R = 1,097 = IG"'m"
the hydrogen atom)

(a) Consider a particle trapped inside a @
dimensional finite square well. Selve__-
independent Schrodinger equation for the s
and obtain the bound state eigenfunctions. D

—

how the energy levels are obtained graph nical




6.

(h) (i) Derive the relationship between mméﬁ-;z‘

dipole moment and orbital angular momentum
of an electron revolving around a nucleus.
3)

(i) Explain space quantization. Calculate the
possible orientation of the total angular
momentum vector J corresponding to j = 3/2

with respect to a magnetic field along the z-
(4)

axis.

(c) (i) What s Larmor Precession? Derive the

expression for Lannor frequency. (4)

(i) A beam of electron enters a uniform magnetic

field of flux density 1.2 tesla. Calculate

the energy difference between eclectrons

pins are parallel and antiparallel to

(3)

whose s

the field.

(a) (i) Explain Normal Zeeman Effect. (2)
(ii) Write the term diagram for the splitting of

the yellow line of sodium (1 s2.2¢%,2p%)3s' into
(2)

two components DI and D2.

pP.T.O.

- "




200 ‘I’i.!m pupﬂuﬁeuln tutl;q
incident beam. Find out "_,'.,, _
‘deflection of the atoms at the p,
‘the beam leaves the field. (
9.24 x 10-24 J/T, M-lﬁ?:ﬂ

-I

(b) (i) Write down the normal g,
configuration of Carbon atom (
obtain the spectral terms ar
equivalent electrons.

is

(i) The quantum number of IWo optical e
in a two valence electron atum

n, =6, I, =13, s, =1/2
n, =35, L=1, 8,=1/2

L-|.

assuming j-j coupling, find the possibl
of J.

(¢) () What is spin orbit coupling. Caloul
change in the energy level due to th

(i) Write the term symbol for the grou
of the hydrogen atom in the LS
scheme.
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Attempt five questions in all.
Q. No. 1is compulsory.
All questions carry equal marks.

Non-programmable calculators are allowed.

L. Attempt any five of the following:
(a) State linearity and superposition principle.
(b) Prove that;
| o, p J=inte*~1
(c) What are stationary states? Why are they called
s0?

(d) What are the conditions for a wavefunction to be
physically acceptable?
P. T. O.
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(¢) What do you mean by space quantization?
Explain.

(f) Write the quantum numbers- for the state
represented by:

3 Dy,
(8) Define group velocity and phase velocity.
- Sx3=15

2. (a) Set up the time dependent Schrédinger equation
and hence derive the time independent
Schrodinger equation.

(b) Derive the expressions for probability density and
probability current densities in three dimensions
and hence derive the equation of continuity. 7,8

3. (a) Give the theory to explain spreading of a
Gaussian wave packet for a free particle in one
dimension.

(b) Normalize the following wave function for a
particle in one dimension:

A sin (%) O<x<a

0 outside 10,5

4. (a) Solve the Schrodinger equation for a Linear
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Harmonic Oscillator to show that the energy
cigenvalues are:

B, = (n+5) o.

(b) A Harmonic Oscillator has a wave function which
is superposition of its ground state and first
excited state normalized eigenfunctions are given

by:
Y(x)=75 W) @)

Find the expectation value of the energy. 10,5

5. Write the Schrédinger equation for a 3D hydrogen
atom in spherical polar coordinates. Derive three
separate equations for r,6,¢ using the method of
separation of variables. Solve the equation for ¢ o
obtain the normalized eigenfunctions and show that
they are orthogonal. 15

6. (a) Describe Stern Gerlach experiment with necessary
theory. What does it demonstrate?

(b) Explain Normal Zeeman Effect with examples and
energy diagram. 8,7

7. (a) What is spin orbit coupling? Calculate the change
in the energy levels due to this.

. 1.Q.
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(b) Show the result of an LS coupling of two non-
equivalent p-electrons. 10,5

2100
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Instructions for Candidates
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Write your Roll No. on the top immediately on receipt of
this question paper.

Attempt five questions in all.
Question No. 1 is compulsory.
Use of non-programmable scientific calculator is allowed.

Symbols have their usual meaning.

Attempt any five of the following : (5%3=15)

(a) What is the minimum uncertainty in the energy state of
an atom if an electron remains in this state for 10-* ?

(b) Using the expression [x, p,] = ik, find [x, L]

P.T.O.
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(¢) A proton is moving non-relativistically having kinetic
energy 1 MeV. Find its de-Broglie wavelength.

(d) Determine whether the following wave functions are
physically acceptable solutions of Schrodinger wave
equation or not :

(i) Ae*
(i) Ae™

(iii) Ae™, -0<xSw

(e) Find the probability that a particle in a box L wide can
be found between x =0 and x = L/2 when it is in the

first excited state.

(f) For hydrogen atom what are the possible values of /
and m, for n = 27

(g) The azimuthal wave function for the hydrogen atom is
O(p) = Ael™, 0<¢<2m.

Find the normalization constant A.

(h) An electron in H-atom is in the 3p state. Which

downward transitions (1s, 2s, 2p) are forbidden by the

selection rules?

2. An x-ray photon of wavelength 0.05 nm strikes a free
electron at rest and the scattered photon departs at 90°

from the initial photon direction.
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(a) Determine the momenta of the incident photon, the
scattered photon and the scattered electron.

[Given: tan™'(0.9542) = 43.66°, sin (43.66°) = 0.69]

(2,4,6)
(b) Determine the Kinetic energy of the scattered
electron. ' (3)

3. (a) Suppose an electron at rest absorbs the incident photon
and moves with the speed v along the direction of
incident photon. Using the laws of momentum and energy
cnnse:rv.atinn, determine the value(s) of v. (6)

(b) The photoelectric threshold wavelength for a material
is 5000 A. Find
(i) the work function of this material

(if) the maximum kinetic energy of the photoelectrons
if light of 4000 A strikes the surface of this
material

(iii) the stopping potential for 4000 A photons
(3,4,2)

4. (a) Determine the phase velocity and group velocity of the
wave corresponding to a de Broglie wavelength of
A, =h/p = h/mv. (3,5)

(b) A free particle of mass m is described by a wave function

P.T.O
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w(x) = e'?¥"% p is the momentum of the particle
prove that the probability current density is equal to the

speed of this particle. (7)

5. (a) A particle of mass m moves inside an infinite potential
well :

v = 0,0<x<L
w,x<0and x> L

Find the energy eigenvalues and the normalized wave
functions of this particle. (10)

(b) Determine the average of squared-momentum, < p?>
of this particle, when it is in the ground state. (5)

6. (a) A particle of mass m is moving in a harmonic potential

well,
V(x)=%mm2 x?, —w < x <o,
If this particle is described by a wave function

w(x) = Axe™ /" then find

(1)- A

(i1)) Energy of this particle in the given state.
(4,6)
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(b) Determine the probability of finding this harmonic
oscillator in the classically forbidden region, if it is in

the ground state, (5)
14 gt
[Gfm: %(ﬂ=[§} mp[:T—). ~®Sxr<w f= -";—”

e 2 % .
and e du=0,843, e du=0.157
3# ! Jn‘ .Jl ' J

7. (a) Prove that Z-component of angular momentum operator

is given by

- )

L=-inZ

a¢ (6)

(b) An electron in hydrogen atom is in the state

v(8,9) = Asin’0 ¢, find
(i) A,
(ii) L, the magnitude of angular momentum

(ii)) L,, the magnitude of z-component of angular
momentum

- o[ & 8 o
r I8 . i &—
[Gi'm: I =-p (e—a!-unt ae+m:tc’ 5!’”

(3.4,2)

P.T.O.
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8. A particle of mass w and energy E moves from a region
of potential V, towards the region of zero

potential, a5
shown below in Fig. (1).

(a) Explain why energy of this particle should be greater
than V.

(b) Derive the ¢xpressions for the reflection and

transmission co-efficients of this particle. (2,13)
Y
Vo
m, E
= e B
0 X
Fig. (1)
Physical Constants:

h=6.626 % 10* ).5=4.136 x 101 eV.s
eV =1602x10"]

me = 9.1 % 10™ kg, mc? = 0,511 MeV, mye? = 9383 Mev

Ix' e dx = —-—lml‘[iﬂ]
: m

mam™

(500)
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1. Attempt any five of the following :

(@) Give the expressions for Energy, Linear momentum and

Angular momentum in operator form.
(6)  Calculate the commutator [L_,p.]. (given [%,p.] = i)
(c)  Explain uncertainty principle with an example.

P.T.O.
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(d) Derive the relation between ‘magnetic dipole momepy
and ‘orbital angular momentum® of an electron revolving

" around a nucleus.

(¢)  Write the quantum numbers for the state representeq
4’F
by * 78/.
(-~ What are symmetric and antisymmetric wave functions 7
(8 What are free and bound states ? Explain. $x3=ls

Consider a particle trapped inside a one-dimensional finite
square well. Solve the time independent Schridinger equation
 for the system and obtain the bound state eigenfunctions.

Discuss how the energy levels are obtained graphically ? 15

(@) Calcula;te the expectation value of the momentum for

wavefunct_iun.l

' 2 . (nx .

‘Jgum[—a—) furQ{]x[;a
0 . for|x|> a-

(6) - Give the theory 1o explain spreading of a Gaussian-wave

packet for a free particle in_nne-&imensim 510

¢

Crannord with CamSrannor
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(@) Solve the Schridinger cquation for a Lincar Harmonic

Oscillator and hence obtain first three eigenfunctions.

(b) .A particle of mm;.s | mg is attached to a spring of

spring “constant 0.001 Nm~!. Calculate its zero point

energy. 105

The ‘0" equation obtained after applying separation for
variables to the Schrodinger equation for a 3D hydrogen atom

in spherical polar coordinates, is given by

1 df_. .de mi o
ainﬂdﬂ(sln&dﬁ]+[l .sinﬂﬂ]e .

Solve the above equation for.m, = 0 (or otherwise) to show

that :

A=), = 0,02 15

(a) What is Larmor Precession ? Derive the expression for
Larmor frequency.

(b)  Explain Normal Zeeman Effect with examples and energy

diagram, 87

(@) What is spin orbit coupling ? Calculate the change in
the energy levels due to this. | '

(b)  Show the result of a JJ coupling of two nonequivalent
10,5

3 1800

p-electrons,

Scanned with CamScanner
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(a)

(b)

(a)

(h)

(@)
(B)
()

(Write your Roll No. on the top inmmediately on receipt of this question paper.)
Attempt any five questions.
All questions carry equal marks.
What is a wave packet ? Prove that the de-Broglie wave packet associated with a moving

body travels with the same velocity as the body. 2.5
State Heisenberg uncertainty principle and derive it on the basis of wave
packets, 2.6
What is photoelectric effect 7 Define threshold frequency and work function, Give an
sccount of Einstein explanation of photoelectric effect on the basis of quantum
theory. 335
Radiations of wavelength 5400 A fall on a metal plate whose work function is 1.9 V.
Find the kinetic energy of the emitted photoelectrons. 4
What are admissibe conditions for a wave function ? 3

How do you correlate the operator H to its corresponding phyiscal quantity ? 3

Starting with time dependent Schrodinger wave equation, derive an expression for time-
independent wave function. 9

P.T.0.
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Write short notes on any fwo of the following : 15

(@) Inadequacies of classical mechanics

(b) y-ray microscope experiment

(¢) Compton effect

(@) What is Normal Zeeman effect ? Derive an expression for the frequency shift in Normal
Zeeman effect. 3.7

() Consider the normal Zeeman effect in the 3d — 2p transition. Draw the energy-level

(a)
(b)
()
(@)
(b)

(c)

(a)
(&)

(€)

diagram that shows the splitting of 3d and 2p levels in an external magnetic field. Also
indicate all the possible transitions,

What is Bohr Magneton ? Give its unit.

Discuss symmetric and anti-symmetric wave functions.

Explain space quantization of L and S with the help of an example.
Discuss LS and jj coupling.

0 =] WA W s

Find the possible values of total angular momentum quantum number J in LS coupling

ufmuammi:cdmrmhvingmhiulqmnmn-Imdfltl. 4
Wlsﬂmphyﬁcdﬁwﬁfmufﬂ:mpﬁ:uﬁﬂqmmmmdw
$pin quantum number ? 5
State and explain the Pauli’s exclusion principle. 4
Obtain an expression for the maximum number of electrons that can be accommodated
in a shell. Give electronic configurations for the following clements 422
() Zn(Z = 30) and

(i) La(Z = 57)

ﬁndtheS.LdenIm:ﬂnlmwpondtumhafﬂmfhlhwimm: 3
*$12 Py, 2Dy
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(@) A metal surface when irradiated with light of wavelength 5896 A emits electrons for which

the stopping potential is 0.12 V. When the same surface is irradiated with 2830 A, it

emits electrons for which the siopping potential is 2.20 V, Calculate the value of Planck's

constant,
P.T.O.
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Compare the de Broglie wavelengths for an electron with a kinetic energy of | eV and

o ball of mass 300 gm travelling at 100 km/hr.

Determine the smallest possible uncertainty in the position of an electron moving with

velocity 3 = 107 m/s,

Establish time independent form of Schrbdinger E@MI for stationary

stutes. C)O

L]

D:mﬂmm:pmbabiliwnfﬂndingapq@afmmbl:mm:nx-ﬂmd

x = L/10, if the particle is described mrrn.aha:d wave function :

.

for 0<x<L and i th&n-_'istltt
A radial functic \hcm:lpnlnmmdmuu is;
R, ir) = Ce™2 U (r),
where C is a normalization constant. Discuss the physical acceptability of
R, (r) if Ur) behaves as :

() 142 for small values of r and as a polynomial in r otherwise: and

(i) a polynomial in » of degree more than 3 for all values of r.
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A one-dimensional harmonic oscillator is in a state described by the wave

function :

L : 1
uer.ﬂ]—Eun{xHE ¥ (x) + :fiﬁi[ﬂ

where W, (x) are the usual normalized orthogonal wave functions. Normalize the wave

Q&

O

Find the classical amplitude of a one-dimensional lu@it oscillator in its ground state
| I \(:b
with &n energy 2 Py, Q“}A

In the Complon scattering of a @I‘ frequency v by n free electron through an

angle o, using the expressi r momentum conservation 10

function wix, 0).

pe cosh = v' cos ¢ and pe sin 6 = Av'sin ¢

and the chprmm change in wavelength of scattered photon :

A =k = - h (1~ coad)
m, ¢
prove that :
nn B = - .]__- ¢ where f= _#_"':._;
11+ [ lnn; m, e

P.T.O.
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A metal surface emits electrons with maamum kinetic encrgies B and E when illurminated

with light of wavelengths 4, and i, respectively, where &) > )., . Prove that the Planck’s

constant A and work function ¢ of the metal are given by : 5
elhy = Ag) (Ay = Ag)

IE#.pLIJn de Broglie hypothesis for matter waves. Show for the de Broglie wave

associsted with a moving particle the group i1y is equal 1o the particle
velocity. O 2

Assume that at time ¢ = 0, a sim &m:m:ﬁng clectron is located near

x = x with the probability P @oﬁndtnﬂ it between x and x + dx being given

; \
S -

.‘;\m 3 H‘“"ﬂ'n"’"l'wl“

Obtain the n values of x and p. Also show that ; 10

$ Ax . Ap = A/2.

D«:ﬁm experiment 1o locate the position of a free electron by a microscope using

¥ ray and hence, obtain an expression for uncenainty principle. 10

Determine the minimum uncertainty in the position of a particle in terms of

de Broglie wavelength when the uncertainty in the velocity of a particle in one-tenth of

its velogty. 5
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{ 5 ) G214

(e}  Oibtain the enengy eigen values and the normalized wave functions for & free particle of

muass m rapped Ina one-dimensional box of length L along r-axis in positive direction

of r from the orgin 10

(A1 The wawe funciion of a particle confined in a box of linear dimension L along x-axis

I8 @
Wix) = A" D = x= Lo C)o

-
L
Find the prohability aof finding the particle in the diﬁjﬂ‘%z'x = -4-. 5

Solve the time independent Schofdinger equation fior %‘crﬂ} levels of 8 one-dimensional

bsrmaomic osciflaror. Drmw the energy level ;I'r@'l Explain the physical significance of

-

ZEro-point Enengy. ';Q‘\Q\ 15

A particle of mass s and encrgyli Ipoves along v-axis from a region of zero potential towards
a one-drimensionial stcpﬂﬁmmi barrier of height V, of infinite extent. Assuming
E > V. derive expressions for the reflection and transmassion coefficients. Commenl on the
wavelenygths sssociated with the incident, reflected and transmitted waves. Also, obiain
expressions for probability current densities associated with the incident, reflected and tramsmined

WA VES

45: TS

Ixg=15
or which
$30 A, it

"Planck’s

P.TO.
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Solve the angular cquation of hydrogen atom in spherical polar coordinates, given

as v
1 a[. a;-] 1 &y :
9 (gne 2|+ X 4y =0
sn0 0L ) sinte by
10 okiain relotion & = Il +1). "

(iiven the wave function of ground state of hydrogen n@

O

—H-u

o

Vooirl = W (;)
2D

where the symbols have usual mcaning agih,

n .
o L -

ﬂﬂmmﬂwmﬂpo@uxxnfdeﬂrm&mmkﬂsmgmmdﬂn 4
i -th- 10734 Js

463 10 )5
Rest mass of electron = 9.1 = 1073 kg
Charge of electron = 1.6 = 10719 ¢
Rest mass energy of clectron = 512 KeV

Velocity of light in free space = 3 « 10% m/s.



6.1: Time-dependent Schrédinger Equation

When we first introduced quantum mechanics, we saw that the fourth postulate of QM states that: The evolution of a closed system is
unitary (reversible). The evolution is given by the time-dependent Schrédinger equation
Oly)

where H is the Hamiltonian of the system (the energy operator) and h is the reduced Planck constant (h = h/2m with h the Planck constant,
allowing conversion from energy to frequency units).

We will focus mainly on the Schrodinger equation to describe the evolution of a quantum-mechanical system. The statement that the
evolution of a closed quantum system is unitary is however more general. It means that the state of a system at a later time ¢ is given by
, where U (t) is a unitary operator. An operator is unitary if its adjoint Ut (obtained by taking the transpose and the complex conjugate
of the operator, UT = (U*)T) is equal to its inverse: Ut = U~! and UU = 1.

Note that the expression |1(t)) = U(t)|1(0)) is an integral equation relating the state at time zero with the state at time ¢. For example,
classically we could write that z(t) = #(0) + vt (where v is the speed, for constant speed). We can as well write a differential equation
that provides the same information: the Schrodinger equation. Classically for example, (in the example above) the equivalent differential
equation would be % = v (more generally we would have Newton’s equation linking the acceleration to the force). In QM we have a
differential equation that control the evolution of closed systems. This is the Schrodinger equation:

O(z, t)
ot

ih = Hp(z,t)

where H is the system’s Hamiltonian. The solution to this partial differential equation gives the wavefunction v¥(z, t) at any later time,
when ¢(z, 0) is known.

Solutions to the Schrédinger equation

~2
We first try to find a solution in the case where the Hamiltonian # = g—m + V(z,t) is such that the potential V (x, t) is time independent
(we can then write V(z)). In this case we can use separation of variables to look for solutions. That is, we look for solutions that are a
product of a function of position only and a function of time only:

P(z,t) = ¢(z) f(t)
Then, when we take the partial derivatives we have that
Gu(et) _dfl) o BeD) _ de()
ot at " T ox 4

The Schrédinger equation simplifies to

£ ana THE@D _ el

i 8r2 dz?

f(t)

0 oy = 2 LA 14y 4 vayota s
Dividing by ¥(x,t) we have:
ad0 1 R A 1

Tf(t) T 2m 22 ()

Now the LHS is a function of time only, while the RHS is a function of position only. For the equation to hold, both sides have then to be
equal to a constant (separation constant):

af(t) 1 h? d’p(z) 1
WO Lo R 1
0 2 2 p(a)
The two equations we find are a simple equation in the time variable:
df(t) Et

U — 2 Bf0), — 1) = [0

and

K2 d’p(z) 1
2m 22 p(z)

+V(z)=E

that we have already seen as the time-independent Schrodinger equation. We have extensively studied the solutions of the this last
equation, as they are the eigenfunctions of the energy-eigenvalue problem, giving the stationary (equilibrium) states of quantum



systems. Note that for these stationary solutions ¢(z) we can still find the corresponding total wavefunction, given as stated above by
Y(z,t) = o(z) f(t), which does describe also the time evolution of the system:

P(z,t) = p(z)e T

Does this mean that the states that up to now we called stationary are instead evolving in time?

The answer is yes, but with a caveat. Although the states themselves evolve as stated above, any measurable quantity (such as the
probability density |¢(z, t) |* or the expectation values of observable, (4) = [ ¥(z,t)* A[¢p(z, t)]) are still time-independent. (Check it!)

Thus we were correct in calling these states stationary and neglecting in practice their time-evolution when studying the properties of
systems they describe.

Notice that the wavefunction built from one energy eigenfunction, ¥(z,t) = ¢(z)f(t), is only a particular solution of the Schrédinger
equation, but many other are possible. These will be complicated functions of space and time, whose shape will depend on the
particular form of the potential V' (z). How can we describe these general solutions? We know that in general we can write a basis given
by the eigenfunction of the Hamiltonian. These are the functions {¢(z)} (as defined above by the time-independent Schrédinger
equation). The eigenstate of the Hamiltonian do not evolve. However we can write any wavefunction as

Wz, t) = e (t)pr(@)
k

This just corresponds to express the wavefunction in the basis given by the energy eigenfunctions. As usual, the coefficients ¢ (t) can be
obtained at any instant in time by taking the inner product: (¢ | ¥(z,t)).

What is the evolution of such a function? Substituting in the Schrt’)dinger equation we have

0
iB (Zk Ck _ ZC ?‘[(Pk

that becomes

For each ¢}, we then have the equation in the coefficients only

d LBt
mi—@m>%%w—%®w%

A general solution of the Schrodinger equation is then

Byt

W(z,t) =Y cr(0)e T pp(z)

k

We can define the eigen-frequencies Awy = Ej from the eigen-energies. Thus we see that the wavefunction is a superposition of
waves (py propagating in time each with a different frequency wy.

The behavior of quantum systems -even particles- thus often is similar to the propagation of waves. One example is the diffraction
pattern for electrons (and even heavier objects) when scattering from a slit. We saw an example in the electron diffraction video at
the beginning of the class.

What is the probability of measuring a certain energy E, at a time t? It is given by the coefficient of the ¢, eigenfunction,

2 —iﬂ 2
ek (®) = |ex(0)e

is then a so-called constant of the motion. This is true only for the energy eigenvalues, not for other observables’.

= |cx(0) \2. This means that the probability for the given energy is constant, does not change in time. Energy

Consider instead the probability of finding the system at a certain position, p(z) = |¥(z, t)|°. This of course changes in time. For
example, let

P(,0) = ¢;(0)p1(2) + c2(0)ps (),

with

le1(0)% + [e2(0)[* = [er|* + |ea|* =




and 1 » normalized energy eigenfunctions. Then at a later time we have

¥(2,0) = c1(0)e ™01 (2) + e2(0)e ™ iy ().
What is p(z, t)?
Solution

ey (0)e ity () + ¢y (0)e 2ty ()|

= le1(0)*[g1 ()" + |e2(0)[*pa ()| + Cafc2‘P’f902€7i(‘”27°’1)’5 + clc§¢1¢;ei(w27wl)t
= lei1|? + |e2|* + 2Re[cicrpiippe (2 )t]

The last term describes a wave interference between different components of the initial wavefunction.

The expressions found above for the time-dependent wavefunction are only valid if the potential is itself time-independent. If this is
not the case, the solutions are even more difficult to obtain.

Unitary Evolution

We saw two equivalent formulation of the quantum mechanical evolution, the Schrodinger equation and the Heisenberg equation. We
now present a third possible formulation: following the 4™ postulate we express the evolution of a state in terms of a unitary operator,

called the propagator:
d(z,t) = U(t)y(z,0)

with UT U=1. (Notice that a priori the unitary operator U could also be a function of space). We can show that this is equivalent to the
Schrodinger equation, by verifying that 1(z, t) above is a solution:

L OUY(z,0) ou

where in the second step we used the fact that since the equation holds for any wavefunction 1 it must hold for the operator themselves.
If the Hamiltonian is time independent, the second equation can be solved easily, obtaining:

U

oU . . .
iha—(t] =HU — U(t)=e M

where we set Ij(t = 0) = 1. Notice that as desired Uis unitary, U T[j — eiHt/hg—iHt/h — 1
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