Class Test

Academic Session: (2023-2024)

Name of Course- B.Sc. (APS) with Computer Science

Duration: 1 Hours

Semester- III

Max. marks: 16

Paper name- Heat and Thermodynamics (Theory)

Paper Code- 2222512301

Teacher's Name: Sanjesh Kumar

Instructions for the students:

- 1. Write the Student Name, Course Name, Student College Roll Number, Paper Name and Paper Code on front page of your answer sheet.
- 2. This question paper contains 5 questions. All questions are compulsory and marks are indicated against each question.
- Q1 Write the Maxwell's Thermodynamic relations.

4

OR

Write the Maxwell's Thermodynamic Potentials. And what is the importance of these potentials?

Q2 Draw P-V diagram for a Carnot's cycle.

2

OR

Write the differential form of First law of thermodynamics and their significance.

Q3 Explain Second law of thermodynamics and write Kelvin & Clausius statements.

5

- Q4 If Gibb's potential is G = F + PV where F is the Helmholtz free energy. Then prove that Maxwell's thermodynamical relation. $(\frac{\partial V}{\partial T})_P = -(\frac{\partial S}{\partial P})_T$
- Q5 If 115 Joules of heat are added to a gaseous system whose internal energy is 45 J, then Find the amount of external work done?

ASSIGNMENT

Academic Session: (2023-2024)

Name of Course- B.Sc. (APS) with Computer Science

Semester- III Max. marks: 16

Paper name- Heat and Thermodynamics (Theory)

Paper Code- 2222512301

Teacher's Name: Sanjesh Kumar

Instructions for the students:

- 1. Write the Student Name, Course Name, Student College Roll Number, Paper Name and Paper Code on front page of your answer sheet.
- 2. This question paper contains 5 questions. All questions are compulsory and marks are indicated against each question
- Q1 What are Thermodynamic Potentials. Derive the four Maxwell's Thermodynamic relations from Them.
- Q2 State and explain the first law of Thermodynamics. And what is its physical significance? 4
- Q3 A Carnot's engine works between temperatures 727 °C and 27 °C. Find the efficiency of Engine?
- Q5 Explain entropy. And show the expression for entropy change of a perfect gas in terms of Pressure(P) and volume(V)?

$$ds = C_V \log_e(\frac{P_f}{p_i}) + C_P \log_e(\frac{V_f}{V_i})$$

class Fest

Academic Session - (2023-2024)

Name of course - Bisc(APS) with compsc

Duration: 1 Hours

Semestro -III

max marks = 16

Paper name - Heart and thermodynamics

Paper code-2222512301

Feacher's name - Sanjesh Kumar

NOTE- this question paper contains 4 questions - all questions are compulsory and marks are indicated against each question.

if antholpy is H= U+PV then find the Inlation

$$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P} \left(\text{maxwell Sulation}\right) - \left(04\right)$$

42 prove that cp-cv=R

Of a prove that
$$\frac{dP}{dT} = \frac{L}{T(v_2 - v_1)} - - \cdot (04)$$

94 if probability of the molecules in the gas between the relocity component by P but dusc is given by

P(V) dux =

$$P(v) dv_{sc} = \left(\frac{m}{2\pi\kappa_{T}}\right)^{\frac{1}{2}} e^{-\frac{mv_{sc}}{2\kappa_{T}}} dv_{sc}$$
then find
$$--(04)$$

$$(9) \langle |V_{x}| \rangle \quad and \quad \langle V_{x} \rangle_{h.m.h.}$$

Ou