B.SC (H) Physics - V Sens Advanced Mathematical Physics (32227502) (Assignment 2023-24)

Quizizz	NAME:			
	CLASS:			
MATRIX CHALLENGE 30 Questions	DATE:			
MM: 78				
1. Which one is the characteristic equ	uation?			
A [A-ml] = 0	B A X= mX			
C AX =mX	D A-ml = 0			
2. Choose the Correct Options				
Sum of the Diagonal Elements of A A=Trace of the Eigen value Diagonal Elements of the Eigen value Diagonal Elements of A A=Trace of Trace of Trace of A A=Trace of Trace of Tra				
Sum of the Diagonal Elements of A=Trace of transpose of A	Sum of the Eigen Values of A=Trace of A			
3. What is true about singular mat	trix A?			
A A is 0	B Its inverse do not exist			
C A is not 0	Atleast one of the Eigen Value if 0 implies its singularity			
4. Norm of the Row matrix A=[1	2 -2i] is			

Preetika Dhawan Assistant-Professor Dept of Physics shivaji Coerye

5. Eigen Vectors corresponding to distinct Eigen values are				
A None of the above	B normalized			
C Linearly Independent	D Linearly Dependent			
6. What is true about Hermitian matrix	?			
Eigen Values are real but the Eigen vectors are not mutually orthogonal	B Transpose Conjugate of $A = A$			
Transpose Conjugate of A = -A	Eigen Values are real and the Eigen vectors (for distinct Eigen values) are mutually orthogonal			
7. What is true about Unitary Matrix?				
A Modulus of each Eigen value is unity	B Eigen value is +1 or -1			
Transpose conjugate of A = inverse of A	Transpose conjugate of $A = A$			
8. Find the Eigen Values of (in increasing order)				
9. Choose the correct options if AB=BA				
If A is diagonal, then B is also diagonal	All of the above			
$B=A^{-1}$	A and B commutes wrt multiplication			

O. Choose the correct options for matrix	A of order 2x3			
Cayley Hamilton Theorem states that A satisfies its own characteristic equation	None of the above			
inverse of A= adjoint A / A	D Both of the above			
11. Choose the Correct Option				
Determinant of Hermitian Matrix is Real	Diagonal Elements of Skew Hermitian Matrix is 0 or purely imaginary			
Every matrix commutes with its inverse	D All of the above			
12. If X is the column vector of order n a is the order of X'AX?	and A is a square matrix of order n, then what			
A nxn	B. 1xn			
C 1 x 1	D n x 1			
13. A real symmetric matrix of order 3 will have no. of independent components				
A 4	B 6			
C 8	D 12			
14. Tell the nature of this matrix [iii;iii]				
A Skew Hermitian	B Orthogonal			
C Hermitian	D' Unitary A			
15. Which one is orthogonal matrix?				
A [cos x -sin x; -sin x cos x]	B [-cos x sin x; sin x -cos x]			
C [cos x sin x; sin x cos x]	D [cos x sin x;-sin x cos x]			

16.	If A and B are the two Eigen vecto	rs, then the condition for their orthogonality is
	Ā' B=0	B BĀ'=1
C	Ā' B=1	D B Ā'=0
17.	How will you define unitary matrix	A?
Α		B $\bar{A}'A=I$
C	A' A=1	$D \bar{A}' = A^{-1}$
18.	What is the trace of $A = [236; -90]$	8;623]
A	4	B 5
C	-4	D -5
19.	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ Classify the matrix	rix
A	Square matrix, Identity matrix	B Idempotent matrix, Diagonal matrix
C	Square matrix, triangular matrix	
20.	You can post multiply a 2X3 matrix by	which matrix?
A	2X2	B 2X12
C	3X12	D 2X3
21.	There are number of elements i	n 3x6 matrix

22.	Which of the following can have imagi	nary d	eterminant?	
A	Skew Hermitian	В	None	
C	Hermitian	D	Both	
23.	Choose the correct option(s)			
Α	Similar matrices have same Eigen values	В	Diagonalizing matrix of a diagonal matrix is identity matrix	
C	Similar matrices have same eigen vectors	D	Diagonalizing matrix of a diagonal matrix is a null matrix	
24. A system of equations will have many solutions if				
A	No of independent constraints is 0	В	no. of independent constraints is equal to unknowns	
C	no. of independent constraints is le than unknowns	SS D	no. of independent constraints is greater than unknowns	
2:	5. Inner Product is			
	a scalar quantity	В	a vector quantity	
	always same as a dot product	D	sometimes scalar sometimes vector	
26. B=7 x1y1-3 x2y1+8 x1y2+10 y2x2. The matrix representation of this bilinear form is				
	A [10-3; -87]	В	[108; -3, 7]	
	A [10-3, -0.7] C [78; -310]	D	[7-3; 8 10]	
	27. Which of them are Normal Matrix	(?		
	A Hermitian	E	Unitary	
	c Skew Hermitian		Real Orthogonal	

- 28. Zeroth power of any matrix is
- Identity matrix

B matrix itself

Ones Matrix

- Null matrix D
- 29. Choose the correct option
- $\exp(A) = P. \exp(D). P^{-1}$
- $P^{-1}D = \exp(A)P$ B

B

- $\exp(A) = P^{-1} \cdot \exp(D) \cdot P$
- $\exp(A) = P^{1}. P. \exp(D)$
- 30. Choose the correct option (s)
 - Matrix and its inverse have same
- eigen vectors
- Matrix and its inverse product is identity matrix provided matrix is singular
- Matrix and its inverse is commutative D
- Matrix and its inverse have same eigen values