CLASS TEST PAPER: STATISTICAL MECHANICS CLASS: B.Sc VI SEM, 2023-24

Maximum Marks 10

- 1. Attempt any four of the following.
 - (a) Calculate the number of modes in a chamber of volume $1m^3$ in the frequency range $0.6 \times 10^{14} Hz$ to $0.61 \times 10^{14} Hz$.
 - (b) An oscillator vibrates with frequency $2.4 \times 10^{14} Hz$ at T = 1900 K Calculate its average energy treating it as classical and Planck's oscillator.
 - (c) What is the origin of the ultraviolet catastrophe?
 - (d) explain the concept of microstate, macrostate, and most probable macrostate on the basis of result obtained when throwing two identical 6 sided dice, each with the number 1-6 written on their faces.
 - (e) Consider a system of three distinguishable particles with particle energies 0, ϵ , 2ϵ and 3ϵ . If the total energy of the system be 3ϵ . Enumerate all macrostates and microstates of the system.
- 2. A system consisting of two particles, each of which can be any one of three states of energy 0, ϵ and 3ϵ is in thermal equilibrium at temperature T. write expressions for partition function if the particles obey BE, BE and FD statistics.
- 3. What are the different types of heat capacity of a diatomic molecules. show that at low temperature the total specific heat of a diatomic molecule is 3.5R
- 4. Obtain Planck's law for blackbody radiation. using this obtain Wien's constant and Stefan's constant.
- 5. Derive single particle partition function for an ideal monoatomic gas enclose in a volume V at temperature T. Find the average energy and pressure for a system of N such distinguishable particles.