Assignment

Paper Name: Electrical Circuit Analysis

UPC: 2222011203

B.Sc. (H) Physics, Session: 2023-24

Semester -II

Due date: 22/03/2024

Questions

- 1. Find voltage V₃ and current I₂ for the network in Fig. (i).
- 2. Convert the voltage sources in Fig. (ii) to current sources.
- 3. Find the current through each resistor for the networks in Fig. (iii), using mesh analysis.
- 4. Write the mesh equations for the networks in Fig. (iv). Using determinants, solve for the loop currents in each network. Use clockwise mesh currents.
- 5. Determine the nodal voltages for the networks in Fig. (v). Also, find the voltage across each current source.
- 6. Write the nodal equations for the bridge configuration in Fig. (vi).

- 7. Find the current I through the 24 V source in Fig. (vii), using superposition principle.
- 8. Find the voltage across the 6 A source in Fig. (viii), using superposition principle.
- 9. Find the Thévenin equivalent circuit for the portions of the networks in Fig. (ix) external to points a and b.
- 10. For the network in Fig. (x) find the Thévenin equivalent circuit for the network external to the load resistor R_L.

- 11. Find the Norton equivalent circuit of the circuit in Fig. (xi) at terminals a-b.
- 12. Find the Norton equivalent circuit for the portions of the networks in Fig. (xii) external to branch a-b.
- 13. (a) For the network in Fig. (xiii), determine the value of R for maximum power to R.(b) Determine the maximum power to R.
- 14. Convert the Y in Fig. (xiv) to a Δ .

Susondra Kronen.

Surandry Kurran