Teaching Plan For The Academic Year: 2023-2024 | Faculty
Name | Course
Name | Paper Name | Semester | Section | Month(s) | Topics/Units | Total
Course
(%) | Course
Completed
(%) | ICT Tools
Used | Any
Remarks | Saved On | |-----------------------|--|------------------------|-----------------|---------|-----------|--|------------------------|----------------------------|------------------------|----------------|---------------------------| | Dr. ARUN
VIR SINGH | B. Sc.
Physical
Science
(Chem.) | MECHANICS - NEP | Odd
Semester | None | August | unit-1Review of
vectors and ordinary
differential | 10 | 10 | | | 11th
October,
2023 | | Dr. ARUN
VIR SINGH | B. Sc.
Physical
Science
(Chem.) | MECHANICS - NEP | Odd
Semester | None | September | Unit-II: Fundamentals of Dynamics | 25 | 30 | class room
teaching | | 11th
October,
2023 | | Dr. ARUN
VIR SINGH | B. Sc.
Physical
Science
(Chem.) | MECHANICS - NEP | Odd
Semester | None | October | Unit-II Elastic and in-
elastic collision | 30 | 0 | | | 11th
October,
2023 | | Dr. NEETI
GOEL | B. Sc.
(Hons.)
Physics
V | SOLID STATE
PHYSICS | Odd
Semester | None | August | Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis- Central and Non-Central Elements. Symmetry Elements Unit Cell. Miller Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg"s Law. Laue Condition, Atomic and Geometrical Factor. | 20 | 20 | | | 18th
December,
2023 | | Dr. NEETI
GOEL | B. Sc.
(Hons.)
Physics
V | SOLID STATE
PHYSICS | Odd
Semester | None | September | Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit"s Law, Einstein and Debye theories of specific heat of solids. T3 law. Electrons in Solids: Electrons in metals- Drude Model, Density of states (1- D,2-D,3-D), Elementary band theory:Kronig Penny model. Band Gap., Effective mass, mobility, Hall Effect (Metal and Semiconductor) | 33 | 53.33 | | | 18th
December,
2023 | | Faculty
Name | Course
Name | Paper Name | Semester | Section | Month(s) | Topics/Units | Total
Course
(%) | Course
Completed
(%) | ICT Tools
Used | Any
Remarks | Saved On | |--------------------|---|-------------------------------|-----------------|---------|-----------|---|------------------------|----------------------------|-------------------|----------------|---------------------------| | Dr. NEETI
GOEL | B. Sc.
(Hons.)
Physics
V | SOLID STATE
PHYSICS | Odd
Semester | None | October | Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia- and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism.Curie"s law, Weiss"s Theory of Ferromagnetism and Ferromagnetic Domains, B-H Curve. Hysteresis, soft and hard material and Energy Loss. (9 Lectures) Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation.Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. | 30 | 83.33 | | | 18th
December,
2023 | | Dr. NEETI
GOEL | B. Sc.
(Hons.)
Physics
V | SOLID STATE
PHYSICS | Odd
Semester | None | November | Ferroelectric Properties of Materials: Classification of crystals, Piezoelectric effect, Pyroelectric effect, Ferroelectric effect, Electrostrictive effect, Curie-Weiss Law, Ferroelectric domains, PE hysteresis loop. Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London"s Equation and Penetration Depth. Isotope effect. Idea of BCS theory (No derivation) | 17 | 100 | | | 18th
December,
2023 | | Dr. NIDHI
TYAGI | B. Sc.
Physical
Science
(Chem.)
V | ELEMENTS OF
MODERN PHYSICS | Odd
Semester | None | August | unit 1 | 13 | 13.33 | | completed | 11th
October,
2023 | | Dr. NIDHI
TYAGI | B. Sc.
Physical
Science
(Chem.)
V | ELEMENTS OF
MODERN PHYSICS | Odd
Semester | None | September | unit 2,3 and 4 | 28 | 28.33 | | completed | 11th
October,
2023 | | Dr. NIDHI
TYAGI | B. Sc.
Physical
Science
(Chem.)
V | ELEMENTS OF
MODERN PHYSICS | Odd
Semester | None | October | Remaining unit 4 and unit 5 | 30 | 30 | | completed | 11th
October,
2023 | | Dr. NIDHI
TYAGI | B. Sc.
Physical
Science
(Chem.)
V | ELEMENTS OF
MODERN PHYSICS | Odd
Semester | None | November | unit 5 and unit 6 | 28 | 28.33 | | completed | 11th
October,
2023 | | Faculty
Name | Course
Name | Paper Name | Semester | Section | Month(s) | Topics/Units | Total
Course
(%) | Course
Completed
(%) | ICT Tools
Used | Any
Remarks | Saved On | |-----------------------------|---|--|-----------------|---------|-----------|--|------------------------|----------------------------|--|----------------|---------------------------| | Dr.
PRIYANKA
VERMA | B. Sc.
(Hons.)
Physics
V | QUANTUM
MECHANICS AND
APPLICATIONS | Odd
Semester | None | August | Unit-1 (Time dependent scridinger equation) | 20 | 0 | Black
board,
Space
Portal, You
tube, e-
books | | 29th
August,
2023 | | Dr.
PRIYANKA
VERMA | B. Sc.
(Hons.)
Physics
V | QUANTUM
MECHANICS AND
APPLICATIONS | Odd
Semester | None | September | Unit-2 (Time independent Schrodinger equation) | 20 | 0 | Black
board,
Space
Portal, You
tube, e-
books | | 29th
August,
2023 | | Dr.
PRIYANKA
VERMA | B. Sc.
(Hons.)
Physics
V | QUANTUM
MECHANICS AND
APPLICATIONS | Odd
Semester | None | October | Unit-3 (General
discussion of bound
states in an arbitrary
potential) | 20 | 0 | Black
board,
Space
Portal, You
tube, e-
books | | 29th
August,
2023 | | Dr.
PRIYANKA
VERMA | B. Sc.
(Hons.)
Physics
V | QUANTUM
MECHANICS AND
APPLICATIONS | Odd
Semester | None | November | Unit-4 (Quantum
theory of Hydrogen
like atoms) + Unit-5
(Atoms in Eletric and
Magnetic fields) | 30 | 0 | Black
board,
Space
Portal, You
tube, e-
books | | 29th
August,
2023 | | Dr.
PRIYANKA
VERMA | B. Sc.
(Hons.)
Physics
V | QUANTUM
MECHANICS AND
APPLICATIONS | Odd
Semester | None | December | Unit-6(Many electron atoms) | 10 | 0 | Black
board,
Space
Portal, You
tube, e-
books | | 29th
August,
2023 | | Dr.
RAVINDRA
SINGH | B. Sc.
(Hons.)
Physics
III | MATHEMATICAL
PHYSICS III | Odd
Semester | None | November | Unit I | 95 | 100 | | Completed | 29th
December,
2023 | | Dr.
RAVINDRA
SINGH | B. Sc.
(Hons.)
Physics
III | MATHEMATICAL
PHYSICS III | Odd
Semester | None | December | Unit I | 100 | 100 | | Completed | 29th
December,
2023 | | Dr.
RAVINDRA
SINGH | B. Sc.
(Hons.)
Physics
III | MATHEMATICAL
PHYSICS II | Odd
Semester | None | August | Unit-III | 15 | 100 | | Completed | 11th
October,
2023 | | Dr.
RAVINDRA
SINGH | B. Sc.
(Hons.)
Physics
III | MATHEMATICAL
PHYSICS II | Odd
Semester | None | September | Unit-III & II | 40 | 100 | | Completed | 11th
October,
2023 | | Dr.
RAVINDRA
SINGH | B. Sc.
(Hons.)
Physics
III | MATHEMATICAL
PHYSICS II | Odd
Semester | None | October | Unit-II & Unit-I | 65 | 100 | | Completed | 11th
October,
2023 | | Dr. SHIV
SHANKAR
GAUR | B. Sc.
Physical
Science
(C.S.) V | ELEMENTS OF
MODERN PHYSICS | Odd
Semester | None | August | unit 1 | 15 | 100 | class room
teaching | | 17th
September
2023 | | Dr. SHIV
SHANKAR
GAUR | B. Sc.
Physical
Science
(C.S.) V | ELEMENTS OF
MODERN PHYSICS | Odd
Semester | None | September | unit 2 &3 | 25 | 100 | class room
teaching | | 17th
September
2023 | | Dr. SHIV
SHANKAR
GAUR | B. Sc.
Physical
Science
(C.S.) V | ELEMENTS OF
MODERN PHYSICS | Odd
Semester | None | October | unit 3&4 | 35 | 100 | class room
teaching | | 31st
December,
2023 | | Dr. SHIV
SHANKAR
GAUR | B. Sc.
Physical
Science
(C.S.) V | ELEMENTS OF
MODERN PHYSICS | Odd
Semester | None | November | unit 5 | 25 | 100 | class room
teaching | | 31st
December,
2023 | | Faculty
Name | Course
Name | Paper Name | Semester | Section | Month(s) | Topics/Units | Total
Course
(%) | Course
Completed
(%) | ICT Tools
Used | Any
Remarks | Saved On | |---------------------------|---|-------------------------------------|-----------------|---------|-----------|---|------------------------|----------------------------|---|---|---------------------------| | JYOTI
CHAUHAN | B. Sc.
Physical
Science
(C.S.) I | MECHANICS - NEP | Odd
Semester | None | August | Unit 1 | 20 | 20 | | | 14th
October,
2023 | | JYOTI
CHAUHAN | B. Sc.
Physical
Science
(C.S.) I | MECHANICS - NEP | Odd
Semester | None | September | Unit 4 and 5 | 45 | 45 | | | 14th
October,
2023 | | JYOTI
CHAUHAN | B. Sc.
Physical
Science
(C.S.) I | MECHANICS - NEP | Odd
Semester | None | October | Unit 3 | 75 | 0 | | | 14th
October,
2023 | | JYOTI
CHAUHAN | B. Sc.
Physical
Science
(C.S.) I | MECHANICS - NEP | Odd
Semester | None | November | Unit 3 | 100 | 0 | | | 14th
October,
2023 | | моніт | B. Sc.
(Hons.)
Physics
I | WAVES AND
OSCILLATIONS | Odd
Semester | None | September | Oscillations | 15 | 15 | | | 7th
December,
2023 | | моніт | B. Sc.
(Hons.)
Physics
I | WAVES AND
OSCILLATIONS | Odd
Semester | None | October | Superposition of oscillations | 40 | 40 | | | 7th
December,
2023 | | моніт | B. Sc.
(Hons.)
Physics | WAVES AND
OSCILLATIONS | Odd
Semester | None | November | Coupled oscillations | 40 | 40 | | | 7th
December,
2023 | | моніт | B. Sc.
(Hons.)
Physics | WAVES AND
OSCILLATIONS | Odd
Semester | None | December | Waves | 5 | 5 | | | 7th
December,
2023 | | моніт | B. Sc.
(Hons.)
Physics | WAVES AND
OSCILLATIONS -
NEP | Odd
Semester | None | September | Simple harmonic motion | 10 | 10 | | Up to
superposition
principal | 19th
October,
2023 | | моніт | B. Sc.
(Hons.)
Physics | WAVES AND
OSCILLATIONS -
NEP | Odd
Semester | None | October | Damped and Forced oscillations | 20 | 40 | | up to damped
oscillations | 19th
October,
2023 | | моніт | B. Sc.
(Hons.)
Physics | WAVES AND
OSCILLATIONS -
NEP | Odd
Semester | None | November | Coupled oscillations and waves | 40 | 0 | | | 23rd
November,
2023 | | Ms.
BHARTI | B. Sc.
(Hons.)
Physics | MECHANICS - NEP | Odd
Semester | None | August | galilean and lorentz
transformation | 10 | 100 | | | 11th
January,
2024 | | Ms.
BHARTI | B. Sc.
(Hons.)
Physics
I | MECHANICS - NEP | Odd
Semester | None | September | lorentz
transformations,
relativity, center of
mass, angular
momentum, energy
conservation | 35 | 100 | | | 11th
January,
2024 | | Ms.
PREETIKA
DHAWAN | B. Sc.
(Hons.)
Physics
V | ADVANCED
MATHEMATICAL
PHYSICS | Odd
Semester | None | August | Unit 2, Unit 3 | 16 | 13 | GOOGLE
MEET,
JAMBOARD,
QUIZZES | remaining to
be covered in
the following
month | 17th
September
2023 | | Ms.
PREETIKA
DHAWAN | B. Sc.
(Hons.)
Physics
V | ADVANCED
MATHEMATICAL
PHYSICS | Odd
Semester | None | September | Unit 3, Unit 1 | 30 | 40 | GOOGLE
MEET,
JAMBOARD,
QUIZZES,
TELEGRAMS | remaining to
be covered in
the following
month | 17th
September
2023 | | Faculty
Name | Course
Name | Paper Name | Semester | Section | Month(s) | Topics/Units | Total
Course
(%) | Course
Completed
(%) | ICT Tools
Used | Any
Remarks | Saved On | |---------------------------|-------------------------------------|-------------------------------------|------------------|---------|-----------|--|------------------------|----------------------------|---|--|----------------------------| | Ms.
PREETIKA
DHAWAN | B. Sc.
(Hons.)
Physics
V | ADVANCED
MATHEMATICAL
PHYSICS | Odd
Semester | None | October | Unit 1, Unit 4, Unit 5 | 28 | 0 | GOOGLE
MEET,
JAMBOARD,
QUIZZES,
TELEGRAMS | | 17th
September,
2023 | | Ms.
PREETIKA
DHAWAN | B. Sc.
(Hons.)
Physics
V | ADVANCED
MATHEMATICAL
PHYSICS | Odd
Semester | None | November | Unit 5, Unit 6 | 26 | 0 | GOOGLE
MEET,
JAMBOARD,
QUIZZES,
TELEGRAMS | | 17th
September,
2023 | | NEETU
VERMA | | Sem. I - Physics
(Generic) | Odd
Semester | None | August | Unit 1:- Vectors and ODE | 18 | 18 | chalk &
board | | 12th
October,
2023 | | NEETU
VERMA | | Sem. I - Physics
(Generic) | Odd
Semester | None | September | unit 3 & 6 :- Rotational
Dynamics, SHM and
STR | 42 | 60 | chalk &
board | | 12th
October,
2023 | | NEETU
VERMA | | Sem. I - Physics
(Generic) | Odd
Semester | None | October | unit 4 & 5: -
Gravitation & Elasticity | 18 | 78 | chalk &
board | | 12th
October,
2023 | | NEETU
VERMA | | Sem. I - Physics
(Generic) | Odd
Semester | None | November | unit 2:- Fundamentals
of Dynamics | 22 | 100 | chalk &
board | | 12th
October,
2023 | | NEETU
VERMA | | Sem. I - Physics
(Generic) | Odd
Semester | None | December | Revision | 100 | 100 | chalk &
board | Revision of
difficult
topics from
full Syllabus | 12th
October,
2023 | | NIHAL
KUMAR | B. Sc.
(Hons.)
Physics
I | MATHEMATICAL
PHYSICS - NEP | Even
Semester | None | January | Gradient, Curl and
Divergence | 30 | 0 | | | 17th
January,
2024 | | PINKI
YADAV | B. Sc.
(Hons.)
Physics
III | THERMAL PHYSICS | Odd
Semester | None | August | Fundamental idea of thermodynamic equilibrium and zeroth law of thermodynamics, concept of work and heat, first law of thermodynamics and its applications, compressibility and expansion coefficient /Unit -1 | 10 | 100 | Offline | | 12th
October,
2023 | | Faculty
Name | Course
Name | Paper Name | Semester | Section | Month(s) | Topics/Units | Total
Course
(%) | Course
Completed
(%) | ICT Tools
Used | Any
Remarks | Saved On | |-----------------|----------------------------|-----------------|-----------------|---------|-----------|---|------------------------|----------------------------|-------------------|----------------|--------------------------| | PINKI
YADAV | B. Sc. (Hons.) Physics III | THERMAL PHYSICS | Odd
Semester | None | September | Unit – II – Second law of Thermodynamics, Reversible and Irreversible processes, Carnot engine and Carnot's cycle, Refrigerator, efficiency of Carnot engine and refrigerator, Second Law of Thermodynamics: Kelvin-Planck and Clausius statements and their equivalence, Carnot's theorem, Applications of Second Law of Thermodynamics in the light of Phase Change, Thermodynamic Scale of Temperature and its equivalence to Perfect Gas Scale. Unit – III – Entropy –Concept of Entropy, Entropy changes in Reversible and Irreversible processes with examples, Clausius Theorem, Clausius inequality, Second Law of Thermodynamics in terms of Entropy. Temperature-Entropy diagrams for Carnot's cycle and related problems, Entropy of perfect and real gases, conceptual problems related to Entropy during a Phase Change, Nernst Heat Theorem: Unattainability of Absolute Zero and Third Law of Thermodynamics. Unit – IV – Thermodynamic Potentials and Maxwell's Relations, Basic concept of Thermodynamic Potentials, Internal Energy, Entropy, Helmholtz Free Energy, Gibb's Free Energy: their properties and applications. | 35 | 100 | Offline | | 12th
October,
2023 | | Faculty
Name | Course
Name | Paper Name | Semester | Section | Month(s) | Topics/Units | Total
Course
(%) | Course
Completed
(%) | ICT Tools
Used | Any
Remarks | Saved On | |-----------------|-------------------------------------|-----------------|-----------------|---------|----------|--|------------------------|----------------------------|-------------------|----------------|--------------------------| | PINKI
YADAV | B. Sc. (Hons.) Physics III | THERMAL PHYSICS | Odd
Semester | None | October | Surface Film and variation of Surface Tension with temperature, Magnetic work, Cooling due to Adiabatic Demagnetization, Phase Transitions: First order and Second order Phase Transitions with examples, Clausius Clapeyron Equation, Ehrenfest Equations, Derivation of Maxwell's Thermodynamic Relations and their applications in Clausius Clapeyron Equation, value of CP – Cv, TdS equations, evaluation of CP /Cv and Ratio of Adiabatic to Isothermal elasticity. Unit – V – Kinetic Theory of Gases and Molecular Collisions, Constrained maximization using Lagrange Multipliers, Maxwell-Boltzmann Law of Distribution of Velocities in an ideal gas and its experimental verification with any one method. Mean, Root Mean Square and Most Probable Speeds, Maxwell-Boltzman equation for distribution of Energy: Average Energy and Most Probable Energy, | 30 | 0 | Offline | | 12th
October,
2023 | | PINKI
YADAV | B. Sc.
(Hons.)
Physics
III | THERMAL PHYSICS | Odd
Semester | None | November | Mean Free Path, Collision Probability, estimation of Mean Free Path, Continuity Equation for Transport Phenomena in ideal gases: Viscosity, Thermal Conductivity and Diffusion Unit – VI - Real Gases, Behavior of Real Gases: Deviations from the Ideal Gas Equation, Andrew's Experiments on CO2 Gas, Virial Equation, Continuity of liquid and gaseous states, Boyle Temperature, Van der Waals Equation of State for Real Gases, Comparison with Experimental Curves: P-V diagrams, Value of Critical Constants, Law of Corresponding States, Free Adiabatic Expansion of a Perfect Gas, Joule Thomson Porous - Plug Experiment, Joule Thomson, Coefficient for Ideal and Van der Waals Gases, Temperature of Inversion and Joule Thomson cooling. | 24 | 0 | Offline | | 12th
October,
2023 | | PINKI
YADAV | B. Sc.
(Hons.)
Physics
III | THERMAL PHYSICS | Odd
Semester | None | December | Revision and doubts | 1 | 0 | Offline | | 12th
October,
2023 | | Faculty
Name | Course
Name | Paper Name | Semester | Section | Month(s) | Topics/Units | Total
Course
(%) | Course
Completed
(%) | ICT Tools
Used | Any
Remarks | Saved On | |------------------|---|-------------------------|-----------------|---------|-----------|---|------------------------|----------------------------|-------------------|----------------|---------------------------| | SANJESH
KUMAR | B. Sc.
Physical
Science
(C.S.) III | HEAT AND THERMODYNAMICS | Odd
Semester | None | September | Unit - I - Laws of Thermodynamics - Fundamental basics of Thermodynamic system and variables, Zeroth Law of Thermodynamics and temperature, First law and internal energy, various thermodynamical processes, Applications of First Law: general relation between Cp and Cv, work done during various processes, Compressibility and Expansion Coefficient, reversible and irreversible processes, Second law: Kelvin- Planck and Clausius statements, | 100 | 95 | | | 30th
December,
2023 | | SANJESH
KUMAR | B. Sc.
Physical
Science
(C.S.) III | HEAT AND THERMODYNAMICS | Odd
Semester | None | October | Unit - I - Laws of Thermodynamics and Unit - II - Thermodynamic Potentials and Maxwell's Relations: Kelvin-Planck and Clausius statements, Carnot engine, Carnot cycle and theorem, basic concept of Entropy, Entropy changes in reversible and irreversible processes, Clausius inequality, Entropy- temperature diagrams, Basic concept of Thermodynamic Potentials, Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy, Gibb's Free Energy, derivation of Maxwell's Thermodynamic Relations and their applications in Clausius Clapeyron Equation, value of Cp - Cy, TdS Equations, Energy equations for ideal gases, evaluation of Cp /Cy | 100 | 100 | | | 30th
December,
2023 | | SANJESH
KUMAR | B. Sc.
Physical
Science
(C.S.) III | HEAT AND THERMODYNAMICS | Odd
Semester | None | November | Unit — III - Kinetic Theory of Gases and Molecular Collisions: Maxwell-Boltzmann Law of Distribution of Velocities in an ideal gas and its experimental verification, Mean, Root Mean Square and Most Probable Speeds, Mean Free Path (Zeroth order), Transport Phenomena in ideal gases: Viscosity, Thermal Conductivity and Diffusion (for vertical case) And Unit - IV - Theory of Radiation: Blackbody radiation, Spectral distribution, Derivation of Planck's law, Deduction of Wien's law, Rayleigh- Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law | 100 | 100 | | | 30th
December,
2023 | | Faculty
Name | Course
Name | Paper Name | Semester | Section | Month(s) | Topics/Units | Total
Course
(%) | Course
Completed
(%) | ICT Tools
Used | Any
Remarks | Saved On | |------------------|---|------------------------------|-----------------|---------|-----------|---|------------------------|----------------------------|-------------------|----------------|---------------------------| | SANJESH
KUMAR | B. Sc.
Physical
Science
(C.S.) III | HEAT AND THERMODYNAMICS | Odd
Semester | None | December | Unit — V - Statistical Mechanics: Macrostate and Microstate, phase space, Entropy and thermodynamic probability, Maxwell ☑ Boltzmann law, qualitative description of Quantum statistics — Bose Einstein and Fermi Dirac, comparison of three statistics. | 100 | 100 | | | 30th
December,
2023 | | SHOBHA | B. Sc.
(Hons.)
Physics
V | NUCLEAR AND PARTICLE PHYSICS | Odd
Semester | None | August | General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density, matter density (experimental determination of each), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/Z plot, angular momentum, parity, magnetic moment, electric moments. | 10 | 100 | Offline | | 12th
October,
2023 | | SHOBHA | B. Sc.
(Hons.)
Physics
V | NUCLEAR AND PARTICLE PHYSICS | Odd
Semester | None | September | Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, nucleon separation energies (up to two nucleons), Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure and the basic assumption of shell model. Radioactivity decay: Decay rate and equilibrium (Secular and Transient)(a) Alpha decay: basics of α -decay processes, theory of α -emission, Gamow factor, Geiger Nuttall law, α -decay spectroscopy, decay Chains. (b) β -decay: energy kinematics for β -decay, β -gectrum, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rmission from the excited state of the nucleus & kinematics, internal conversion. | 30 | 100 | lecture | | 12th
October,
2023 | | Faculty
Name | Course
Name | Paper Name | Semester | Section | Month(s) | Topics/Units | Total
Course
(%) | Course
Completed
(%) | ICT Tools
Used | Any
Remarks | Saved On | |-----------------|-----------------------------------|------------------------------|-----------------|---------|----------|--|------------------------|----------------------------|-------------------|----------------|--------------------------| | SHOBHA | B. Sc.
(Hons.)
Physics
V | NUCLEAR AND PARTICLE PHYSICS | Odd
Semester | None | October | Nuclear Reactions: Types of Reactions, units of related physical quantities, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct reaction, resonance reaction, Coulomb scattering (Rutherford scattering). Interaction of Nuclear Radiation with matter: Energy loss due to ionization (BetheBlock formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter (photoelectric effect, Compton scattering, pair production), neutron interaction with matter. | 30 | 100 | Offline | | 12th
October,
2023 | | SHOBHA | B. Sc.
(Hons.)
Physics
V | NUCLEAR AND PARTICLE PHYSICS | Odd
Semester | None | November | Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobilityof particle for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si 134 and Ge) for charge particle and photon detection (concept of charge carrier andmobility), neutron detector. Particle Accelerators: Accelerator facility available in India: Vande Graaff generator(Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons (Principal, construction, working, advantages and disadvantages). Particle physics: Particle interactions (concept of different types of forces), basic features, Cosmic Rays, types of particles and its families, | 25 | 100 | offline | | 12th
October,
2023 | Prof (Dr.) Arun Vir Singh TIC, Department of Physics