
Database Management Systems

SESSION 1

FOR GE COMPUTER SCIENCE
SEMESTER 2

Basics of Functional Dependencies and
Normalization for Relational Databases

Reference:- Database Management Systems :Ramez Elmasri, Navathe, 7th Edition

Outline of topics
◼ 1 Informal Design Guidelines for Relational Databases

◼ 1.1 Semantics of the Relation Attributes

◼ 1.2 Redundant Information in Tuples and Update Anomalies

◼ 1.3 Null Values in Tuples

◼ 1.4 Spurious Tuples

◼ 2 Functional Dependencies (FDs)

◼ 2.1 Definition of Functional Dependency

Contd…
◼ 3 Normal Forms Based on Primary Keys

◼ 3.1 Normalization of Relations

◼ 3.2 Practical Use of Normal Forms

◼ 3.3 Definitions of Keys and Attributes Participating in Keys

◼ 3.4 First Normal Form

◼ 3.5 Second Normal Form

◼ 3.6 Third Normal Form

◼ 4 General Normal Form Definitions for 2NF and 3NF (For Multiple
Candidate Keys)

Revision of topics to understand

Normalization

Informal Design Guidelines for Relational
Databases
◼ What is relational database design?

◼ The grouping of attributes to form "good" relation schemas

◼ Two levels of relation schemas

◼ The logical "user view" level

◼ The storage "base relation" level

◼ Design is concerned mainly with base relations

◼ What are the criteria for "good" base relations?

1.1 Semantics of
the Relational
Attributes must
be clear

Important: We should aim to design a schema that can be
explained easily relation by relation. The semantics of
attributes should be easy to interpret and understand.

GUIDELINE 1: Informally, each tuple in a relation should
represent one entity or relationship instance. (Applies to

individual relations and their attributes).

Attributes of different
entities (EMPLOYEEs,

DEPARTMENTs, PROJECTs)
should not be mixed in the

same relation

Only foreign keys should be
used to refer to other

entities

Entity and relationship
attributes should be kept

apart as much as possible.

Consider a
simplified
Company Database
Schema
P.K –Primary Key

F.K. – Foreign key

(The entities and attributes can be
easily understood and interpreted)

1.2 Redundant
Information in
Tuples and
Update
Anomalies

◼ Information is stored redundantly
(Data redundancy is a condition created within

a database or in which the same piece of data is held in

two separate places.)

Redundancy leads to

◼ Wastes storage

◼ Causes problems with update

anomalies

◼ Insertion anomalies

◼ Deletion anomalies

◼ Modification anomalies

Update Anomoly

◼ Consider the relation:

◼ EMP_PROJ(Emp#, Proj#, Ename,

Pname, No_hours)

◼ Update Anomaly:

◼ Changing the name of project number

P1 from “Billing” to “Customer-

Accounting” may cause this update to

be made for all 100 employees

working on project P1.

Another
Example of
update
anomaly

When duplicated data is updated at one instance and not across all

instances where it was duplicated. That’s an update anomaly .

Jerry belongs to English Dept having ID 6. But if English

department ID is updated to 8 in Department table, but this fact is

was not updated in Student table. This leads to anomaly.

ID updated to value 8

Insert Anomaly

◼ Consider the relation:

◼ EMP_PROJ(Emp#, Proj#, Ename,

Pname, No_hours)

◼ Insert Anomaly:

◼ Cannot insert a project unless an

employee is assigned to it.

◼ Conversely

◼ Cannot insert an employee unless an

he/she is assigned to a project.

More
Examples

Consider a relation EMP_DEPT (Ename, Ssn,

Bdate, Address, Dnumber,

Dname, Dmgr_ssn)

insertion anomalies: when adding an employee, we

must assign them to a department or else use NULLs.

When adding a new department with no employees,

we have to use NULLs for the employee Ssn, which

is supposed to be the primary key!

Deletion
Anomaly

◼ Consider the relation:

◼ EMP_PROJ(Emp#, Proj#, Ename,

Pname, No_hours)

◼ Delete Anomaly:

◼ When a project is deleted, it will result

in deleting all the employees who work

on that project.

◼ Alternately, if an employee is the sole

employee on a project, deleting that

employee would result in deleting the

corresponding project.

Deletion
Anomaly

deletion anomalies: if we delete the last
EMP_DEP record from a department, or if
there is only one employee working in a
department. Deleting that record means we
have lost the information about the
department!

Consider a relation EMP_DEPT (Ename, Ssn,

Bdate, Address, Dnumber,

Dname, Dmgr_ssn)

Sample data for
the relations.

Deleting Borg,James record leads to
losing data about Head Quarters dept.

We cannot insert details about new
department as no new employee
recruited in it yet.

If the Dept manager changes we need to
update updating Dmgr_ssn for all
records.

Like wise we would have to update
Pname for all records if project name is
updated.

GUIDELINE 2:

◼ Design a schema that does not suffer

from the insertion, deletion and update

anomalies.

◼ If there are any anomalies present,

then note them so that applications

can be made to take them into

account.

◼ GUIDELINE 3:

◼ Relations should be designed such that their tuples will have as
few NULL values as possible

◼ Attributes that are NULL frequently could be placed in separate
relations (with the primary key)

◼ Reasons for nulls:

◼ Attribute not applicable or invalid

◼ Attribute value unknown (may exist)

◼ Value known to exist, but unavailable

1.4 Generation of Spurious Tuples – avoid at
any cost

Bad designs for a relational database may result in erroneous
results for certain JOIN operations

GUIDELINE 4:

◼ The relations should be designed to satisfy the lossless join
condition.

◼ No spurious tuples should be generated by doing a natural-join
of any relations.

Generation of Spurious tuples

EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

Consider the two relation schemas EMP_LOCS and EMP_PROJ1, which can be
used instead of the single EMP_PROJ

Result of applying
NATURAL JOIN to
the tuples in
EMP_PROJ1 and
EMP_LOCS .

Generated
spurious
tuples are marked
by asterisks.

Suppose that we used EMP_PROJ1 and EMP_LOCS as the base
relations instead of EMP_PROJ. This produces a particularly bad schema
design because we cannot recover the information that was originally in
EMP_PROJ from EMP_PROJ1 and EMP_LOCS.

If we attempt a NATURAL JOIN operation on EMP_PROJ1 and
EMP_LOCS, the result produces many more tuples than the original set
of tuples in EMP_PROJ. Additional tuples that were not in EMP_PROJ
are called spurious tuples

Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because
when we JOIN them back using NATURAL JOIN, we do not get the correct original
information. This is because in this case Plocation is the attribute that relates
EMP_LOCS and EMP_PROJ1, and Plocation is neither a primary key nor a foreign key
in either EMP_LOCS or EMP_PROJ1. We can now informally state another design
guideline.

Functional dependencies
◼ Functional dependencies (FDs)

◼ Are used to specify formal measures of the "goodness" of relational
designs

◼ And keys are used to define normal forms for relations

◼ Are constraints that are derived from the meaning and
interrelationships of the data attributes(A functional dependency is a
constraint between two sets of attributes from the database.
Suppose that our relational database schema has n attributes A1,
A2, ..., An)

◼ A set of attributes X functionally determines a set of attributes Y if
the value of X determines a unique value for Y

Contd..
◼ X  Y holds if whenever two tuples have the same value for X, they

must have the same value for Y

◼ For any two tuples t1 and t2 in any relation instance r(R): If t1[X]=t2[X],

then t1[Y]=t2[Y]

◼ X  Y in R specifies a constraint on all relation instances r(R)

◼ Written as X  Y; can be displayed graphically on a relation schema as

in Figures. (denoted by the arrow:).

◼ FDs are derived from the real-world constraints on the attributes

Examples of functional dependencies
◼ Social security number determines employee name

◼ SSN  ENAME

◼ Project number determines project name and location

◼ PNUMBER  {PNAME, PLOCATION}

◼ Employee ssn and project number determines the hours per
week that the employee works on the project

◼ {SSN, PNUMBER}  HOURS

Question

Given the relation R(A,B,C,D) below. determine which

FDs hold on the relation R given the extension?

Solution
Here, the following FDs may hold because the four tuples in the current extension have
no violation of these constraints:

B → C

(as b1-> c1, b2->c2 b3 ->c4)

each value of B determines unique value of c)

other constraints that may hold

C → B

{A, B} → C

{A, B} → D

{C, D} → B

Question for Lab class
Create the following tables

Identify primary key and foreign keys in the table. Write create table commands

Suppliers (SNo, Sname, Status, SCity)

Parts (PNo, Pname, Colour, Weight, City)

Project (JNo, Jname, Jcity)

Shipment (Sno, Pno, Jno, Quantity)

Insert the sample data given in the next slide

TABLE Suppliers

SNo Sname Status SCity

===========================

S1 Smith 20 London

S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London

S5 Adams 30 Athens

TABLE P

PNo Pname Color Weight City

================================

P1 Nut Red 12 London

P2 Bolt Green 17 Paris

P3 Screw Blue 17 Rome

P4 Screw Red 14 London

P5 Cam Blue 12 Paris

P6 Cog Red 19 London

TABLE Project

Jno Jname JCity

=================

J1 Sorter Paris

J2 Punch Rome

J3 Reader Athens

J4 Console Athens

J5 Collator London

J6 Terminal Oslo

J7 Tape London

TABLE Shipment

Sno Pno Jno Qty

S1 P1 J1 200

S1 P1 J4 700

S2 P3 J1 400

S2 P3 J2 200

S2 P3 J3 200

S2 P3 J4 500

S2 P3 J5 600

S2 P3 J6 400

S2 P3 J7 800

S2 P5 J2 100

S3 P3 J1 200

S3 P4 J2 500

S4 P6 J3 300

S4 P6 J7 300

S5 P2 J2 200

S5 P2 J4 100

S5 P5 J5 500

S5 P5 J7 100

S5 P6 J2 200

S5 P1 J4 100

S5 P3 J4 200

S5 P4 J4 800

S5 P5 J4 400

S5 P6 J4 500

