Database Management Systems

FOR GE COMPUTER SCIENCE SEMESTER 2

SESSION 1

Basics of Functional Dependencies and Normalization for Relational Databases

Reference:- Database Management Systems :Ramez Elmasri, Navathe, 7th Edition

Outline of topics

- Informal Design Guidelines for Relational Databases
 - 1.1 Semantics of the Relation Attributes
 - 1.2 Redundant Information in Tuples and Update Anomalies
 - 1.3 Null Values in Tuples
 - 1.4 Spurious Tuples
- 2 Functional Dependencies (FDs)
 - 2.1 Definition of Functional Dependency

Contd...

- 3 Normal Forms Based on Primary Keys
 - 3.1 Normalization of Relations
 - 3.2 Practical Use of Normal Forms
 - 3.3 Definitions of Keys and Attributes Participating in Keys
 - 3.4 First Normal Form
 - 3.5 Second Normal Form
 - 3.6 Third Normal Form
- 4 General Normal Form Definitions for 2NF and 3NF (For Multiple Candidate Keys)

Revision of topics to understand Normalization

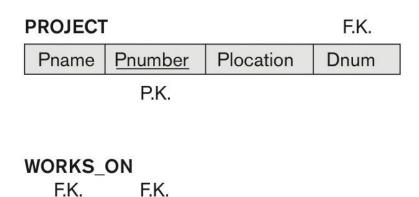
Informal Design Guidelines for Relational Databases

- What is relational database design?
 - The grouping of attributes to form "good" relation schemas
- Two levels of relation schemas
 - The logical "user view" level
 - The storage "base relation" level
- Design is concerned mainly with base relations
- What are the criteria for "good" base relations?

1.1 Semantics of the Relational Attributes must be clear

GUIDELINE 1: Informally, each tuple in a relation should represent one entity or relationship instance. (Applies to individual relations and their attributes).

Important: We should aim to design a schema that can be explained easily relation by relation. The semantics of attributes should be easy to interpret and understand.


Consider a simplified Company Database Schema

P.K – Primary Key

F.K. – Foreign key

(The entities and attributes can be easily understood and interpreted)

F.K. EMPLOYEE **B**date Address Ename Ssn Dnumber P.K. DEPARTMENT F.K. Dname Dnumber Dmgr_ssn P.K. **DEPT_LOCATIONS** F.K. Dlocation Dnumber P.K.

<u>Ssn</u> <u>Pnumber</u> Hours

1.2 Redundant Information in Tuples and Update Anomalies

Information is stored redundantly

(Data redundancy is a condition created within a database or in which the same piece of data is held in two separate places.)

Redundancy leads to

- Wastes storage
- Causes problems with update anomalies
 - Insertion anomalies
 - Deletion anomalies
 - Modification anomalies

Update Anomoly

Consider the relation:

- EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)
- Update Anomaly:
 - Changing the name of project number P1 from "Billing" to "Customer-Accounting" may cause this update to be made for all 100 employees working on project P1.

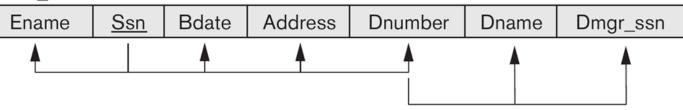
Another Example of update anomaly

Student_ID	Enroll Number	Roll Number	Name	Address	City	Dept_ID
1	AX001	1-BSCS-2018	John	Street 13 House 14	Lahore	3
2	AX002	2-BSBT-2018	Faiz	house 18 Defence Club	Karachi	4
3	AX003	3-BSEN-2018	Nouman	Street 19 House 20	Faislabad	5
4	AX004	4-PEEN-2018	Jerry	Street 18 House 29	Dubai	6

Dept_Id	Name	Phone Extension			
3	Computer Science	398974			
4	Botany	988784			
8	English	898418			
ID updated to value 8					

When duplicated data is updated at one instance and not across all instances where it was duplicated. That's an update anomaly .

Jerry belongs to English Dept having ID 6. But if English department ID is updated to 8 in Department table, but this fact is was not updated in Student table. This leads to anomaly.


Insert Anomaly

- Consider the relation:
 - EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)
- Insert Anomaly:
 - Cannot insert a project unless an employee is assigned to it.
- Conversely
 - Cannot insert an employee unless an he/she is assigned to a project.

More Examples

Consider a relation EMP_DEPT (Ename, <u>Ssn</u>, Bdate, Address, Dnumber, Dname, Dmgr_ssn)

EMP_DEPT

insertion anomalies: when adding an employee, we must assign them to a department or else use NULLs. When adding a new department with no employees, we have to use NULLs for the employee Ssn, which is supposed to be the primary key!

Deletion Anomaly

- Consider the relation:
 - EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)
- Delete Anomaly:
 - When a project is deleted, it will result in deleting all the employees who work on that project.
 - Alternately, if an employee is the sole employee on a project, deleting that employee would result in deleting the corresponding project.

Deletion Anomaly

Consider a relation EMP_DEPT (Ename, <u>Ssn</u>, Bdate, Address, Dnumber, Dname, Dmgr_ssn)

Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
▲		▲	▲		4	

deletion anomalies: if we delete the last EMP_DEP record from a department, or if there is only one employee working in a department. Deleting that record means we have lost the information about the department!

Sample data for the relations.

Deleting Borg, James record leads to losing data about Head Quarters dept.

We cannot insert details about new department as no new employee recruited in it yet.

If the Dept manager changes we need to update updating Dmgr_ssn for all records.

Like wise we would have to update Pname for all records if project name is updated.

					Redun	dancy
EMP_DEPT						
Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

			Redundancy	Redunda	incy
EMP_PROJ					
<u>Ssn</u>	Pnumber	Hours	Ename	Pname	Plocation
123456789	1	32.5	Smith, John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProductZ	Houston
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston
333445555	10	10.0	Wong, Franklin T.	Computerization	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston
999887777	30	30.0	Zelaya, Alicia J.	Newbenefits	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Computerization	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganization	Houston
888665555	20	Null	Borg, James E.	Reorganization	Houston

GUIDELINE 2:

- Design a schema that does not suffer from the insertion, deletion and update anomalies.
- If there are any anomalies present, then note them so that applications can be made to take them into account.

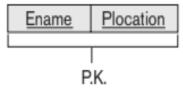
• GUIDELINE 3:

- Relations should be designed such that their tuples will have as few NULL values as possible
- Attributes that are NULL frequently could be placed in separate relations (with the primary key)
- Reasons for nulls:
 - Attribute not applicable or invalid
 - Attribute value unknown (may exist)
 - Value known to exist, but unavailable

1.4 Generation of Spurious Tuples – avoid at any cost

Bad designs for a relational database may result in erroneous results for certain JOIN operations

GUIDELINE 4:


- The relations should be designed to satisfy the lossless join condition.
- No spurious tuples should be generated by doing a natural-join of any relations.

Generation of Spurious tuples

EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

Consider the two relation schemas EMP_LOCS and EMP_PROJ1, which can be used instead of the single EMP_PROJ

EMP_	PROJ1			
Ssn	Pnumber	Hours	Pname	Plocation
	P.K.			

EMP_LOCS

Ename	Plocation
Smith, John B.	Bellaire
Smith, John B.	Sugarland
Narayan, Ramesh K.	Houston
English, Joyce A.	Bellaire
English, Joyce A.	Sugarland
Wong, Franklin T.	Sugarland
Wong, Franklin T.	Houston
Wong, Franklin T.	Stafford
Zelaya, Alicia J.	Stafford
Jabbar, Ahmad V.	Stafford
Wallace, Jennifer S.	Stafford
Wallace, Jennifer S.	Houston
Borg, James E.	Houston

EMP_PROJ1

Ssn	Pnumber	Hours	Pname	Plocation
123456789	1	32.5	ProductX	Bellaire
123456789	2	7.5	ProductY	Sugarland
666884444	3	40.0	ProductZ	Houston
453453453	1	20.0	ProductX	Bellaire
453453453	2	20.0	ProductY	Sugarland
333445555	2	10.0	ProductY	Sugarland
333445555	3	10.0	ProductZ	Houston
333445555	10	10.0	Computerization	Stafford
333445555	20	10.0	Reorganization	Houston
999887777	30	30.0	Newbenefits	Stafford
999887777	10	10.0	Computerization	Stafford
987987987	10	35.0	Computerization	Stafford
987987987	30	5.0	Newbenefits	Stafford
987654321	30	20.0	Newbenefits	Stafford
987654321	20	15.0	Reorganization	Houston
888665555	20	NULL	Reorganization	Houston

Result of applying NATURAL JOIN to the tuples in EMP_PROJ1 and EMP_LOCS.

Generated spurious tuples are marked by asterisks. Suppose that we used EMP_PROJ1 and EMP_LOCS as the base relations instead of EMP_PROJ. This produces a particularly bad schema design because we cannot recover the information that was originally in EMP_PROJ from EMP_PROJ1 and EMP_LOCS.

If we attempt a NATURAL JOIN operation on EMP_PROJ1 and EMP_LOCS, the result produces many more tuples than the original set of tuples in EMP_PROJ. Additional tuples that were not in EMP_PROJ are called spurious tuples

	Ssn	Pnumber	Hours	Pname	Plocation	Ename
	123456789	1	32.5	ProductX	Bellaire	Smith, John B.
*	123456789	1	32.5	ProductX	Bellaire	English, Joyce A.
	123456789	2	7.5	ProductY	Sugarland	Smith, John B.
*	123456789	2	7.5	ProductY	Sugarland	English, Joyce A.
*	123456789	2	7.5	ProductY	Sugarland	Wong, Franklin T.
	666884444	3	40.0	ProductZ	Houston	Narayan, Ramesh K.
*	666884444	3	40.0	ProductZ	Houston	Wong, Franklin T.
*	453453453	1	20.0	ProductX	Bellaire	Smith, John B.
	453453453	1	20.0	ProductX	Bellaire	English, Joyce A.
*	453453453	2	20.0	ProductY	Sugarland	Smith, John B.
	453453453	2	20.0	ProductY	Sugarland	English, Joyce A.
*	453453453	2	20.0	ProductY	Sugarland	Wong, Franklin T.
*	333445555	2	10.0	ProductY	Sugarland	Smith, John B.
*	333445555	2	10.0	ProductY	Sugarland	English, Joyce A.
	333445555	2	10.0	ProductY	Sugarland	Wong, Franklin T.
*	333445555	3	10.0	ProductZ	Houston	Narayan, Ramesh K.
	333445555	3	10.0	ProductZ	Houston	Wong, Franklin T.
	333445555	10	10.0	Computerization	Stafford	Wong, Franklin T.
*	333445555	20	10.0	Reorganization	Houston	Narayan, Ramesh K.
_	3334455555	20	10.0	Reorganization	Houston	Wong, Franklin T.

Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable because when we JOIN them back using NATURAL JOIN, we do not get the correct original information. This is because in this case Plocation is the attribute that relates EMP_LOCS and EMP_PROJ1, and Plocation is neither a primary key nor a foreign key in either EMP_LOCS or EMP_PROJ1. We can now informally state another design guideline.

Functional dependencies

- Functional dependencies (FDs)
 - Are used to specify formal measures of the "goodness" of relational designs
 - And keys are used to define **normal forms** for relations
 - Are constraints that are derived from the meaning and interrelationships of the data attributes(A functional dependency is a constraint between two sets of attributes from the database. Suppose that our relational database schema has n attributes A1, A2, ..., An)
- A set of attributes X *functionally determines* a set of attributes Y if the value of X determines a unique value for Y

Contd..

- X → Y holds if whenever two tuples have the same value for X, they must have the same value for Y
 - For any two tuples t1 and t2 in any relation instance r(R): If t1[X]=t2[X], then t1[Y]=t2[Y]
- $X \rightarrow Y$ in R specifies a *constraint* on all relation instances r(R)
- Written as X → Y; can be displayed graphically on a relation schema as in Figures. (denoted by the arrow:).
- FDs are derived from the real-world constraints on the attributes

Examples of functional dependencies

- Social security number determines employee name
 SSN → ENAME
- Project number determines project name and location
 PNUMBER → {PNAME, PLOCATION}
- Employee ssn and project number determines the hours per week that the employee works on the project
 - {SSN, PNUMBER} → HOURS

Question

Given the relation R(A,B,C,D) below. determine which FDs hold on the relation R given the extension?

A	В	С	D
al	b1	c1	d1
al	b2	c2	d2
a2	b2	c2	d3
a3	b3	c4	d3

Solution

Here, the following FDs may hold because the four tuples in the current extension have no violation of these constraints:

 $\mathsf{B}\to\mathsf{C}$

(as b1-> c1, b2->c2 b3 ->c4)

each value of B determines unique value of c)

other constraints that may hold

В С D А b1 d1 al c1 b2 d2 al c2 b2 d3 a2 c2 b3 d3 a3 c4

 $C \rightarrow B$

 $\{A,\,B\}\to C$

$$\{A, B\} \rightarrow D$$

 $\{C,\,D\}\to B$

Question for Lab class

Create the following tables

Identify primary key and foreign keys in the table. Write create table commands

Suppliers (SNo, Sname, Status, SCity) Parts (PNo, Pname, Colour, Weight, City) Project (JNo, Jname, Jcity) Shipment (Sno, Pno, Jno, Quantity)

Insert the sample data given in the next slide

TABLE Suppliers

SNo	Sname	Status	SCity	
S 1	Smith	20	London	
S 2	Jones	10	Paris	
S 3	Blake	30	Paris	
S 4	Clark	20	London	
S 5	Adams	30	Athens	
TAD				
TAB PNo	LE P Pname	Color	Weight	City
		Color ===================================	Weight ====================================	City ======= London
PNo ====	Pname			
PNo ==== P1	Pname Nut	Red	12	London
PNo ===== P1 P2	Pname Nut Bolt	Red Green	12 17	London Paris
PNo ===== P1 P2 P3	Pname Nut Bolt Screw	Red Green Blue	12 17 17	London Paris Rome

TAE Jno	BLE Projec Jname	t JCity
 J1	Sorter	Paris
J2	Punch	Rome
J3	Reader	Athens
J4	Console	Athens
J5	Collator	London
J6	Terminal	Oslo
J7	Tape	London

TABLE Shipment

IADLE Simplifient			
Sno	Pno		Jno Qty
S 1	P1	J1	200
S 1	P1	J4	700
S 2	P3	J1	400
S 2	P3	J2	200
S 2	P3	J3	200
S 2	P3	J4	500
S 2	P3	J5	600
S 2	P3	J6	400
S 2	P3	J7	800
S 2	P5	J2	100
S 3	P3	J1	200
S 3	P4	J2	500
S 4	P6	J3	300
S 4	P6	J7	300
S 5	P2	J2	200
S 5	P2	J4	100
S 5	P5	J5	500
S 5	P5	J7	100
S 5	P6	J2	200
S 5	P1	J4	100
S 5	P3	J4	200
S 5	P4	J4	800
S 5	P5	J4	400
S5	P6	J4	500